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Catabolic metabolites of tryptophan (Trp) are considered to be important
microenvironmental factors by suppressing anti-tumor immune responses in
cancers. Nevertheless, the effect of Trp metabolism (Trp metabolism)-related
genes Trp metabolism-related genes on laryngeal squamous cell carcinoma
(LSCC) progression is not yet clear. So, in this study, the TCGA-LSCC,
GSE27020, and 40 TMRGs were extracted via public databases to explore the
effects of TMRGson laryngeal squamous cell carcinoma. Firstly,WeightedGeneCo-
expression Network Analysis (WGCNA) was adopted with LSCC samples in TCGA-
LSCC to acquire key module, and differentially expressed genes between LSCC and
normal samples from TCGA-LSCC were yielded via differential expression analysis.
Next, differentially expressed TMRGs (DE-TMRGs) was obtained in key model and
DEGs, and prognostic genes were identifde through multiple algorithms. Five
prognostic genes, namely SERPINA1, TMC8, RENBP, SDS and FAM107A were
finally identified. A risk model was established based on the expressions of
prognostic genes and survival information of LSCC samples while that were
divided into high and low risk groups. Obviously, the LSCC immune dysfunction
and exclusion score of high-risk patients was dramatically higher than that in low-
risk patients, indicating that patients in the high-risk subgroup exhibited reduced
responsiveness to immunotherapy. Besides, the drug sensitivity analysis showed that
the low -risk subgroupwas notably sensitive to Salubrinal, Lenalidomide,Metformin,
while high -risk subgroup was more responsive to Docetaxel, AUY922, Embelin.
Eventually, two clusters of LSCC samples had notable correlations with LSCC
prognosis. The above results indicated that the risk model consisted of TMRGs
(SERPINA1, TMC8, RENBP, SDS and FAM107A) was constructed in LSCC,
contributing to studies related to the prognosis and treatment of LSCC.
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1 Introduction

Laryngeal cancer (LCa) is the second most prevalent malignant
tumor affecting the head and neck region, with an incidence rate
second only to oral carcinoma, accounting for about 1.98% of all
malignancies in the whole body, and in 2020 there was about
180,000 new patients with LCa and nearly 100,000 deaths
worldwide (Sung et al., 2021; Atef et al., 2019). Squamous cell
carcinoma (SCC) accounting for about 90% of LCa, is the
predominant LCa subtype (Megwalu and Sikora, 2014; Siegel
et al., 2020). The pathogenesis of laryngeal squamous cell
carcinoma (LSCC) is still unclear, and related studies have shown
that smoking, drinking, environmental factors, gastroesophageal
reflux, HPV infection, radiation and other factors are associated
with LSCC, which may be the result of a multifactorial interaction
(Steuer et al., 2017). With the development of endoscopic and
imaging technologies, the diagnosis and treatment of LSCC have
been improved significantly. However, due to the lack of typical
symptoms in the initial phase, approximately 60% of patients
diagnosed with LSCC are already in advanced stages of tumor
development. This delay in diagnosis hinders timely treatment
and subsequently leads to unfavorable clinical outcomes (Strojan
et al., 2013; Calhoun, 1988; Gao et al., 2019). In addition, despite the
continuous improvement in surgery, chemotherapy and
radiotherapy, the recurrence and metastasis rates of LSCC are
still high and impose a serious impact on prognosis (Haddad
et al., 2018; Gao et al., 2020; Bray et al., 2018; Lu et al., 2018;
Nocini et al., 2020). In recent years, it has been pointed out that a
possible way to improve the diagnostic and therapeutic effects of
LSCC is the use of effective biomarkers, especially amino acid
metabolic-related markers, which play an increasingly important
role in the early detection of malignancies and the identification of
potential immunotherapeutic targets (Zhang et al., 2018; Liu et al.,
2023), but have not yet been well explored in LSCC. Therefore, the
identification of effective biomarkers is important for the
prediction of prognosis and guidance of personalized therapy in
LSCC patients.

