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DNA methylation, maintenance, and demethylation are essential for maintaining
normal physiological functions. Recent studies have revealed that DNA
methylation plays a crucial role in the progression of osteonecrosis of the
femoral head. DNA methylation regulates the differentiation direction of bone
marrow mesenchymal stem cells, affects angiogenesis, and is involved in the
proliferation and apoptosis of osteocytes, holding significant potential for early
diagnosis and treatment of the disease. This paper introduces the concept and
process of DNA methylation, with an emphasis on its molecular mechanisms in
osteonecrosis of the femoral head. Furthermore, we propose that modulating
different states of DNA methylation, such as inhibiting the function of DNA
methyltransferases to induce DNA demethylation, could impact the disease
progression of osteonecrosis of the femoral head, offering new insights for its
treatment.
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1 Introduction

Osteonecrosis of the femoral head (ONFH) is a debilitating condition influenced by
both environmental and genetic factors, characterized by a prolonged disease course, a low
cure rate, and significant disability. The global incidence of ONFH is increasing.
Approximately 20,000 new cases are annually diagnosed in the United States, with a
cumulative prevalence ranging from 300,000 to 600,000 cases. The number of patients
suffering from ONFH is as high as 8.12 million in China. It primarily affects young adults
from 20 to 40 years old, and ranks among the most prevalent diseases leading to disability in
young and middle-aged individuals (Zhao et al., 2020; George and Lane, 2022). Its main
pathological process involves the interruption of blood supply to the femoral head, leading
to bone death, trabecular necrosis, separation of the subchondral bone from the articular
cartilage, and irreversible collapse of the femoral head, eventually resulting in pain, limited
mobility, and dysfunction of the hip joint (Guerado and Caso, 2016; Chang et al., 2020).

Nonoperative treatment modalities have limited effectiveness in halting the progression
of ONFH and are only applicable to a small number of patients with small-sized and medial
lesions (Mont et al., 2010; Mont et al., 2020). Recent studies have evaluated the efficacy of
pharmacological therapy and biophysical treatments. Statins may potentially reduce the risk
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of ONFH, by modulating lipid metabolism and the expression of
genes related to bone differentiation (Pritchett, 2001; Ajmal et al.,
2009; Ren et al, 2020; Wu et al,, 2024). Meanwhile, electrical
stimulation showed beneficial effects in managing early-stage
ONFH, and improving clinical and radiographic parameters
(Bradley et al., 1986; Fornell et al., 2018; Yamamoto et al., 2018;
Ellenrieder et al., 2023). However, considering that these data
originate from small-scale and single-center studies and only
provide low-level evidence, the results in these nonoperative
studies are inconclusive. In contrast, joint-preserving procedures,
such as core decompression, adjunctive bone-grafting, small-
diameter drilling, and vascular pedicle bone transplantation,
should be attempted to save the femoral head and delay
progression in early-stage lesions (Microsurgery Department of
the Orthopedics Branch of the Chinese Medical
Association et al., 2017). Additionally, core decompression (CD)

Doctor

procedures have been applied for more than 50 years, and are more
effective than non-surgical treatments. With an overall success rate
of approximately 65% (Hua et al., 2019), CD is widely recommended
for patients with a lesion area of less than 30% of the femoral head
volume (Roth et al,, 2016). In recent years, cell-based adjuvant
therapy (such as autologous bone marrow aspiration concentrate)
has further improved the clinical efficacy of CD (Piuzzi et al., 2017;
Wang et al, 2023). However, the standardization of cell-based
therapy still faces challenges, including heterogeneity in cell
collection, processing, and transplantation methods, as well as
differences in cell quality among patients. When the disease
progresses to the advanced stage, patients often require total hip
arthroplasty (Mont et al., 2020; Zhao et al., 2020). However, for
young patients, the most optimal therapeutic objective is to maintain
the structural integrity of the femoral head. The effective treatment
of ONFH at the early stage remains a highly challenging. At present,
consensus is lacking among the diverse treatment modalities.
Therefore, further clarification of the pathological molecular
mechanisms involved in ONFH is essential for managing
this disease.

