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Background: Several studies have demonstrated an increased risk of periodontitis
(PD) among patients diagnosed with systemic lupus erythematosus (SLE).
However, the underlying common mechanism between them remains
incompletely understood. Accordingly, the aim of this study is to examine
diagnostic biomarkers and potential therapeutic targets for SLE and PD by
leveraging publicly accessible microarray datasets and transcriptome analysis.

Method: Datasets pertaining to SLE and PD were retrieved from the Gene
Expression Omnibus (GEO) database, and subsequently analyzed for
differentially expressed genes (DEGs). Key gene modules were identified
through weighted gene co-expression network analysis (WGCNA), and shared
genes were obtained by overlapping key genes between DEGs and WGCNA.
These shared genes were subsequently subjected to Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analyses, leading to the establishment of a Protein-Protein Interaction (PPI)
network. Random forest (RF) and Least Absolute Shrinkage and Selection
Operator (Lasso) regression were employed to identify key hub genes.
Receiver operating characteristic (ROC) curves were generated using a new
validation dataset to evaluate the performance of candidate genes. Finally,
levels of immune cell infiltration in SLE and PDwere assessed using CIBERSORTx.

Results: A total of 50 core genes were identified between the genes screened by
WGCNA and DEGs. Functional enrichment analysis revealed that these genes are
primarily associated with the PI3K-Akt and B-cell receptor signaling pathways.
Additionally, using machine learning algorithms and ROC curve analysis, a total of
8 key genes (PLEKHA1, CEACAM1, TNFAIP6, TCN2, GLDC, GNG7, LY96, VCAN)
were identified Finally, immune infiltration analysis highlighted the significant
roles of neutrophils, monocytes, plasma cells, and gammadelta T cells (γδ T cells)
in the pathogenesis of both SLE and PD.

Conclusion: This study identifies 8 hub genes that could potentially serve as
diagnosticmarkers for both SLE and PD, highlighting the importance of VCAN and
LY96 in diagnosis. Moreover, the involvement of the PI3K-Akt signaling pathway
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in both diseases suggests its significant role. These identified key genes and
signaling pathways lay the groundwork for deeper comprehension of the
interplay between SLE and PD.
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1 Introduction

Systemic lupus erythematosus (SLE) is a complex inflammatory
autoimmune disease characterized by the interplay of genetic,
immunological, and environmental factors (Akhil et al., 2023).
The multi-system involvement of SLE results in a broad
spectrum of clinical manifestations, often affecting the skin,
joints, kidneys, cardiovascular, and respiratory systems (Fava and
Petri, 2019; Ameer et al., 2022). In recent years, there has been
growing attention to oral health complications in SLE patients,
including temporomandibular joint dysfunction, tooth loss, and
oral mucosal lesions (Aceves-Avila et al., 2013; Benli et al., 2021).
Notably, the incidence of dental caries is significantly higher in SLE
patients than in the general population, closely linked to reduced
salivary secretion and alterations in the oral microbiome (Loyola
Rodriguez et al., 2016). These oral health issues not only diminish
the quality of life but also may exacerbate the systemic burden of the
disease (Corrêa et al., 2018).

Periodontitis (PD) is a widespread chronic inflammatory
disease, with a global prevalence estimated between 20% and 50%
(Nazir, 2017). The pathophysiology of PD is primarily driven by
bacterial infection, leading to persistent inflammation and the
destruction of periodontal tissues (Sedghi et al., 2021). The
progression of PD includes gingival inflammation, formation of
periodontal pockets, bone resorption, and eventual tooth loss
(Papapanou et al., 2018; Tonetti et al., 2018). PD is closely
associated with several systemic diseases, including cardiovascular
diseases, diabetes, rheumatoid arthritis, and SLE (Rutter-Locher
et al., 2017; Baima et al., 2022; Kobayashi and Bartold, 2023).
Among these, the relationship between SLE and PD has received
particular attention. Epidemiological studies indicate that SLE
patients are at a significantly increased risk of developing PD
(Hussain et al., 2022). Clinical studies further reveal a
bidirectional influence between SLE and PD. One study
demonstrated that periodontal treatment in SLE patients
significantly reduced disease activity, suggesting that effective
management of periodontitis may positively impact the systemic
condition of SLE (Fabbri et al., 2014).