Tryptophan (Trp) is a crucial amino acid, constituting
approximately 1% of the overall amino acids. It is not
biosynthesized within our body and can solely be acquired
through dietary intake (Wang et al., 2015). In the body, Trp
is metabolized mainly through the Kynurenine pathway (KP) to
produce downstream metabolites such as Kynurenine (KYN).
Indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-
dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase 2
(TDO2) are the key rate-limiting enzymes for Trp

metabolism. Numerous research studies have consistently
demonstrated the significant upregulation of IDO1 in diverse
tumor types, such as melanoma, cervical cancer, oral squamous
cell carcinoma, colorectal cancer, esophageal cancer, and
pancreatic cancer (Zhai et al., 2018; Chen et al., 2020;
Prendergast et al., 2014). Furthermore, the presence of
IDO1 expression in either tumor cells or stromal cells has
been linked to an enhanced aggressive phenotype, unfavorable
clinical outcomes, and a bleak prognosis (Zhang et al., 2022;
Iversen et al., 2015; Rubel et al., 2018; Kozuma et al., 2018;
Hornyak et al., 2018). Previous research has indicated that the
metabolism of Trp in cancerous cells and/or surrounding cells
plays a role in inhibiting the immune system’s ability to fight
against tumors (Platten et al., 2021). Trp and its metabolites
interact with IDO can modulate not only tumor cells, but also the
entire tumor microenvironment, and ultimately promoting
immunosuppression and drug resistance (Greene et al., 2019;
Li and Zhao, 2021; Maleki et al., 2015). In addition, Trp
metabolism, a novel immune checkpoint that can influence
the outcome of immunotherapy, is also a potential therapeutic
target (Li et al., 2019). From the above mentioned studies, it is
known that Trp metabolism plays a pivotal role in initiation and
progression of various cancers; however, the role of Trp
metabolism-related genes (TMRGs) in LSCC and their
prognostic value are not yet clear.

In this study, we extracted TCGA-LSCC, GSE27020, and
40 TMRGs from publicly available databases, and then identified
DE-TMRGs by Weighted Gene Co-expression Network Analysis
(WGCNA), differential expression analysis, univariate Cox, least
absolute shrinkage and selection operator (LASSO), and
multivariate Cox regression analysis, and finally combined with
relevant clinicopathological information to construct a risk model of
Trp metabolism. In addition, we further analyzed the impact of the
risk model on the immunotherapy and chemotherapy for LSCC. We
also identified the optimal clustering form (molecular subtypes) by
consensus clustering analysis of samples from TCGA-LSCC, and
explored the relationship between clustering and LSCC prognosis.
Therefore, this study aims to construct a risk model by analyzing the
TMRGs in LSCC to further predict the prognosis of LSCC patients
and guide personalized treatment.

2 Materials and methods

2.1 Sources of data

The RNA-seq data, copy number, and somatic mutation data for
TCGA-laryngeal squamous cell carcinoma (LSCC) were obtained
via University of California Santa Cruz (UCSC) Xena (http://xena.
ucsc.edu/), and a total of 111 LSCC samples and 12 control samples
(82 LSCC samples with disease-free survival (DFS) information and
clinical information) from Larynx were selected as the TCGA-LSCC
dataset. The GSE27020 dataset consisting of 109 LSCC samples with
DFS information was gained from Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/), and was sequenced by
GPL96 paltform. The GSE143224 dataset (GPL5175) consisting
of 11 control samples and 14 LSCC samples was also gained
from GEO. Then, a total of 40 TMRGs were extracted via