The occurrence and development of ONFH is influenced by a
combination of environmental, genetic and social factors. In theory,
its pathogenesis involves a multifactorial interplay of various
mechanisms, including the abnormal differentiation of bone
marrow-derived mesenchymal stem cells (BMSCs), blood supply
disorders, lipid metabolism disorders, apoptosis and inflammation,
and genetic polymorphism (Li, 2014). Nevertheless, the precise
molecular mechanism has not been fully elucidated (Wang A.
et al, 2018). Recent advances have shown that epigenetics,
particularly DNA methylation, plays an important role in the
pathological mechanism of ONFH.

Epigenetics refers to the heritable changes in chromatin states
that occur without alterations in the underlying DNA sequence
(Cavalli and Heard, 2019). As
modification, DNA methylation is the most common and well-

a fundamental epigenetic
studied one at present. Disruption of the gene expression patterns
mediated by this mechanism induces various diseases, such as
diabetes (Bansal and Pinney, 2017), kidney disease (Reddy and
Natarajan, 2015), cardiovascular diseases, bone and joint diseases,
and even tumors (Koch et al,, 2018; Agha et al., 2019; van Meurs
et al, 2019). A comprehensive genome-wide DNA methylation
analysis of human pancreatic islets revealed intriguing insights.
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In patients with type-2 diabetes (T2D), 276 methylated cytosine-
phosphate-guanine (CpG) sites exhibited differential methylation
compared with non-diabetic individuals. Notably, approximately
96% of these sites were hypomethylated (Volkmar et al., 2012). In
diabetic kidney disease (DKD), the up-regulation of DNA
(DNMT1) occurred in
cytosine methylation of the upstream

methyltransferase 1 immune cells,
inducing abnormal
regulators of the mammalian target of rapamycin (mTOR)
pathway.

pathogenically activated, contributing to inflammation in DKD

Consequently, this signaling pathway became
(Chen et al.,, 2019). Hypomethylation modification was found to
be associated with poor prognosis in breast cancer. In particular,
stemness and proliferation-related transcription factors, namely,
OCT4, NANOG, SOX2, and SIN3, were elevated in circulating
tumor cluster (CTC) cells, suggesting the effect of DNA
methylation levels on tumor cell proliferation and metastasis
(Gkountela et al, 2019). Moreover, DNA methylation, as a
potential molecular mechanism, can affect bone remodeling and
angiogenesis and participate in the occurrence and development of
bone tissue diseases, including osteonecrosis of the femoral head
(ONFH) (Sharma et al, 2024). For
demethylation of the promoter regions of the Runx2, osteocalcin,

example, the active
and osterix genes, mediated by mechanisms dependent on the
growth arrest and DNA-damage-inducible protein (GADD45), is
intricately involved in the osteogenic differentiation of adipose-
derived mesenchymal stem cells (MSCs) (Zhang et al.,, 2011). Man
et al. exploited the impact of inducing hypomethylation through the
DNA methyltransferase inhibitor 5-azacytidine (AZT), and found
that it significantly increased osteogenic differentiation and
mineralization of human BMSCs (hBMSCs) and enhanced the
pro-angiogenic cytokine release of human umbilical vein
endothelial cells (HUVECs) (Man et al., 2023).

We review the research on DNA methylation in ONFH to
uncover its significance and potential as both a diagnostic tool
and therapeutic target (Figure 1).

2 DNA methylation process

DNA methylation is catalyzed by a family of DNA
methyltransferases (Dnmts) that transfer a methyl group from
S-adenyl methionine (SAM) to the fifth carbon of a cytosine
residue to form 5-methylcytosine (5mC) (Liu et al, 2018;
Greenberg and Bourc’his, 2019). In the human genome, Dnmts
primarily include Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, and Dnmt3L.
Among these, Dnmtl and Dnmt3a/b are canonical DNA
methyltransferases whereas Dnmt2 and Dnmt3L are considered
non-canonical ones (Lyko, 2018). In plants, conserved Dnmts are
present known as chromomethylases (CMTs). Additionally, Dnmt4,
Dnmt5, and Dnmt6 have also been identified in algae and fungi (Law
and Jacobsen, 2010). Human DNA methyltransferases can be
categorized into two main groups. The first category includes
DNMT3a and DNMT3b, which are also known as de novo
methyltransferases. Their primary function is to methylate
previously unmethylated sites, introducing methyl groups into
naked DNA. The second category includes DNMT1, which acts
as a DNA maintenance methyltransferase. DNMTT1 is located at the
replication fork during cell

