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Background: Beef on Dairy (BoD) calves are born from the crossing of dairy cows
with beef breeds. The genetic architecture of these calves differs significantly
from the parent breeds due to heterosis and other dominance effects.
Identification of the genomic regions associated with traits in BoD calves and
the inheritance pattern of these regions can assist in the selection process. We
conducted a genome-wide association study (GWAS) for Belgian blue and Angus
crossbreds born from a Holstein dam, incorporating additive and dominance
effects to identify genomic regions associated with birth weight, calving difficulty,
and gestation length. Additionally, a haplotype-based GWAS was performed to
compare the effectiveness of these two different methodologies and to identify
the parental origin of the haplotypes based on similar allelic patterns between
crossbred and parental breeds.

Results: The heritability estimates for birth weight, calving difficulty, and gestation
length were 0.29 (±0.03), 0.36 (±0.04), and 0.09 (±0.03), respectively. Using
SNP-based GWAS for birth weight, a genomic region containing the GABRG1
gene on BTA 6 was identified. In addition, the haplotype-based analysis identified
three more genes (CSER1, FAM13A, and LCORL) associated with birth weight.
Incorporating dominance effects into the GWASmodel led to the identification of
an additional gene, SPP1, related to birth weight. For calving difficulty, SNP-based
GWAS in Angus crossbreds revealed a genomic region containing the KCNIP4
gene. Most of the haplotypes associated with these traits originated from the
three parental breeds, but six unique haplotypes for Angus and Belgian blue
were identified.

Conclusion: Based on this study, Haplotype GWAS was found to have superior
statistical power in the identification of associated genomic regions in BoD
crossbreds. However, for traits such as calving difficulty, SNP-based GWAS
proved to be more effective. Both approaches are essential for the
identification of genomic regions associated with traits of interest in BoD calves.

KEYWORDS

beef-on-dairy, haplotypes, birth weight, calving difficulty, gestation length

OPEN ACCESS

EDITED BY

Arthur Francisco Araujo Fernandes,
Cobb-Vantress, United States

REVIEWED BY

Doreen Becker,
Leibniz Institute for Farm Animal Biology (FBN),
Germany
Ali Esmailizadeh,
Shahid Bahonar University of Kerman, Iran

*CORRESPONDENCE

R. H. Ahmed,
rahmed@tierzucht.uni-kiel.de

RECEIVED 18 November 2024
ACCEPTED 20 May 2025
PUBLISHED 05 June 2025

CITATION

Ahmed RH, Schmidtmann C, Mugambe J and
Thaller G (2025) Genomic-based genetic
parameters and genome-wide association
studies for productive and reproductive traits in
Beef-on-Dairy crossbreds.
Front. Genet. 16:1530310.
doi: 10.3389/fgene.2025.1530310

COPYRIGHT

© 2025 Ahmed, Schmidtmann, Mugambe and
Thaller. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 05 June 2025
DOI 10.3389/fgene.2025.1530310

https://www.frontiersin.org/articles/10.3389/fgene.2025.1530310/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1530310/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1530310/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1530310/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1530310/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1530310&domain=pdf&date_stamp=2025-06-05
mailto:rahmed@tierzucht.uni-kiel.de
mailto:rahmed@tierzucht.uni-kiel.de
https://doi.org/10.3389/fgene.2025.1530310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1530310