Abbreviations: PCOS, Polycystic ovary syndrome; DEGs, Differentially
expressed genes; HA, Hyperandrogenism; SVM-RFE, Support vector
machine recursive feature elimination; DCA, Decision curve analysis; FC,
Fold change; IR, Insulin resistance; LASSO, Least absolute shrinkage and
selection operator; MSigDBq, Molecular signatures database; qRT-PCR,
Quantitative real-time polymerase chain reaction; PCA, Principal
component analysis; GEO, Gene expression omnibus; GO, Gene ontology;
KEGG, Kyoto encyclopedia of genes and genomes; AUC, Area under curve;
BP, Biological process; MF, Molecular function; CC, Cellular component;
ROC, Receiver operating characteristic; ssGSEA, Single-sample gene set
enrichment analysis; TFs, Transcription factors; CTD, Comparative
toxicogenomics database; CRG, Cell adhesion-related genes.
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Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) (Xue et al., 2022).

2.2 Copy number and somatic
mutation analyses

In TCGA-LSCC, the wilcox. test was utilized to analyze the
differences of TMRGs expression between LSCC and normal
samples. After that, the somatic mutation frequency and copy
number variant (CNV) frequency of TMRGs in LSCC samples
were analyzed by R package maftools (v 2.2.10) (Xu Q. et al.,
2021), and the location information of TMRGs in chromosomes
was explored via R package RCircos (v 1.2.2) (Zhang et al., 2013). To
further understand the correlations among TMRGs, the expressions
of TMRGs in LSCC samples were extracted, and Spearman
correlation analysis was carried out.

2.3 WGCNA and differential
expression analysis

For the purpose of obtaining the key module that related to Trp
metabolism (TM), the WGCNA was applied in TCGA-LSCC. First,
the TM score of LSCC samples in TCGA-LSCC was scored utilizing
the Gene Set Variation Analysis (GSVA) algorithm according to
TMRGs, and which was considered as trait for WGCNA. Outliers
were removed by clustering the samples to ensure the accuracy of the
analysis. A soft threshold was determined to optimize the
conformity of gene interactions with a scale-free distribution.
Subsequently, the dissimilarity coefficient was introduced based
on the adjacency and similarity between genes, leading to the
generation of a systematic clustering tree for genes, and modules
were screened out according to the dynamic tree cutting criteria.
What’s more, the module with the highest correlation with TM score
was sifted out as the key module. Finally, differentially expressed
genes (DEGs) between LSCC and control samples from TCGA-
LSCC were screened out by R package edgeR (v 3.36.0) (Liu S. et al.,
2021) by setting |log2FC| > 1 and adj. P < 0.05, and they were
overlapped with genes in keymodule to yield differentially expressed
TMRGs (DE-TMRGs).

2.4 Construction of a risk model

In order to identify genes that exhibited significant associations
with survival outcomes in TCGA-LSCC, a univariate Cox analysis
was conducted on DE-TMRGs, focusing on genes with a P value less
than 0.05. Then, the LASSO analysis of genes gained in above step
was applied by R package glmnet (v 4.0-2) (Zhang et al., 2019) to
yield genes corresponding to lambda min, and they were analyzed
for multivariate Cox to identify prognostic gene. A risk model was
constructed according to the expressions (expr) of prognostic gene
and risk coefficient (coef ) in multivariate Cox. After calculating the
risk score for the LSCC samples in the TCGA-LSCC
(Riskscore � ∑n

i�1coef(genei)pexpr(genei)), the samples were
separated into high and low risk subgroups in accordance with
their median value. Kaplan-Meier (K-M) survival analysis was used

to compare the variations in survival between these two subgroups.
Thereafter, we created a receiver operating characteristic (ROC)
curve using survivalROC package (v1.0.3) in order to evaluate the
risk model’s predictive accuracy (Zheng et al., 2021). Meanwhile, the
difference of risk score between Disease Free and Recurred/
Progressed groups was analyzed by wilcox. test, and the chi-
square test was applied to determine the percentage of Disease
Free and Recurred/Progressed patients in the high/low-risk
subgroups. Furthermore, the findings were validated by the
identical methods in GSE27020.