replication and methylates
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DNA methylation leads to ONFH. DNA methylation induces the progression of ONFH by epigenetically regulating osteogenesis-related genes (e.g.,
Runx2, Collal, and OPG), signaling pathways (e.g., Wnt/p-catenin, PI3K/Akt, and OPG/RANKL), and miRNAs (such as miR210), thereby driving
deteriorations in osteogenic differentiation of BMSCs mediated by osteogenic-related genes, impaired angiogenesis regulated by miR210, osteocytes
apoptosis mediated by TET3, and cartilage degradation involved by CARS. BMSCs:bone marrow mesenchymal stem cells; ONFH: osteonecrosis of

FIGURE 1

the femoral head.

hemimethylated DNA sites to preserve the original methylation
pattern before replication occurs (Moore et al., 2013). The role of
Dnmt2 remains controversial. Notably, Dnmt2 can methylate tRNA
molecules through a catalytic mechanism similar to DNA
methylation. Conversely, Dnmt3L shares a protein structure with
Dnmt3 but lacks key catalytic motifs. Instead, it functions as a
cofactor for DNA methylation.

DNA methylation is a dynamic process that includes both the
establishment and maintenance of DNA methylation patterns, as well
as active demethylation. Dnmts add methyl groups to cytosine residues,
wheras demethylation can occur through various mechanisms (Edwards
etal, 2017) and is categorized into two forms: active and passive. Passive
demethylation predominantly occurs in dividing cells. During cell
replication, Dnmtl maintains DNA methylation. In particular, the
inhibition and/or dysfunction of Dnmtl keeps newly incorporated
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cytosines unmethylated. Consequently, the overall methylation levels
decrease after cell division, enabling passive demethylation.

Active DNA demethylation can occur in both dividing and non-
dividing cells through chemical modifications of 5mC by DNA
demethylases (deamination or oxidation) and through the base
excision repair (BER) pathway. Activation-induced cytidine
deaminase/apolipoprotein B mRNA-editing enzyme complex
(AID/APOBEC) effectively transforms 5mC into thymine after
deamination. Subsequently, the modified base is replaced with
naked cytosine through the BER pathway. Additionally, proteins
of the ten-eleven translocation (TET) family catalyze the conversion
of 5mC to 5-hydroxymethylcytosine (5hmC), which ultimately
contributes to BER-mediated demethylation (Wu and Zhang,
2017). The of DNA methylation and
demethylation is essential for maintaining normal cellular functions.

dynamic balance
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The role of DNA methylation on abnormal differentiation of BMSCs. Hypermethylation of osteogenic genes epigenetically silences their expression,
thereby inhibiting osteogenic differentiation of BMSCs during the development of ONFH. DNA demethylating agents (e.g., 5-aza-dc) could reverse this
hypermethylation, restoring expression level of genes such as Runx2, OCN, Collal, ABCB1, FZD1, and promoting osteogenic differentiation from BMSCs
to osteoblasts. Icariin exerts similar pro-osteogenic effects via DNA demethylation, highlighting its therapeutic potential for ONFH.

3 The regulatory role of DNA

methylation in osteonecrosis of
femoral head

3.1 The impact of DNA methylation on the
abnormal osteogenic differentiation

Bone is a dynamic and metabolically active tissue that maintains
a delicate balance between anabolic and catabolic processes
throughout an individual’s life to preserve its structural integrity
and strength. Bone remodeling is an ongoing process that occurs in
response to mechanical stress, primarily involving bone resorption,
facilitated by osteoclasts, and bone formation, mediated by
osteoblasts. The dysfunction of such processes significantly
contributes to various bone tissue diseases (Siddiqui and
Partridge, 2016). BMSCs possess the remarkable ability for self-
renewal and differentiation into various cell types. Notably, they can
differentiate into osteoblasts, adipocytes, and chondrocytes (Pierce
et al, 2019). Osteogenic/adipogenic differentiation disorder of
BMSCs is the primary underlying cause of ONFH (Chen et al., 2020).