Genetic studies reveal that SLE and PD share specific pathogenic
genes and signaling pathways. For instance, polymorphisms in the
Fcγ receptor gene play a crucial role in both diseases (Kobayashi
et al., 2003; Kobayashi et al., 2007). Certain Fcγ receptor alleles in
SLE patients are associated with more severe periodontal
destruction, highlighting the importance of genetic susceptibility
in the shared pathogenesis of these two diseases (Kobayashi et al.,
2003). Additionally, Toll-like receptor (TLR) signaling pathways are
abnormally activated in both SLE and PD, further suggesting an
immunopathological link between them (Marques et al., 2016;
Wallet et al., 2018). From a microbiological standpoint, immune
dysfunction in SLE patients leads to an imbalance in the oral

microbiome, facilitating the overgrowth of periodontal pathogens
(Bagavant et al., 2018; Pessoa et al., 2019). Specifically,
Porphyromonas gingivalis is believed to play a central role in the
pathogenesis of both PD and SLE. Studies have shown that the
abundance of this pathogen is significantly higher in the oral cavities
of SLE patients and is correlated with the severity of periodontal
tissue destruction (Graves et al., 2019). Furthermore, elevated levels
of pro-inflammatory cytokines (such as TNF-α and IL-6) in SLE
patients exacerbate periodontal inflammation, resulting in more
severe damage to periodontal tissues (Martínez-García and
Hernández-Lemus, 2021). The existing evidence strongly
supports a close biological connection between SLE and PD.
Further exploration of the shared mechanisms underlying these
two diseases could not only enhance the understanding of their

FIGURE 1
Research study flowchart.
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pathogenesis but also provide novel therapeutic approaches for their
combined management.

In this study, we comprehensively analyzed gene expression
datasets for both SLE and PD obtained from the GEO database.
The identification of shared genes between SLE and PD was achieved
through the detection of DEGs and WGCNA of the dataset.
Subsequently, we conducted GO and KEGG analyses on the
identified genes, followed by the construction of PPI networks. To
substantiate our findings, we employed machine learning algorithms,
specifically RF and LASSO, to ascertain common core genes
possessing the utmost diagnostic significance in both afflictions.
Finally, we conducted immune cell infiltration analysis to examine
the differences in immune cell composition between SLE and PD
patients, and assessed whether these differences correlate with the
expression levels of shared core genes. Through this comprehensive
bioinformatics analysis, we aim to offer new insights and perspectives
for the clinical management of SLE concurrent with PD by enhancing
our understanding of the biological connections between SLE and PD.

2 Materials and methods

2.1 Data download

The research process is illustrated in Figure 1. Data sets GSE72326,
GSE16134, GSE81622, and GSE10334, relevant to SLE and PD, were
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
(Barrett et al., 2013). TheGSE72326 dataset comprised 157 samples from
individuals with SLE and 20 healthy controls. GSE16134 encompassed
241 samples from individuals with PD alongside 69 healthy controls.
Additionally, we designated GSE81622 and GSE10334 as validation
datasets, with GSE81622 comprising 30 SLE samples and 25 healthy
controls, while GSE10334 included 183 samples from individuals with
PD and 64 healthy controls.

To ensure consistency across the different platforms of these
datasets, we performed several preprocessing steps. Initially, all gene
identifiers were converted to gene symbols. Subsequently, we assessed
the normality of the data distribution. For datasets exhibiting skewed
distributions, a log2 transformationwas applied to normalize the data.
These steps were critical in minimizing platform-specific biases and
ensuring the comparability of the datasets.

2.2 Differential gene expression analysis

We employed the R software package “Limma” to conduct an
analysis of distinctions between the datasets GSE72326 and
GSE16134. Differential gene screening was performed using
thresholds of P. Value < 0.05 and |log2FC| > 0.5 (Lv et al.,
2022). Volcano plots were generated using R software to visualize
these DEGs. Additionally, the shared DEGs between SLE and PD
were visualized using a Venn diagram.

2.3 WGCNA analysis

We conducted WGCNA on the datasets GSE72326 and
GSE16134. The function “pickSoftThreshold” was utilized to

screen gene modules (Xia et al., 2023). The top 25% of genes
ranked by absolute median deviation were chosen for WGCNA.
After eliminating missing values and outliers, we constructed the
adjacency matrix using the soft thresholding method with a scale-
free R̂2 > 0.8 criterion. Subsequently, the adjacency matrix was
transformed into a topological overlap matrix. Genes were
clustered based on their topological overlap matrix using the
average linkage hierarchical clustering method. We defined key
modules requiring a minimum of 30 genes and a cut height of 0.25.
Finally, Pearson correlation analysis was conducted to assess the
relationship between these modules and disease. Core modules
with the highest Pearson coefficients were then selected for
further analysis.