Introduction

Mating dairy cows with beef bulls (Beef-on-Dairy, BoD) has
become increasingly popular in recent years. This trend is aimed at
producing calves with higher monetary value because such calves are
expected to have better growth rates and superior carcass
characteristics compared with purebred dairy calves (Bittante
et al., 2023). However, at the same time, risk of calving difficulty
is higher when applying BoD. The birth weight (BW) of the calf and
the gestation length (GL) of the dam are well-known factors that
influence calving difficulty (CD) (Kargo et al., 2014; Jenkins et al.,
2016). In this regard, selection of beef sires to be used in dairy herds,
which show a balanced genetic potential for optimal growth and
calving ease are of high interest for farmers. To identify such bulls in
view of negative genetic correlations between birth weight and
calving ease requires a better understanding of the genetic
architecture of relevant traits. This is especially important in
crossbreeding systems where the performance of crossbred calves
may vary from the purebred counterparts also due to heterosis and
breed complementary effect (González-Diéguez et al., 2020;
Khansefid et al., 2020). In the last 2 decades, genome-wide
association studies (GWAS) have demonstrated their large
potential to identify genes associated with different traits in cattle
breeding, thereby pinpointing the selection process (Zhang et al.,
2022). Traditionally, GWAS in purebred populations focuses on the
additive effects associated with single-nucleotide polymorphisms
(SNP), but for crossbred populations with differences in genetic
architecture, the inclusion of dominance effects can help in
identifying quantitative trait loci (QTL) influencing traits with
low to moderate heritability (h2) (Zhang et al., 2008). Dominance
described as non-additive interactions of different alleles at a specific
locus is a major phenomenon to explain heterosis effect in animal
breeding (Visscher et al., 2000). Especially in crosses of two different
breeds interactions of differently selected alleles can account for a
major fraction of the genetic variation (Cui et al., 2023). Historically,
estimation of dominance based on pedigree data has been
notoriously difficult due to the requirement of large numbers of
full-sib families. But since the development and accessibility of large
SNP panels, reliable estimation of dominance effects has become
possible (Vitezica et al., 2013). Along with the SNP-based GWAS,
GWAS based on haplotypes can also be of significant interest when
analyzing crossbred populations due to the inheritance of such
blocks with lower probability of recombination (Gabriel et al.,
2002; Bovo et al., 2021). It has been shown that GWAS based on
haplotypes can outperform SNP-based GWAS by exploiting
aggregated effects of consecutive SNPs for quantitative traits,
where individual loci usually have a small effect (Bickel et al.,
2011). Additionally, haplotype blocks can be used to determine
the parental origin of the regions with significant association for the
traits of interest (Vandenplas et al., 2016). This can assist in making
informed decisions about the selection of the sires with desired
genetic architecture for the traits of economic interests. This study
compares different approaches of GWAS based on SNP and
haplotype blocks in BoD crossbreds for the traits BW, GL and
CD and identifies genomic regions harbouring relevant genes
associated with the traits. GWAS analyses are based on single
SNPs as well as on haplotypes. In addition, haplotype blocks
with significant association are traced to the respective parent

breed to identify the origin of the gene variants in the crossbred
population.

Materials and methods

Data and trait description

This study used 4,118 BoD crossbred calves sired by Belgian Blue
(WBB) or Angus (ANG) and born to Holstein (HOL) dams.
Between December 2021 to December 2023, the weight of calves
was recorded once at the age of 0–40 days on 225 dairy farms in
Schleswig-Holstein, Germany. Information regarding the
insemination date and parity number of the dam, birth date and
sex of the calf, type of birth (singleton or twin) and calving difficulty
(CD) recorded on the official German scale (Arbeitsgemeinschaft
Deutscher Rinderzüchter; organization of cattle production in
Germany) and converted into binary scale (coded, 0 = no
difficulty, 1 = difficult calving) was available. Gestation length
(GL) was calculated as the duration (in days) between the date of
insemination and the date of calving. Recorded values for weight and
gestation length deviating ±4 SD from the mean were removed to
filter for outliers. Additionally, twin calvings and farms with less
than two observations were excluded from the analysis. After
editing, 285 animals were excluded from the analysis and the
final dataset contained 3,833 calves from 116 farms.

3,530 crossbred calves were genotyped using EuroG MD
BeadChip (Illumina Inc). Quality control of genotypes was
performed separately within ANG and WBB crossbreds,
respectively, using PLINK 1.9 (Chang et al., 2015). SNPs with a
minor allele frequency of <1%, a call rate lower than 90% and SNPs
that deviate from the Hardy–Weinberg equilibrium at threshold of
1 × 10−6 along with variants located on sex chromosomes were
excluded from the analysis (Supplementary Table S1).