2.5 Nomogram construction and functional
enrichment analysis

To further investigate the relationship between risk score and
clinical features of 82 LSCC samples in TCGA-LSCC (age, overall
survival (OS), sex, T, N, grade, stage, and DFS), a violin diagram was
drawn, and the expression of prognostic genes in various risk
subgroups and clinical features was investigated using a heat
map. In TCGA-LSCC, risk score and clinical features (age, grade,
M, T, N, sex, and stage) were analyzed by univariate Cox analysis,
and factor meeting P < 0.05 was defined as the independent
prognosis factor. After that, a nomogram was constructed by rms
package (v 6.2-0) (Liu TT. et al., 2021) to forecast the likelihood of
patient survival. Additionally, to further validate the nomogram,
ROC curves, calibration curves, and decision curve analysis (DCA)
were run. Ultimately, the risk model was also subjected to hallmark
pathway enrichment analysis to further explore the biological
functions and pathways (Background gene set: Hallmark: h.
all.v7.4. symbols. gmt).

2.6 Immune infiltration analysis and drug
sensitivity analysis

In the high/low-risk subgroups from TCGA-LSCC, we adopted
the single-sample gene set enrichment analysis (ssGSEA) algorithm
to estimate the levels of immune cell infiltration, and intersubgroup
differences of them were compared via wilcox. test. The Spearman
correlation between risk score and immune cells was also examined,
and variations in conventional immune checkpoints of subgroups
were compared. What’s more, the LSCC tumor immune dysfunction
and exclusion (TIDE) value was calculated, and difference of it
between subgroups was contrasted. To investigate the impact of risk
model on chemotherapy for LSCC, an analysis was conducted to
assess 138 chemotherapy drugs sensitivity of LSCC in cancer
(GDSC) database (https://www.cancerrxgene.org/), and the
differences in 50% inhibitory concentration (IC50) of
138 chemotherapy drugs were estimated between subgroups.

2.7 Consensus clustering analysis

For further assessing the role of prognostic gene in clinical
classification of LSCC, clustering of LSCC samples from TCGA-
LSCC was performed. First, using the ConsensusClusterPlus
package (v 1.62.0) (Dong et al., 2021), consensus clustering
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analysis was carried out on 82 LSCC samples with survival data
based on the prognostic gene., and the optimal clustering form was
obtained based on the cumulative distribution function (CDF) value.
The K-M analysis was adopted to study the association between
clusters and LSCC prognosis. Subsequently, the differences of above
immune cells, conventional immune checkpoints, TIDE value, as
well as IC50 of 138 chemotherapy drugs between clusters were
also analyzed.

2.8 Verification of expression level and RNA
isolation and quantitative real-time
polymerase chain reaction (qRT-PCR)

In GSE143224, Wilcoxon test was performed to analyze the
prognostic genes expression in tumor and normal groups (p < 0.05).

Subsequently, to further analyze the prognostic genes expression
in clinical samples, we conducted qRT-PCR. A total of 10 pairs of
normal and LSCC samples were obtained from the clinic in the
Shanxi Provincial Cancer Hospital. All participants were given
informed consent. The study had the approval of the Shanxi
Provincial Cancer Hospital ethics committee.

Total RNA of 20 samples were extracted by employing the
TRIzol reagent (Ambion, United States) as per the manufacturer’s
instructions. The SureScript First-strand cDNA Synthesis kit
(Servicebio, China) was utilized to perform reverse transcription
and generate cDNA. For qRT-PCR analysis, a CFX Connect
Thermal Cycler (Bio-Rad, United States) was employed. The
2−ΔΔCT method was utilized to ascertain the relative quantification
of mRNAs (Livak and Schmittgen, 2001). The sequence information
for all primers was displayed in Table 1.

2.9 Statistical analysis

The R software was utilized for conducting statistical analysis.
The Wilcox test was employed to examine the variations among the
groups. When P < 0.05, a substantial difference was deemed to exist.