2.4 Enrichment analysis and PPI network
construction

After integrating the WGCNA results with DEGs, we conducted
GO term annotation and KEGG pathway analysis using Metascape
(http://metascape.org/gp/index.html#/main/step1). The GO
enrichment analysis was categorized into three main domains:
BP, CC, and MF. Additionally, KEGG pathway analysis was
performed to identify significant biological pathways associated
with DEGs. The visualization of GO and KEGG enrichment
results was generated using the Bioinformatics Online Platform
(http://www.bioinformatics.com.cn/).

We integrated WGCNA results with DEGs and uploaded them
to the STRING database for PPI network construction. The required
interaction score was set to >0.4. Subsequently, we visualized the
results with Cytoscape software and identified the central gene using
the CytoHubba plugin within Cytoscape (http://www.
cytoscape.org).

2.5 Machine learning-based candidate
gene selection

We applied the LASSO algorithm, a regression method for
variable selection and predictive performance enhancement,
along with the RF algorithm to identify hub genes. The analyses
were conducted using the “glmnet” and “randomForest” packages in
R (Díaz-Uriarte and Alvarez de Andrés, 2006; Garcia-Magariños
et al., 2010). In the LASSO model, the regularization parameter
(lambda) was optimized by selecting the value that minimized the
mean cross-validation error, while the RF model was constructed
with 1,000 decision trees. Subsequently, we performed ROC curve
analysis using the “rms” package to evaluate the overlapping genes
identified by both LASSO and RF. Genes with an AUC exceeding
0.6 were considered potential candidate biomarkers.

2.6 Construction and validation of line plots
for candidate biomarker

In order to further validate the potential of the selected genes for
diagnosis, we assessed the ROC curves of these overlapping genes
using the GSE81622 and GSE10334 datasets. Genes with an Area
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Under the Curve (AUC) value exceeding 0.6 were considered to have
significant diagnostic utility.

2.7 Immune cell infiltration analysis

We employed the CIBERSORT algorithm to evaluate the
distribution of immune cells between disease and normal samples
(Newman et al., 2015). Specifically, this study investigated the
distribution of 22 immune cell types in samples from
GSE72326 and GSE16134, with significance determined by
p-values < 0.05. Additionally, Pearson correlation analysis was
conducted between differentially coexpressed genes and

immunoinfiltrating cells. Data visualization utilized the vioplot
and pheatmap R packages.

3 Results

3.1 Analysis of differential gene expression

DEGs in datasets SLE GSE72326 and PD GSE16134 underwent
analysis via the limma R package. Visualization via volcano plots
depicted the DEGs. In the SLE dataset GSE72326, 444 DEGs were
identified, comprising 302 genes showing upregulation and
142 genes exhibiting downregulation (Figure 2A). Dataset PD

FIGURE 2
Analysis of differential gene expression. (A, B) Volcano plots illustrated the presence of DEGs in datasets GSE72326 and GSE16134. (C)Overlapping
DEGs of GSE72326 and GSE16134.

Frontiers in Genetics frontiersin.org04

Zhao et al. 10.3389/fgene.2025.1527713

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1527713


FIGURE 3
WGCNA of GSE72326 and GSE16134 datasets. (A)Network topology analysis results for dataset GSE72326. (B)Network topology analysis results for
dataset GSE16134. (C) Gene modules and clustering results for dataset GSE72326. (D) Gene modules and clustering results for dataset GSE16134. (E, F)
Heatmap depicting the correlation between module genes and diseases. (G) Genes overlapping in positively correlated modules.
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GSE16134 yielded 1,149 DEGs, comprising 688 genes showing
upregulation and 461 genes displaying downregulation
(Figure 2B). Moreover, 46 DEGs overlapped between
GSE72326 and GSE16134 (Figure 2C).