Recent studies have highlighted the impact of DNA methylation
on osteogenic differentiation and its involvement in regulating bone
2019; Li et al, 2019). Sun et al
investigated the role of DNA methylation in steroid-induced
head (SONFH). Their
demonstrated that the proliferation ability of BMSCs in patients

metabolism (Malvicini et al.,

osteonecrosis of femoral results
with SONFH was weakened. Additionally, the transcription level of
the ABCB1 gene in BMSCs decreased, whereas its methylation
modification level increased. The P-glycoprotein, encoded by this
gene, played a crucial role in drug absorption and distribution.
Notably, oral glucocorticoids served as the protein’s substrates.
When BMSCs were treated with 5-aza, the expression of

ABCBI was rapidly restored (Sun et al., 2013). Further research
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by the same study group in the same patient population indicated
that icariin-treated BMSCs reduced the methylation modification
level of the CpG island of ABCBI, increased its gene expression, and
promoted the osteogenic differentiation of BMSCs (Sun et al., 2015).
Lysine-specific demethylase 5A (KDMS5A) negatively regulates
BMSC osteogenic differentiation by modulating H3K4me3 levels
on the promoters of key osteogenic genes (Runx2, OCN, OPN) in
SONFH (Yan et al,, 2024). Human umbilical cord MSCs-derived
exosomes (hucMSCs-exos) ameliorated alcohol-induced ONFH by
inhibiting miR-25-3p DNA methylation and GREM1 expression in
BMSCs (Tang et al,, 2025). Dexamethasone trigger MC3T3EL1 cells
ferroptosis by promoting DNMT3a-mediated DNA methylation
and downregulating Sirtl expression in SONFH (Xiao et al., 2025).

DNA methylation has emerged as a potential therapeutic target
for osteonecrosis of ONFH (Sun et al, 2015). A study on gene
polymorphisms in the Chinese Han population with SONFN
validated that polymorphisms in the ABCB1 and CYP450 genes
were associated with the risk of steroid-induced ONEN. In
particular, the CpG loci within the ABCB1 gene (ABCBI1-1-192,
ABCB1-2-32, and ABCB1-2-43) were identified with significantly
different methylation levels (Huang et al., 2020). As a receptor
within the Wnt signaling pathway, frizzled 1 (FZD1) is fundamental
in osteoblast differentiation. In BMSCs from SONFH patients,
hypermethylation of the FZD1 promoter CpG island reduced the
expression of FZD1. Consequently, this inhibition affects the Wnt
signaling pathway, weakens the proliferation ability of BMSCs, and
hinders osteogenic differentiation, while also promoting adipogenic
differentiation. Nonetheless, treatment with 5-aza can restore
FZD1 expression by decreasing its methylation level, ultimately
facilitating osteogenic differentiation and potentially serving as a
therapeutic approach (Wu F. et al., 2019).

The inhibitory effect of the inflammatory factors such as TNF-a
and IL-6, which are widely recognized as the main cytokines
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promoting apoptosis of bone cells or disturbance in bone
metabolism associated with ONFH (Cheng et al.,, 2023; Ozawa
et al, 2024), on osteogenic differentiation of BMSCs through
epigenetic mechanisms remains a critical concern. The previous
studies elucidated that the self-methylation of TNF-a and IL-6 plays
a vital role in diseases such as obesity (Boonrong et al., 2024) and
cognitive impairment (Rump and Adamzik, 2022). Boonrong et al.
demonstrated that the hypomethylation in the TNF-a promoter
correlated with elevated TNF-a levels and metabolic dysfunction in
individuals,
inflammation and epigenetic dysregulation. Furthermore, the
hypermethylation of IL-6 regulated by DNMTI, contributed to
the depression-like

obese suggesting a feedforward loop between

behaviors through inducing
neuroinflammation in mice (Bai et al., 2023). An early study
reported that TNF-a elevated the methylation level of the CpG
region of Runx2, leading to the inhibition of the Wnt signaling
pathway, subsequently hindering the differentiation of BMSCs into
osteoblasts (Fang et al, 2019). However, the role of DNA
methylation of TNF-a and IL-6 in ONFH is still unclear.

In conclusion, DNA methylation obstructs the BMSC-osteoblast
differentiation by affecting the expression of osteogenic
differentiation-related genes. Conversely, DNA demethylation
reagents such as 5-aza-dc and icariin, can lower the methylation
level of osteogenic genes, supporting osteogenic differentiation, and

may potentially be developed as therapies (Figure 2).