Estimation of birth weight of calves

In order to approximate the birth weight (BW) of the calves
recorded not at the day of birth, a correction of measured weight was
performed within each breed using the following linear regression
model (Equation 1):

yg � μ + AGEg + eg (1)

where yg was the measured weight (kg) of a calf within the sire breed
WBB or ANG, AGEg represented the regression of calf’s age at the
day of measurement (g = 0, . . . ,40) and e.g., was the residual term.
The model was fitted in R (Becker et al., 1988) using the package
lme4 (Bates et al., 2015). BW of the calf was calculated by subtracting
the average predicted weight gain over the period of time from the
measured weight of the calf.

Analysis of population structure

Population stratification of the animals under study was
examined using principal component analysis (PCA) in the
individual breeds but also in the combined population (COM)
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via PLINK 1.9 (Chang et al., 2015). The first three components of
PCA were used for visualization.

Haplotype phasing and block construction

Haplotype phasing was conducted using SHAPEIT v2
(Delaneau et al., 2013) for each autosomal chromosome with
default parameters for MCMC iteration combined with pedigree
information using–duoHMM option to apply pedigree based post
hoc haplotypes correction (O’connell et al., 2014). Haplotypes for
Bos taurus autosomes (BTA) 1 to 29 were combined and converted
into the binary format using the R package GHap (Utsunomiya et al.,
2016). For further analysis, haplotype blocks were generated with a
sliding window of five consecutive SNPs as this approach has been
found to have the highest power to detect associated QTLs (Braz
et al., 2019).

Variance components and statistical model
for GWAS

Genetic parameters for BW, GL and CDwere estimated by using
both univariate additive models and dominance models. SNP-based
variance components were estimated using restricted estimation of
maximum likelihood (REML) using the software GCTA (Yang et al.,
2011) while narrow sense heritability for the trait was estimated as
h2 � σ2a/(σ2p), where σ2a represents the additive genetic variance and
σ2p is the phenotypic variance.

GWAS were performed for each trait using univariate single
SNP regression mixed linear models in GCTA (Yang et al., 2011).
The additive model was (Equation 2):

y � Xb +Wa + Zu + e (2)
where y is the vector of phenotypes (BW, GL or CD); b is a vector of
fixed effects (herd-year-season, sex, parity number, first three
principal components as covariates), a is the vector of polygenic
effects with a ~ N(0,Gσ2a), where G is the genomic relationship
matrix (grm) (Yang et al., 2010) and σ2a is the additive genetic
variance, u is the vector for SNPs for homozygous major and minor
(0,2) and heterozygous alleles (1) and e is the random residual effect
with e ~ N(0, Iσ2e), where σ2e is the residual variance and I, X,W and
Z represent incidence matrices for b, a, u and e respectively. For the
GWAS model based on haplotypes, a represents the vector of
polygenic effects, where the estimation of G is based on haplotypes.

For the dominance model (Equation 3), a modified version of
Equation 2 was used:

y � Xb +Wa +Wd + Zu + e (3)
where d is the vector of dominance effects with d ~ N(0,Dσ2d),
where D is the dominance grm (Equation 4) defined as

Djk � 1
m
∑

i
wD ij( )wD ik( )( ) (4)

where m is the number of SNPs, wD(ij) and wD(ik) dominance
encoded genotypes, σ2d is the dominance variance and u is the
vector with the modified version of SNP coding (homozygous (0)

and heterozygous (1) alleles). All the remaining variables are the
same as in the Equation 2. Dominance variation at all SNPs was
defined as δ2 � σ2d/(σ2a + σ2d + σ2e). The significance threshold for the
SNPs was determined using Bonferroni correction, where a p-value
of P < (0.05/N), with N representing the number of SNPs or pseudo-
SNPs analyzed in the GWAS, indicates statistically significant
associations. A suggestive association level was set at P < (1/N).