3.2 WGCNA analysis

WGCNA analysis was conducted on the datasets GSE72326 and
GSE16134, respectively. Optimal soft-thresholding values of 14 and

18 were determined for GSE72326 (Figure 3A) and GSE16134
(Figure 3B), respectively. GSE72326 revealed 10 modules,
whereas GSE16134 identified 7 modules (Figures 3C, D).
Subsequently, each module was assessed for its association with
the disease. In the GSE72326 dataset, the pink module exhibited the
strongest association with SLE (r = 0.36, p = 1e-06), comprising
38 genes (Figure 3E). In the analysis of PD using the
GSE16134 dataset, the blue module demonstrated the most
significant positive association (r = 0.61, p = 2e-32), containing
380 genes (Figure 3F). Nine genes overlapped between the positively
correlated modules of SLE and PD (Figure 3G). Additionally, these
genes are closely associated with the pathogenesis of both diseases,
prompting further in-depth research.

3.3 Functional analysis of shared genes

Nine genes overlapped between the modules of SLE and PD,
with 46 genes shared among the DEGs. DEGs and module genes
were combined as candidate genes for further analysis. We obtained
a total of 50 candidate genes from DEGs and module genomes,
which underwent further analysis.

GO analysis demonstrated that BP were significantly associated
with the upregulation of immune response, regulation of immune
receptor signaling pathways, and immune signaling pathway
regulation. MF were significantly associated with immune
receptor activity, co-receptor activity, and cytokine receptor
activity. CC was closely associated with the external side of the
plasma membrane, membrane, lysosomal vacuole, and
lysosome (Figure 4A).

The KEGG pathway analysis revealed that these shared genes
were predominantly enriched in primary immunodeficiency, the
PI3K-Akt signaling pathway, and the B cell receptor signaling
pathway (Figure 4B).

We imported these 50 genes into the STRING database to
elucidate their interactions. The analysis yielded 85 nodes and
114 edges, with a combined score exceeding 0.4 (Figure 4C). The
top five ranked genes were B lymphocyte antigen CD19 (CD19), B
lymphocyte antigen CD79A (CD79A), Cluster of Differentiation
163 (CD163), Interleukin 7 receptor (IL7R), and Granzyme
K (GZMK).

3.4 Identification of potential shared hub
genes through machine learning

To further identify core genes with the highest diagnostic value,
we conducted RF and LASSO regression analyses. From the 50 core
genes, we selected the top 30 most significant genes for presentation
(Figure 5A), with PLEKHA1, MFHAS1, and TMEM140 showing the
highest MeanDecreaseGini values. Moreover, LASSO logistic
regression identified 18 genes among the 50 core genes (Figures
5B, C). Upon intersecting the genes common to both the RF and
LASSO analyses, we identified 11 hub genes shared between them
(Figure 5D), which we deemed to hold significant diagnostic value.
Subsequently, we used the new datasets GSE81622 and GSE10334 to
evaluate the diagnostic performance of these hub genes using ROC
curves (Table 1). We excluded three genes with AUC values below

FIGURE 4
A comprehensive analysis of the shared genes was conducted.
(A) GO enrichment analysis. (B) KEGG signaling pathway. (C)
PPI network.
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0.6: FCGR1B (0.598), GZMK (0.5777), and IFI27 (0.4837). Among
the remaining genes, PLEKHA1 (AUC = 0.882) and CEACAM1
(AUC = 0.788) had the highest AUC values, demonstrating a good
ability to diagnose the risk of SLE with PD (Figures 5E, F).

3.5 Immune infiltration analysis

Next, we used the CIBERSORTx method to analyze immune cell
infiltration in the SLE dataset GSE72326 and the PD dataset
GSE16134, assessing differences between the disease and healthy

groups. The violin plot showed a marked rise in monocytes and
neutrophils among SLE patients relative to controls, while
CD4 memory-activated T cells and resting NK cells significantly
decreased (Figure 6A). PD patients exhibited significant increases in
plasma cells, γδ T cells, M0macrophages, and resting NK cells, while
helper T follicular cells and CD8+ T cells markedly decreased
(Figure 6B). In addition, we examined the relationship between
eight shared core genes and immune cell composition. Heatmap
results demonstrated positive correlations between neutrophils,
monocytes, and activated dendritic cells with CEACAM1, LY96,
and TNFAIP6 in SLE, while showing negative correlations with

FIGURE 5
Screening and validating diagnostic biomarkers for SLE and PD. (A) The thirty most significant genes identified using the RF algorithm. (B, C) Cross-
validation plot and coefficient contraction plot of LASSO regression analysis. (D) The intersecting genes selected by the RF and LASSO algorithms. (E, F)
The ROC curves of PLEKHA1 and CEACAM1.
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GNG7 and PLEKHA1 (Figure 6C). In patients with PD, plasma cells
and γδ T cells were positively correlated with GLDC, GNG7, LY96,
TCN2, TNFAIP6, and VCAN, and negatively correlated with
PLEKHA1 (Figure 6D).