3.2 The impact of DNA methylation on
angiogenesis

Bone, a richly vascularized connective tissue, serves as the main
source of oxygen, nutrients, hormones, neurotransmitters, and
growth factors for bone cells. The vasculature is indispensable for
appropriate bone development, regeneration, and remodeling (Peng
et al., 2020). Blood vessels in bone develop through the process of
angiogenesis. Their functional impairment can lead to various
orthopedic diseases, including osteoporosis and osteonecrosis
(Huang B. et al., 2016; Filipowska et al, 2017). In SONFH,
angiogenesis may be involved in the repair of femoral head
necrosis. Deferoxamine (DFO) can enhance angiogenesis and
bone repair by upregulating the expression of key factors,
(HIF-1a),
endothelial growth factor (VEGF), bone morphogenetic protein-2
(BMP-2), and osteocalcin (OCN) (Li et al., 2015).

Xu et al. demonstrated that treating BMSCs the DNA
methylation inhibitor 5-aza significantly increased the expression
of endothelial markers, including CD31/PECAMI, CD105/ENG,
and eNOS/VE-cadherin, thereby promoting angiogenesis (Xu R.

including  hypoxia-inducible ~ factor-1la vascular

et al., 2018). In their study using a tibial fracture model, Wang et al.
observed that the expression of DNA methyltransferase Dnmt3b
peaked on day 10 days after fracture and disappeared by day 28.
Knocking out Dnmt3b led to delayed fracture repair, along with
reduced numbers and volume blood vessels within the bone.
Additionally, showed that
Dnmt3b expression in human umbilical-vein endothelial cells

in vitro experiments inhibiting
resulted in reduced angiogenesis and inhibited endothelial cell
migration. The mechanism of action is similar to that of

CXCL12 and osteocalcin (osteopontin, OPN). The degree of
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methylation modification in the promoter region is associated
with this process (Wang C. et al., 2018). These aforementioned
results suggest that DNA methylation-mediated angiogenesis plays a
substantial role in bone repair.

In their study, Yuan et al. conducted microRNA sequencing on
the necrotic and normal parts of the femoral head. They found that
miR-210 was significantly differentially expressed in necrotic tissue,
with increased expression. Notably, when vascular endothelial cells
were treated with demethylation reagents, the expression level of
miR-210 further increased. Additionally, several angiogenesis-related
genes (including VEGF, bFGF, TNF-a, and PCNA) were up-
regulated, indicating that miR-210 facilitates angiogenesis and may
have a potential therapeutic effect in SONFH (Yuan et al., 2016).

3.3 Theory of DNA methylation
and apoptosis

Apoptosis refers to the programmed cell death regulated by
genes. As scholars continue to investigate femoral head necrosis, the
theory of apoptosis is gradually gaining recognition. Weinstein and
their colleagues revealed a significant presence of osteocyte
apoptosis in femoral head specimens from 14 SONFH patients
(Weinstein et al., 2000). After extensive in vitro and in vivo
experiments, the link between steroid- and alcohol-induced
apoptosis of bone cells has been firmly established. Osteocyte
apoptosis disrupts the sensory function of the cell mechanical
network, leading to thinning and sparse trabecular bone.
Ultimately, this process contributes to irreversible femoral head
collapse. Nonetheless, inhibiting this mechanism can partially
mitigate the progression of femoral head necrosis. The
transcription factor p53 is vital in this context, activating both
death receptor (FAS/TRAILR2)- and mitochondrial (BAX/BAK/
BID/NOXA/PUMA/APAF1)-mediated apoptosis pathways by
modulating the expression levels of binding site genes (Vousden
and Lu, 2002). Abnormal hypermethylation in the promoter region
of the p53 gene reduces the gene expression level, thereby affecting
cell apoptosis. Moreover, apoptosis is also regulated by the impact of
DNA methylation on the expression levels of Fas, Caspase-8, and
p14ARF (Gopisetty et al., 2006).