Linkage disequilibrium and annotation of
associated SNPs

Linkage disequilibrium (LD) for each crossbred population was
measured as the correlation coefficient r2 (Hill and Robertson, 1968)
by using PLINK v1.9 (Chang et al., 2015). LD decay between
adjacent markers up to the distance of 500 kb was visualized in
R using package ggplot2 (Wickham, 2011). For the functional
annotation of SNPs with significant associations, base pair
position was checked within 150 kb up- and downstream of the
respective SNPs against the genome assembly Bos taurus UMD
3.1.1 to find relevant genes in the region. This distance was defined
based on the LD decay (Qanbari, 2019), where the highest drop in
first 150 kb of distance was observed in both crossbred populations
(Additional file 1: F1). For haplotype blocks, screening for genes was
limited to the significantly associated blocks in the analysis. The
origin of significant haplotype blocks was determined by comparing
them with parental haplotypes. This was achieved by matching the
blocks with the corresponding dam and sire haplotypes with same
block positions and allelic patterns to confirm their parental origins
(Eiríksson et al., 2021a).

Results

Descriptive statistics

Descriptive statistics for the crossbred calves are depicted in
Table 1. The distribution of the calves per parity number and age
group at weight measurement is shown in Additional file 1: F2 & F3.
The majority of calves belonged to WBB (Supplementary Table S2).
These crossbreds had slightly higher daily weight gain (0.77 kg)
compared to ANG crossbreds (0.66 kg). Moreover, calves fromWBB
had higher birth weight (48.5 kg ± 7.2) and longer gestation length
(281.4d ± 4.7) compared to ANG sired calves (BW: 45.2 kg ± 7.2; GL:
280.1d ± 4.7). Incidences of calving difficulty were higher for ANG
crossbreds, where 12.5% of calvings were labeled as difficult calving
compared to WBB crossbreds with 11.0% difficult calvings.

Principal component analysis

Based on the PCA (Figure 1), clear clusters were identified.
PC1 and PC2 collectively explained 48% of the variation in the
combined data. Slight overlapping was observed for crossbred
population based on PC1 and PC2 but with the addition of PC3
(58% variance), distinct clusters were observed across two studied
populations (Additional file 1: F3, F4, F5)
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Haplotype blocks and variance components

Descriptive statistics for haplotype blocks are shown in Table 2. In
total 11,160 haplotype blocks were created. In the combined population,
highest number of haplotype blocks were observed on BTA1 (n = 726)

while the lowest number of blocks were found on BTA28 (n = 210).
Further details regarding haplotype blocks and number of markers per
chromosome are presented in Additional file 1: F6, F7.

Estimates of heritability (s.e.) for BW, GL and CD in the combined
population using the additive model were 0.29 (0.03), 0.36 (0.04) and
0.09 (0.03), respectively. For WBB, Dominance variation at all SNPs
(δ2) for BW and GL was close to zero (Table 3), while for CD it was
estimated to be 0.08 (0.07) (Table 3; Supplementary Table S3).

Genome-wide associations of traits

Birth weight
In the GWAS with the combined crossbred population, one

significantly associated SNP on BTA 6 around 6.26 Mb was found
based on the additive model (Figure 2). This SNP falls in the region
of gene GABRG1, which is responsible for the regulation of the ion

TABLE 1 Descriptive statistics of recorded traits of crossbred calves by sire breed.

Breed Nr. calves (genotyped) Gestation
length (d)

Parity Birth
weight* (kg)

Calving difficulty

Mean SD Mean SD Mean SD %

ANG 852 (801) 280.0 4.9 2.2 1.3 45.0 7.5 12.5

WBB 2981 (2729) 281.5 4.8 3.3 1.1 48.4 7.7 11.0

COM 3833 (3530) 281.2 4.8 3.2 1.6 74.7 7.4 11.4

FIGURE 1
Population structure of the crossbred calves.

TABLE 2 Descriptive statistics of haplotype blocks in crossbred population.

Population

COM ANG WBB

Number of haplotype blocks 11,160 11,160 11,160

Average blocks per chromosome 384.8 384.8 384.8

Number of pseudo-SNPs before QC 212,770 156,114 195,654

Number of pseudo-SNPs after QC 111,394 98,401 103,933
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channel and receptor activity along with the influence on puberty
development (Tahir et al., 2021).

At the suggestive significance level, four SNPs were identified
through the additive model, while an additional SNP on BTA 6 at
38.13 Mb was identified through the dominance model (Table 4).