4 Discussion

SLE is a multifaceted autoimmune disorder, and its
pathophysiological mechanisms remain incompletely understood
(Hoi et al., 2024). PD is an infectious disease marked by an
imbalance of microbial flora in periodontal tissues, resulting in
chronic inflammation and gradual deterioration of periodontal
supporting tissues. Recent studies indicate that individuals with
SLE face an elevated risk of developing PD, with a risk
approximately 1.76–1.78 times higher than the general
population (Rutter-Locher et al., 2017; Bolstad et al., 2022).
Furthermore, various biological hypotheses propose comparable
pathophysiological mechanisms between these conditions,

TABLE 1 AUC of 11 hub genes.

Gene AUC of ROC 95% CI

PLEKHA1 0.882 0.841–0.923

CEACAM1 0.788 0.728–0.848

TNFAIP6 0.731 0.668–0.794

TCN2 0.706 0.637–0.775

GLDC 0.658 0.577–0.739

GNG7 0.646 0.564–0.727

LY96 0.637 0.556–0.717

VCAN 0.603 0.523–0.683

FCGR1B 0.598 0.516–0.680

GZMK 0.578 0.492–0.663

IFI27 0.484 0.404–0.564

FIGURE 6
Analysis of immunoinfiltration. (A, B) The proportion of immune cells between patients with the disease and control groups. (C, D) The relationship
between shared central genes and immune cells.
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encompassing shared genetic, microbiological, immunological, and
environmental risk factors (Sojod et al., 2021). Nevertheless,
research investigating the genetic link between SLE and PD
remains limited. Thus, the discovery of biomarkers and
underlying molecular mechanisms pertaining to both SLE and
PD via bioinformatics analysis holds significant clinical relevance.

This study utilized comprehensive bioinformatics analysis
employing machine learning algorithms. Initially, we analyzed
DEGs from the GSE72326 and GSE16134 datasets. Subsequently,
DEGs were integrated with genes in theWGCNAmodule, leading to
the identification of 50 candidate genes shared across the datasets.
These 50 common candidate genes underwent enrichment analysis,
revealing significant associations with the PI3K-Akt signaling
pathway and B-cell receptor signaling pathway. Afterwards, we
identified five core genes (CD19, CD79A, CD163, GZMK, IL7R)
through PPI network analysis. To enhance the screening of
diagnostic genes, machine learning algorithms were utilized to
analyze overlapping genes. Ultimately, we identified 11 shared
hub genes and validated them using ROC curves.

Our findings indicate a significant involvement of the PI3K-
Akt signaling pathway in both the onset and progression of SLE
and PD. It is crucial in regulating cell proliferation, differentiation,
B cell and T cell receptor signaling, as well as macrophage
polarization (Nestle et al., 2005; Dong et al., 2019; Linton et al.,
2019; Chen et al., 2020). Similarly, the pathogenesis of SLE involves
abnormal B cell activation, T cell dysregulation, and polarization of
M1 macrophages (Rawlings et al., 2017; Ma et al., 2019; Tenbrock
and Rauen, 2022). B-cell activating receptors such as BCR, CD40,
and TLRs are all linked to the PI3K signaling pathway (Okkenhaug
and Vanhaesebroeck, 2003; Donahue and Fruman, 2004; Hodson
and Turner, 2009). In macrophages, the PI3K signaling pathway
regulates the polarization state by modulating metabolic and
inflammatory responses. Activation of this pathway suppresses
M1-type macrophage polarization and enhances M2-type
macrophage polarization (Long et al., 2021; Acosta-Martinez
and Cabail, 2022). In clinical practice, focusing on the PI3K-
Akt signaling pathway has also shown favorable therapeutic
effects in patients with SLE (Shen et al., 2022). For instance,
azithromycin can activate M2 macrophages via this pathway,
thus reducing inflammation and improving the condition of
SLE (Wang et al., 2018). The PI3K-Akt pathway plays a pivotal
role in immune imbalance, inflammation regulation, and the
maintenance of periodontal tissue homeostasis in PD. Studies
have demonstrated that FBLN3 is upregulated in PD tissues,
promoting M1 macrophage polarization via the EGFR/PI3K/
AKT signaling pathway. This activation enhances the pro-
inflammatory response and exacerbates periodontal tissue
damage (Mu et al., 2024). Furthermore, PI3K-Akt modulates
macrophage metabolism through HIF-1α-mediated glycolysis,
sustaining M1 macrophage activation while suppressing
M2 macrophage transition within the PD immune
microenvironment (Zeng et al., 2024). Beyond immune cell
polarization, PI3K-Akt plays a central role in the trained
immunity of gingival fibroblasts (GFs). Porphyromonas
gingivalis-derived lipopolysaccharide (LPS) has been shown to
induce a trained immune response in GFs via PI3K/AKT
pathway activation, leading to increased IL-6 and TNF-α
secretion and sustaining inflammation through epigenetic