TET3 is responsible for catalyzing the oxidation of 5-
methylcytosine to 5-hydroxymethylcytosine (5hmc), substantially
contributing to DNA demethylation (Wang et al.,, 2022; Zhang et al.,
2023), which may play a crucial role in biological processes of ONFH
by affecting gene expression (Wang et al., 2022). Early in vivo and
in vitro studies demonstrated that the expression of TET3-5hmC
increased in bone tissue associated with human steroid-induced
ONFH and that the elevated TET3-5hmC levels correlated with
weakened proliferation and increased apoptosis of osteocytes
induced by steroid (Rath et al., 2024). These apoptosis-promoting
effects of TET3-5hmC were medicated by PI3K/Akt signaling
pathway. The knockdown on TET3 expression could counteract
the inhibitory effect of steroid on the Akt pathway and suppress
osteocyte apoptosis. On the other side, some studies have suggested
that TET3 may promote repairing of spinal cord injury (Zhang et al.,
2024) as shown by that TET3-mediated demethylation reshaped the
methylation patterns of human umbilical cord mesenchymal stem
cells (HUCMSCs), enabling their efficient one-step conversion into
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TABLE 1 Summary of the genes involved in DNA methylation regulation in ONFH.

DNA Biological function

methylation

Signaling References

pathway

ABCB1 hypermethylation aberrant osteogenic differentiation — Reddy and Natarajan, (2015), Koch et al. (2018), Agha
et al. (2019)

miR-210 hypomethylation angiogenesis — Greenberg and Bourc’his (2019)

FZD1 hypermethylation abnormal osteogenic/adipogenic Wnt/B-catenin Van Meurs et al. (2019)
differentiation

TET3 hypomethylation cell apoptosis and weakened proliferation | PI3K/AKT Edwards et al. (2017)

ADAMTSI12 | hypomethylation cartilage damage — Zhou, G.S. (2009)

CARS hypomethylation cartilage damage — Zhou, G.S. (2009)

OPG/ hypermethylation osteoclast maturation and differentiation = OPG/RANKL/RANK Sun et al. (2013), Sun et al. (2015)

RANKL

MMP13 hypomethylation cartilage damage — Lu et al. (2024)

CHI3L1 hypermethylation cartilage damage — Lu et al. (2024)

GDF10 hypermethylation cartilage damage — Lu et al. (2024)

miR-25-3p hypomethylation osteogenic differentiation miR-25-3P/GREM1 Tang et al. (2025)

KDM5A hypermethylation aberrant osteogenic differentiation — Yan et al. (2024)

oligodendrocyte precursor cells (OPCs) for repairing spinal cord
injury. Notably, this functional dichotomy may stem from tissue-
specific gene regulatory network. These apoptosis-promoting and
repair-promoting effects highlight the complexity in biological roles
of TET3, suggesting that its therapeutic targeting might require
precise spatiotemporal regulation. The TET3-5hmC-Akt axis
represents a promising target of early intervention for steroid-
associated ONFH.

3.4 DNA methylation and cartilage damage

In addition to subchondral osteonecrosis and collapse, the
pathological process of femoral head necrosis also includes
cartilage damage, degeneration and necrosis. In general, articular
cartilage damage occurs during the early stages of ONFH and can
lead to hip joint instability and femoral head collapse, further
contributing to disease progression. Timely treatment of hip
cartilage injuries can delay such progression and extend the
window for surgical intervention (Xu et al, 2017; Zhao et al,
2017). Although chondrocytes do not undergo a remodeling
process, DNA methylation
chondrogenesis

remains vital in regulating

and maintenance, which is achieved by
modulating the expression of chondrogenesis-related genes,
including GDF5, SOX9, and MMP13 (Ramos and Meulenbelt,
2017). Moreover, during the differentiation of BMSCs into
chondrocytes, the methylation level of the CpG site in the
COL10A1 gene promoter region decreases. This demethylation
process is associated with an increase in COL10A1 expression,
the of BMSCs

chondrocytes (Zimmermann et al., 2008).

ultimately ~promoting differentiation into
A genome-wide DNA methylation sequencing study of hip
articular cartilage in individuals with femoral head necrosis and

femoral neck fracture revealed 480 hypermethylated sites and
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1,335 hypomethylated sites associated with femoral head necrosis.
Among these, the DNA methylation levels of several genes, namely,
PDE4D, CARS, RUNX2, ADAMTSI12, and LRP5, were decreased.
Subsequent experiments
significant increased protein expressions of ADAMTS12, CARS,
PDE4D, LRP5, and RUNX2 in the necrotic cartilage of the femoral
head. Methylation yields a critical biological impact by influencing