3 Results

3.1 The genetic landscape of TMRGs in
LSCC samples

Violin plot revealed that totally 23 TMRGs were notably
differentially expressed between LSCC and normal samples
(Figure 1A). Besides, IDO1 and OGDHL had high mutation
frequencies in LSCC somatic mutations, and the main mutation
type was Missense Mutation (Figure 1B). In LSCC samples,
EHHADH exhibited the highest frequency of copy number
amplification and WARS2 the highest frequency of copy
number deletion (Figure 1C). Figure 1D illustrated the location
of TMRGs on different chromosomes, where ASMT located on
both chromosomes X and Y. Eventually, there was a notable
strongest positive correlation between IDO1 and WARS, and
AOX1 had a significant strongest negative correlation with
ECHS1 (Figure 1E).

3.2 Identification of key module and DEGs

The clustering of TCGA-LSCC samples showed that there was
no necessity to exclude any samples (Figure 2A). Based on Figure 2B,
a soft threshold was chosen as 9. Meanwhile, the network was
approaching scale-free distribution, as seen by the vertical
coordinate R̂2 roughly converges around 0.85 and the average
value of the adjacency function steadily goes towards 0. After
that, the 16 modules were finally sifted out according to co-
expression matrix (the similar modules had been merged)
(Figure 2C), among which the green module was defined as the
key module, which exhibited the highest correlation with TM score
(Cor = 0.45, and P < 0.05), and which contained 1,232 module genes
(Figure 2D). There were 1,483 DEGs between LSCC and normal
samples (Figure 2E), and they were intersected with genes in key
module to get 98 DE-TMRGs (Figure 2F).

3.3 The risk model showed an excellent
ability for predicting prognosis of
LSCC patients

Based on 98 DE-TMRGs, 14 genes were discovered using
univariate Cox regression (HR ≠ 1, P < 0.05) in TCGA-LSCC.
The LASSO method further refined this list to 12 genes based on a
minimum lambda of 0.02907679. Subsequently, five prognostic
genes (SERPINA1, TMC8, RENBP, SDS, and FAM107A) were
determined through multivariate Cox regression analysis (HR ≠
1, P < 0.05) (Figure 3A). Besides, the high-risk subgroup exhibited a
substantial lower survival (Figure 3B). The area under the curve
(AUC) values for 1- (0.88), 3- (0.82) and 5- (0.76) year all surpassed
0.7, indicating that the risk model performed exceptionally well in
predicting LSCC patients. (Figure 3C). Undoubtedly, risk score
differed sensibly between Disease Free and Recurred/Progressed
groups (Figure3D), and the percentage of Recurred/Progressed
patients with high risk was higher than that in Disease Free
(Figure 3E). The results were further validated in
GSE27020 (Figure 3F).

TABLE 1 The sequence information for primers.

Gene name Primer sequence (5′-3′)