modifications (Liu et al., 2024). Moreover, PI3K-Akt regulates
osteoclast function, thereby influencing alveolar bone resorption
and regeneration. Studies have identified the PI3K/AKT/GSK-3β
signaling pathway as a key regulator of LPS-induced osteoclast
activation and alveolar bone loss. Inhibiting this pathway has been
found to reduce bone resorption, mitigate inflammation, and
improve inflammatory bone loss (Lv et al., 2025). Additionally,
PI3K-Akt may alleviate oxidative stress by enhancing cellular
antioxidant capacity, thus contributing to the preservation of
periodontal tissue homeostasis (Fu et al., 2023). In conclusion,
the dysregulated activation of PI3K-Akt in PD not only influences
immune cell polarization but also perpetuates inflammation and
promotes alveolar bone loss by modulating trained immunity and
bone metabolism. Given its critical role in both PD and immune
dysregulation in SLE, PI3K-Akt represents a promising therapeutic
target. Our findings further corroborate its pathological
significance in PD and provide supporting evidence for its
potential in targeted therapy.

In our research findings, hub genes are equally crucial for the
clinical significance of both SLE and PD. We have identified eight
key hub genes as diagnostic biomarkers (PLEKHA1, CEACAM1,
TNFAIP6, TCN2, GLDC, GNG7, LY96, VCAN). Based on the
current research status, we have focused on VCAN and LY96.
While direct interactions between VCAN, LY96, and SLE remain
undisclosed in current studies, their potential associations with
SLE warrant attention. The VCAN gene encodes the Versican
protein, a binding protein crucial for tissue morphogenesis and
extracellular matrix formation, which is integral to tissue
inflammation in response to infection and tissue damage
(Wight et al., 2014). Versican exerts pro-inflammatory effects
by modulating the adhesion of myeloid and lymphoid cells,
particularly T lymphocytes and monocytes, which are
regulated by multifunctional proteoglycans (Gill et al., 2010;
Potter-Perigo et al., 2010; Evanko et al., 2012). Moreover,
Versican interacts with inflammatory cells through two
pathways: indirect binding to hyaluronic acid, and direct
interaction with receptors like CD44, P-selectin glycoprotein
ligand-1 (PSGL-1), and toll-like receptors (TLR), found on
both immune and non-immune cell surfaces. These
engagements activate signaling cascades that stimulate the
synthesis and secretion of inflammatory cytokines, such as
TNF-α, IL-6, and NF-κB (Wight et al., 2020). Notably,
CD44 stands out as a significant therapeutic target in SLE, as
it governs disease progression by modulating B cell activation
and proliferation (Yi et al., 2023). Reduced expression of PSGL-1
in neutrophils of active SLE patients may lead to excessive release
of Neutrophil Extracellular Traps (NETs). This excessive NETs
release may exacerbate the disease by triggering an immune
response through their DNA content, worsening inflammation
and autoimmune reactions, thereby driving disease progression
(Muñoz-Callejas et al., 2023). Additionally, the significance of
VCAN in PD warrants attention. Expression levels of TLR4 are
markedly elevated in PD patients, positively correlating with
disease severity (Promsudthi et al., 2014). LY96, also known as
myeloid differentiation factor-2 (MD-2), plays a crucial role in
the innate immune response by serving as a ligand receptor
tightly bound to (TLR4) (Wu et al., 2022b). TLR4 is involved
in the pathogenesis of SLE by regulating the inflammatory
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response and promoting autoantibody production. Inhibiting
TLR4 can alleviate inflammation and ameliorate kidney
damage (Ma et al., 2018). Furthermore, TLR4 is implicated in
immune response regulation during SLE pathogenesis through
diverse pathways, encompassing immune cell activation,
autophagy modulation, and interaction with type I IFN
signaling pathway (Wu et al., 2022a). Thus, LY96 serves as the
primary mediator in linking TLR4 with the association between
SLE and PD. In summary, our findings suggest that VCAN and
LY96 could represent novel therapeutic targets for both SLE and
PD, thereby providing a robust groundwork for elucidating their
underlying mechanisms in subsequent studies. Another
important finding is that GNG7 demonstrates distinct
correlations in SLE and PD, potentially influenced by
variations in the immune microenvironment, signaling
pathway regulation, and data sources. SLE is typically
characterized by widespread immune dysregulation, whereas
PD manifests as localized chronic inflammation. These
contrasting immune landscapes may result in differences in
the regulatory mechanisms of GNG7-mediated signaling
pathways in the two diseases. Nevertheless, since
CIBERSORTx immune infiltration analysis is applicable to
various tissue environments, its findings remain biologically
relevant to immune regulation, underscoring the need for
further investigation into the underlying mechanisms. Future
studies should employ single-cell transcriptomic analysis to
elucidate the cell-type-specific roles of GNG7 and validate its
regulatory mechanisms in immune cell function through in vitro
experiments.