For the BW, GWAS based on haplotypes revealed eight
haplotype blocks on BTA 6, where three additional genes
(CCSER1, FAM13A, LCORL) are located (Table 5). Furthermore,
14 haplotype blocks within 10 unique regions were identified
(Supplementary Table S4) with suggestive association. Along with
the previously mentioned three genes, seven more genes (SPP1,
GABRG1, HERC6, LOC104972722, ADGRL3, SNCA, and
PPARGC1A) were found in the associated genomic regions.

Calving difficulty
Neither additive nor dominance models identified SNPs with

significant associations for the combined or individual WBB
crossbred population. In the ANG crossbreds, two SNPs were

TABLE 3 Heritability estimates for birth weight, calving ease and gestation
length.

Breed Trait Additive model Dominance model

h2
a h2

a h2
d

COM BW 0.28 (0.03) 0.27 (0.04) 0 (0.05)

CD 0.11 (0.03) 0.10 (0.03) 0.08 (0.06)

GL 0.36 (0.04) 0.36 (0.04) 0.001 (0.05)

ANG BW 0.36 (0.12) 0.33 (0.13) 0.12 (0.22)

CD 0.23 (0.13) 0.16 (0.13) 0.25 (0.21)

GL 0.50 (0.11) 0.46 (0.13) 0 (0.21)

WBB BW 0.26 (0.04) 0.26 (0.04) 0 (0.07)

CD 0.07 (0.03) 0.06 (0.04) 0.08 (0.07)

GL 0.35 (0.04) 0.34 (0.05) 0.01 (0.07)

FIGURE 2
Manhattan plot for combined population GWAS for birth weight.

TABLE 4 Description of SNPs with significant association with traits.

Trait Model Breed CHR SNP P-value

BW Additive COM 6 BTB-01601414 3.78e-07

BW Additive COM 6 Hapmap59322-rs29015787 2.99e-06

BW Dominance COM 6 Hapmap27072-BTC-033816 3.83e-06

CD Additive ANG 6 BTB-00251468 5.23e-06

GL Additive WBB 27 Hapmap50420-BTA-62223 1.75e-06

GL Additive WBB 27 BTB-01868033 7.93e-06
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identified on BTA 6 through the additive model (Figure 3) with the
suggestive level of association, where SNP at 42.05 Mb harbouring
the KCNIP4 gene in nearby region. Haplotype-based GWAS
identified one haplotype block with suggestive association in the
combined population (Supplementary Table S4).

Gestation length
For GL, two SNPs with suggestive associations were observed for

WBB based on the additive model (Figure 4), while no associations
were observed with either the additive or dominance model in the
combined and ANG crossbreds. No haplotype block with significant
association was identified across all crossbreds.

Parental origin of haplotype blocks
For the haplotype blocks along with the presence of the gene in

the genomic region, a comparison of the block with the respective
allelic pattern was made to the maternal and paternal blocks. The
majority of the blocks for the BW could be traced back to the HOL
breed but for blocks with suggestive association, unique blocks were
identified for the parental breeds (Table 6; Supplementary Table S5).

Discussion

Heritability of traits

The study used two distinctive models to estimate heritability for
BW, CD and GL. The effect of crossbreeding on heritability
estimates depends upon the population and varies from trait to
trait, but generally slightly lower heritability is expected for
crossbred populations (Wientjes and Calus, 2017). This trend is
also observed in the current study where BW heritability for WBB
(0.26) crossbreds is lower compared to the purebred WBB (0.38)
calves (Mota et al., 2017). However, heritability for ANG crossbred is
slightly higher (0.36) compared to purebred ANG (0.33) (Torres-
Vázquez et al., 2018). Non-additive genetic variance is expected to be
higher in crossbred populations resulting in lower estimates for
heritability (Fuerst and Solkneri, 1994). In the current study
heritability estimates for CD varied from 0.11 (0.03) in the

TABLE 5 Description of haplotypes with significant association with traits.