immunohistochemical confirmed

the methylation status of relevant genes in articular cartilage cells,
hence regulating gene expression and exerting functional effects.
Notably, cysteinyl-tRNA synthetase (CARS) has emerged as the
most statistically distinct gene in DNA methylation sequencing
results, encoding an aminoacyl-tRNA synthetase and is involved
in regulating mitochondrial behaviors. Considering its potential in
cartilage injury, further study is required to explore the role of CARS
in ONFH-associated mitochondrial dysfunction (Wu J. et al., 2019).
A recent study involving multiomics
ONFH Critically,
MMP13 exhibited promoter hypomethylation coupled with

integration revealed
22 dysregulated genes in cartilage.
transcriptional upregulation, driving extracellular matrix (ECM)
degradation through collagen II cleavage. Conversely, GDF10 and
CHI3L1 suppression was linked to promoter hypermethylation,
leading to inflammatory changes and impairing BMP-mediated
chondrogenesis. Dexamethasone induced DNA methylation
changes, dysregulating effector molecules (MMP13, GDF10, and
CHI3LI et al.). This drives ECM degradation and impairs bone
repair, culminating in femoral head collapse (Lu et al.,, 2024).

3.5 DNA methylation and signaling pathways

Genes involved in DNA methylation modifications are crucial in
signaling pathways, affecting the abnormal differentiation of BMSCs
in ONFH, maturation and differentiation of osteoclasts, and

osteocyte apoptosis. The classical Wnt/p-catenin pathway
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significantly influences bone metabolism, generating dual effects:
inhibiting the differentiation of BMSCs into chondrocytes and
adipocytes, while promoting their differentiation into osteoblasts
(Li et al., 2018; Hayashi and Nakashima, 2019).

The FZD protein, a 7-transmembrane receptor in the Wnt
signaling pathway, interacts with Wnt ligands to activate
downstream signaling. In particular, FZD1 has been implicated
in promoting osteoblast differentiation and mineralization. Wu
et al. they investigated DNA methylation in the promoter region
of the FZD1 gene using BMSCs from patients with hormonal
osteonecrosis of the femoral head. Notably, the FZD1 mRNA
and protein levels were significantly reduced, inhibiting the Wnt/
[B-catenin signaling pathway and suppressing BMSC osteogenic
differentiation, while also promoting adipogenic differentiation.
However, treatment with the demethylation reagent 5-aza
restored FZD1 expression, activating the Wnt/p-catenin pathway
and ultimately enhancing BMSC osteogenic differentiation while
inhibiting adipogenic differentiation (Wu F. et al., 2019). The
osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-
B ligand (RANKL)/RANK pathway remains essential in osteoclast
maturation and differentiation. RANKL binds to RANK on the
surface of osteoclasts, promoting their differentiation. OPG, secreted
by osteoblasts, competes with RANKL, preventing RANKL from
binding to RANK and inhibiting osteoclast function. Normally,
OPG/RANKL/RANK is well-balanced. However, excessive alcohol
and hormone intake can disrupt this balance, leading to osteoclast
activation and reduced bone mass. Abnormal hypermethylation
sites in the three genes have been observed in patients with
hormonal and alcoholic femoral head osteonecrosis. The degree
of OPG/RANKL/RANK hypermethylation may serve as a diagnostic
marker for alcoholic femoral head osteonecrosis (Sun et al., 2021;
Wang et al,, 2021). The Akt signaling pathway has a pivotal impact
through 3-5 hmC
modification mediated by TET enzymes, eventually leading to

on attenuating osteocyte proliferation
apoptosis. Additionally, KEGG signaling analysis of osteocyte
hMeDIP-5 hmC sequencing revealed that apart from Akt, the
Notch and Wnt/B-catenin pathways are associated with
hormone-induced DNA demethylation. In particular, Notch
signaling promotes osteogenic differentiation, blood vessel
formation, and bone formation (Ramasamy et al, 2014; Zhao

et al., 2017).