Additionally, alterations in immune cell populations appear to
be pivotal in the interplay between SLE and PD. Our findings
indicate that various immune cells are upregulated in SLE,
including neutrophils and monocytes, while their expression is
less pronounced in PD. Activated neutrophils are capable of
generating a multitude of cytokines and chemokines, potentially
leading to dysregulated functions of B and T cells, thereby
exacerbating SLE pathogenesis (Smith and Kaplan, 2015).
Aberrant monocyte activation in SLE stimulates dendritic cells
and T/B cells through extensive interferon-alpha (IFN-α) and
other inflammatory mediator secretion, culminating in
autoantibody generation and tissue inflammation (Hirose et al.,
2019). Conversely, In PD, substantial increases were observed in
plasma cells, γδ T cells, M0 macrophages, and resting NK cells. The
involvement of plasma cells is pivotal in the pathogenesis of PD,
contributing to antibody production, immune response regulation,
and inflammation-induced bone loss (Zouali, 2017). γδ T cells,
abundant in epithelial tissues such as gingival tissues, may exert their
functions in PD through diverse mechanisms, including immune
surveillance, maintenance of immune homeostasis, and modulation
of epithelial tissue repair processes (Figueredo et al., 2019). Notably,
despite variations in the immune cell profiles upregulated in SLE and
PD, there exists a close interconnection among these cells.
Specifically, neutrophils support the survival and function of
plasma cells by releasing B cell activating factor (BAFF) and
directly interacting with them, thereby augmenting the immune
response through enhanced plasma cell survival and antibody
production (Zhao et al., 2019; Sabat et al., 2023). Additionally, γδ
T cells modulate neutrophil activation and polarization by secreting

IL-17, and encourage neutrophils to engage in suppressing T cell
immune responses (Coffelt et al., 2015). In monocytes and γδ T cells,
the v-γ9vδ2 + T cell subset within γδ T cells can activate monocytes
by secreting inflammatory molecules like IFN-γ and TNF-α,
inducing their adhesion and aggregation, and enhancing
monocyte survival. Conversely, monocytes can induce the
activation of Vγ9Vδ2+ T cells by accumulating and presenting
phosphate antigens, thereby establishing a bidirectional
regulatory interaction between these cell types (Chan et al.,
2022). Monocytes critically contribute to the development and
function of plasma cells by secreting factors vital for plasma cell
survival and development, and by facilitating plasma cell
proliferation through intercellular interactions (Mohr et al.,
2009). The results of immune infiltration underscore the
indispensable role of these immune cells in both SLE and PD.

5 Conclusion

In summary, our study clarifies the common molecular
mechanisms underlying SLE and PD. We identified eight
candidate genes (PLEKHA1, CEACAM1, TNFAIP6, TCN2,
GLDC, GNG7, LY96, VCAN) as potential biomarkers for
diagnosis. Analysis of immune infiltration demonstrated their
intimate association with immune cells. Moreover, the PI3K-
AKT signaling pathway likely plays a significant role in the
interaction between SLE and PD. These discoveries establish a
molecular basis for further investigating the relationship between
SLE and PD.
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