Trait Breed CHR Haplotype P-value

BW COM 6 B119_33128133_33284794 1.78e-06

BW COM 6 B122_34686041_35147153 1.38e-07

BW COM 6 B211_56278798_56464060 9.01e-06

BW COM, ANG 6 B130_37399296_37501365 1.68e-08

BW COM, WBB 6 B134_38133743_38262298 1.68e-08

BW COM, ANG 6 B136_38576012_38825835 2.22e-10

BW COM, ANG 6 B137_38869785_39069719 1.52e-09

BW COM,
ANG, WBB

6 B139_39257620_39438580 3.58e-11

BW COM, WBB 6 B203_54237782_54390661 6.35e-06

BW ANG 6 B128_36895328_37066212 4.07e-06

BW ANG 6 B152_41914851_42084330 8.68e-07

BW ANG 6 B156_42628140_42782178 9.61e-06

BW ANG 6 B165_44850990_44991839 7.38e-06

BW ANG 6 B172_46702267_46867937 7.72e-06

BW WBB 6 B247_66394378_66509207 3.42e-06

CD COM 6 B208_55496362_55594668 5.84e-07

FIGURE 3
Manhattan plot for Angus crossbred population GWAS for calving difficulty.
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combined population to 0.07 for ANG and WBB BoD calves. These
estimates are closer to the one reported in British herds, where
heritability for CD in BoD crossbreds is reported to be 0.09 (0.01)
(McGuirk et al., 1998), but lower to the once reported for purebred
ANG (0.21) and WBB (0.25–0.34) breed (Cubas et al., 1991;
Vanderick et al., 2017).

Heritability for GL varied frommedium 0.36 (0.04) in combined
crossbreds to high in ANG BoD 0.50 (0.11). The estimates for WBB
and ANG BoD are closer to the purebred counterparts with 0.33
(0.04) for WBB and 0.59 (0.01) for ANG calves (Mota et al., 2017;
Gilleland et al., 2021). A strong influence of the sire breed on
gestation length is expected and can be the reason for the higher
heritability estimates of ANG BoD calves (Haile-Mariam and Pryce,
2019). Heritability estimates can vary across the populations based
on traits under observation, but generally traits with higher h2 in
purebred animals will also have higher h2 in crossbred population
(Wientjes and Calus, 2017). For the traits with dominant genes,
crossbred animals may have higher additive genetic variance
compared to the purebred animals (Wei et al., 1991).
Comparison across purebred and crossbred populations is
challenging due to the higher environmental variance in
crossbred populations due to the scale effect (Habier et al., 2007),
although no general trend is observed in this regard (Wientjes and

Calus, 2017). Compared to purebred animals, the less controlled
environmental conditions and greater variability in farming
practices associated with crossbred animals may contribute to the
observed differences in this regard (Wei and Van der Werf, 1995).

GWAS based on additive, dominance and
haplotypes

Utilization of GWAS can help to understand the genetic
architecture of relevant traits. In this study, GWAS was
performed using three different models for BW, CD and GL in
BoD crossbreds. GWAS based on haplotypes outperformed the
SNP-based GWAS in terms of finding the associated genes for
BW, but no significant differences were observed for GL and CD.
The addition of dominance effects in the GWAS model was
beneficial for BW only in terms of finding genomic regions with
significant or suggestive associations. Based on SNP and haplotype
GWAS, in total five genes with significant association and seven
genes with suggestive association were identified for the BW trait.
Role of these genes varied from ion-channels regulation to
regulation of mineralization process of the bone. GABRG1 gene,
identified through significant SNP association is responsible for the
regulation of the ion channel and receptor activity along with the
influence on puberty development (Tahir et al., 2021). The
association of this gene with milk yield has also been previously
reported in the Holstein population (Pedrosa et al., 2021). SPP1 gene
identified based on the dominance model encodes for
multifunctional cytokines (Matsumoto et al., 2019) and is vital
for bone mineralization process (Rodriguez et al., 2014).
Association between SPP1 gene and growth traits including
yearling weight, live weight and average daily gain has been
suggested in American beef crossbred herds (White et al., 2007).
Moreover, the influence of this gene on the birth weight (Allan et al.,

FIGURE 4
Manhattan plot for Belgian Blue crossbred population GWAS for gestation length.