4 DNA methylation-targeted therap
for ONFH: therapeutic potential an
translational challenges

The reversible nature of DNA methylation, a key epigenetic
mechanism, has provided innovative therapeutic strategies for
diverse diseases such as cancer (Jamshidi et al., 2022; Lee et al,
2024), immune-related diseases (Gupta et al, 2023), and bone
diseases (Grandi and Bhutani, 2020; de Nigris et al., 2021).
DNMT inhibitors (DNMTis), particularly nucleoside analogs like
5-Azacytidine and 5-Aza-2'-deoxycytidine, exhibited clinical
efficacy for types of tumors by restoring normal methylation
patterns (Cheng et al., 2019). Moreover, numerous clinical trials
investigating DNA methylation as an early diagnostic markers and
therapeutic target for tumors, are either ongoing (NCT05764551,
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NCT03366116) or have been completed (NCT04568512). Indeed,
the FDA have already approved blood tests based on DNA
methylation biomarker technology to be applied in screening
colorectal cancer.

Emerging evidence highlights DNA methylation as a pivotal
regulator in ONFH, offering dual diagnostic and therapeutic
opportunities. Genome-wide methylation analyses for bone tissue
or blood from ONFH patients have identified disease-specific
hypermethylation patterns in genes governing bone metabolism,
including Runx2, OPG/RANKL/RANK signaling, CARS, and
PDE4D (Wu J. et al, 2019; Sun et al, 2021; Wang et al., 2021).
These sites might serve as new biomarkers for predicting the course
and prognosis of ONFH. Thus, effective and specific DNA
methylation inhibitors or activators could become a hotspot for
new drug development to treat ONFH. Although studies on the
clinical use of epigenetic drugs modulating aberrant DNA
methylation pattern in early treatment of ONFH are at a very
early stage, the development of epigenetic drugs targeting
abnormal methylation of target genes still possess important
application value.

5 Outlook

This paper reviews the distinct roles of DNA methylation and
demethylation in ONFH. As the most common epigenetic
modification, DNA methylation influences the progression of
ONFH and the repair of the femoral head post-injury by
regulating various factors, including the differentiation pathways
of bone marrow stromal cells (BMSCs), angiogenesis-related factors,
cell proliferation and apoptosis, chondrogenesis, and osteogenic/
osteoclastic signaling pathways. On one hand, hypermethylation at
CpG sites in genes such as ABCBI1, FZD1, OCT4, miR-210,
COL10A1, and OPG results in the downregulation of related
proteins, inhibiting osteogenesis and accelerating the progression
of ONFH (Table 1). Intervention with DNA methylation inhibitors
could offer therapeutic benefits for ONFH. On the other hand,
hypermethylation of genes like p53 and CARS can inhibit cell
apoptosis and promote femoral head repair. As we know that the
appropriate choice is considered for animal models, which should
mimic the pathological mechanism of diseases, therefore, the rodent
models (e.g., rats) are widely adopted due to their genetic homology
with humans, similar physiologic and metabolic characteristics as
humans, cost-effectiveness, and ease of breeding, in the studies on
DNA methylation of ONFH. While, several critical limitations must
be elucidated. Firstly, the faster metabolic rate of rodents accelerates
glucocorticoid clearance as compared to humans, potentially
underestimating the cumulative effects of chronic steroid
exposure (Conzemius et al., 2002; Xu J. et al., 2018). To address
this concern, adjusted doses (e.g., 20-40 mg/kg methylprednisolone
intramuscularly in divided doses over 3 days) are recommended to
reflect human-like pathological progression (Tao et al, 2017; Li
et al., 2023). Secondly, rodents exhibit enhanced capacity in bone
repairing, which may mask progression of ONFH. To avoid this
problem, the extended observation periods (>4 weeks) are necessary
to evaluate stable necrosis and femoral head collapse (Fan et al.,
2011; Huang S. L. et al., 2016; Tao et al., 2017). Finally, standardized
evaluation criteria are essential in ONFH studies, including but not
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limited to, histological staining (H&E, Masson) and imaging
methods (MRI T1-weighted sequences, micro-CT), which are
suggested to be used to quantify necrosis severity (Qin et al,
2006; Yang et al., 2009)”.

Although current research has not completely elucidated the
mechanisms by which DNA methylation affects ONFH, the
significance of DNA methylation in the diagnosis and treatment
of ONFH is substantial. Scientific research should not be limited to
animal and in vitro experiments; studies in real-world settings
should also be emphasized. Continued research will enhance the
understanding of DNA methylation’s role in ONFH, providing new
theoretical foundations, diagnostic approaches, and therapeutic
strategies, and offering insights for the development of new drugs
for treating ONFH.
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