TABLE 6 Genes encoded with significantly associated SNPs.

Trait SNP Position (bp) Genes

BW BTB-01601414 66,262,623 GABRG1

BW Hapmap59322-rs29015787 66,307,093 GABRG1

BW Hapmap27072-BTC-033816 38,133,743 SPP1

CD BTB-00251468 42,057,261 KCNIP4
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2007) and carcass weight has been established in beef cattle
(Matsumoto et al., 2019). For the genes identified through
haplotypes-based GWAS, the influence of CCSER1, KCNIP4, and
LCORL genes has been reported on BW and growth traits in the
Angus breed (Xia et al., 2017; Smith et al., 2022). The CCSER1 gene,
controlling mitosis has association with milk yield in Holstein cows
(Teng et al., 2023). Similarly, PPARGC1A gene, influencing fat
deposition and energy metabolism has been associated with BW
(Pasandideh, 2020). Previously FAM13A gene with regulatory role
in metabolism has already been described in the Holstein breed for
association with bone structure (Niu et al., 2021; Dominguez-
Castaño et al., 2024) Moreover, associations between PPARGC1A,
a gene with significant role in fat metabolism (Komisarek and
Walendowska, 2012) and yearling weight along with carcass traits
have been observed in beef cattle (Fonseca et al., 2015). In this study,
higher statistical power was observed for Haplotype-based GWAS in
identifying associations and candidate regions. Similar results have
been previously described in various species, including cattle (Pryce
et al., 2010; Barendse and Schneider, 2011) and pigs (Sato et al.,
2016). To some extent these differences can be attributed to the
window size for haplotypes and the number of markers per
haplotype can potentially influence the accuracy of QTL mapping
(Calus et al., 2009). In contrast to aforementioned studies, SNP-
based GWAS was found to be more efficient for carcass traits in
Simmental cattle (Wu et al., 2014).

Parental origin of haplotype blocks

Interest in the approaches in the partitioning of crossbred
genome has gained significant interest in the recent years for the
crossbred evaluation. Various methods with varying degree of
success have been developed including breed base representation
(BBR) and breed of origin of the allele (BOA) (VanRaden et al., 2020;
Eiríksson et al., 2021b; Guillenea et al., 2023). Despite the
advancements in the statistical models and the increased number
of genotyped animals, 100% precise estimation of the share of the
genome of each parent in the crossbred population is difficult due to
the shared DNA content between breeds (VanRaden et al., 2020). In
this study, despite the partial success of assigning haplotypes to the
parental breeds, complete segregation of the haplotypes of the
crossbred calves was not successful. For most of the haplotypes
with significant associations, the origin of the haplotypes was traced
back to both parental haplotypes, though six breed-specific
haplotypes with similar pattern of alleles were identified for ANG
(n = 3) andWBB (n = 3) breeds. All of these six haplotypes were also
present in HOL population (Supplementary Table S5).

Limitations of the study

A key limitation of the current study was the insufficient number
of genotyped dams as this may reduce the accuracy of haplotype
phasing. Moreover, for calving difficulty and gestation length,
maternal influence is significant, and unavailability of sufficient
number of maternal genotypes and phenotype records can be a
limiting factor in this regard. Furthermore, the unequal number of

crossbreds from two beef breeds can have impact on the accuracy of
genetic parameters and association studies.

Conclusion

Models based on combined populations resulted in the
identification of more associated genes compared to the separate
crossbred populations. Heritability estimates for BW and GL in BoD
crossbred populations were similar to those found in purebred
populations. However, the heritability estimates for CD were
comparatively lower. Furthermore, combining crossbred
populations with at least one common parent breed can be a
viable strategy for estimation of SNP based genetic parameters
and association studies. Incorporating dominance effects in both
GWAS and heritability estimates resulted in modest improvements
in model performance. Additionally, haplotype-based GWAS
proved better in identifying genes associated with traits in
crossbred animals compared to traditional SNP-based
approaches. The origin of the majority of haplotype blocks with
significant and suggestive associations can be traced back to the
HOL breed, though some sire’s specific blocks were also identified in
the current study.
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