SDS F CTGCCCAAGATCACCAGTGT

SDS R TTCGGAGATTCCCCTCCAGT

FAM107A R CTGAGGCAGCTGGGAAATGA

SERPINA1 F AATTCCAGGTTGGAGGGGCG

SERPINA1 R ACGGCATTGTCCTGTGGAAC

TMC8 F CCTGAACTTGACCCTCCAGTG

TMC8 R CCCTGCCAGTCAAAACATGC

RENBP F TGGCTTCCTAGAGGAGCAGGA

RENBP R GCTTCAGACGTCACCATCCC

Internal references -GAPDH F CGAAGGTGGAGTCAACGGATTT

Internal references -GAPDH R ATGGGTGGAATCATATTGGAAC
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FIGURE 1
Genetic landscape of TMRGs in LSCC. (A) Differential expression of TMRGs between tumor and normal tissue samples. (B) Somatic mutational map
of TMRGs in tumor samples. (C) CNV of TMRGs within tumor samples. (D) Infosphere diagram of TMRGs at different chromosomal locations. (where the
gene ASMT occurs on both chromosomes X and Y). (E) Heatmap of correlation between TMRGs. * means p < 0.05,** means p < 0.01,*** means p <
0.001,**** means p < 0.0001, - means p > 0.05. TMRGs, tryptophan metabolism-related genes; LSCC, laryngeal squamous cell carcinoma; CNV,
copy number variant.
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FIGURE 2
WGCNA analysis of TMRGs in TCGA-LSCC samples. (A) The overall clustering of TCGA-LSCC samples. (B) Scale-free soft threshold distribution and
determines the power threshold value to be 9. (C) The Clustering ofmodule eigengenes; Eigengene adjacency heatmap; Module clustering dendrogram.
(D)Heatmap ofmodule correlationwith clinical characteristics, the greenmodule has been selected as a keymodule, containing 1,232module genes. (E)
Gene expression difference between LSCC and normal samples is displayed by a volcano plot. (F) A total of 98 DE-TMRGs were determined among
the differentially expressed genes and module genes. TMRGs, tryptophan metabolism-related genes; LSCC, laryngeal squamous cell carcinoma; CNV,
copy number variant.
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FIGURE 3
Determination of genes contributing to risk model. (A)Univariate Cox analysis of DE-TMRGs; Trajectory schemeswere drawn for every independent
variable associated with lambda; Confidence interval under lambda; Multivariate Cox analysis of DE-TMRGs. (B) K-M curves for different risk groups in
TCGA-LSCC samples. (C) ROC curves for different risk groups in TCGA-LSCC samples. (D) Risk score between Disease Free and Recurred/Progressed
groups in TCGA-LSCC samples. (E) Disease Free and Recurred/Progressed percentage between different risk groups in TCGA-LSCC samples. (F)
ROC curves, K-M curves, Risk score and percentage between different risk groups were validated in GSE27020 dataset. TMRGs, tryptophanmetabolism-
related genes; LSCC, laryngeal squamous cell carcinoma; ROC, Receiver operating characteristic; K-M, Kaplan-Meier.
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FIGURE 4
The risk score was defined as an independent prognosis factor, and the risk model was involved in metabolism related pathways: (A) Various
clinicopathological groups derived from TCGA-LSCC cohort are compared pairwise in the parameter of risk score. (B) Heat map of risk model genes
expressions in different risk groups and different clinical characteristics. (C) Univariate Cox analysis of independent prognostic factors. (D) Nomogram
model; The nomogram showed themost powerful capacity for survival prediction; ROC curves of the nomogram; DCA curves of the nomogram. (E)
The different Hallmark pathways in high-risk and low-risk groups displayed as a heatmap. LSCC, laryngeal squamous cell carcinoma; DCA, Decision curve
analysis; ROC, Receiver operating characteristic.
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3.4 The risk score was defineded as
independent prognosis factor, and the risk
model was involved in metabolism
related pathways

Violin plot showed notable difference in risk score both between
OS and DFS subgroups (Figure 4A), and heat map illustrated the
prognostic gene expressions in different risk subgroups and different
clinical features (Figure 4B). The independent prognosis factor risk
score, was finally obtained through univariate Cox (Figure 4C).
Subsequently, the nomogram indicated that the risk model had a
good capacity to predict patients with LSCC, and the results were
further supported by the calibration, ROC, and decision curves
(Figure 4D). Moreover, the risk model was engaged in xenobiotic
metabolism, fatty acid metabolism, bile acid metabolism, heme
metabolism, IL6 JAK stat3 signaling and other hallmark
pathways (Figure 4E).

3.5 The risk model had a important effect in
the immune microenvironment and
chemotherapy of LSCC

In box plot, it could be seen that the infiltration levels of
CD56 bright natural killer (NK) cell, Type 2 helper T cell, and
Activated CD8 T cell differed notably between two risk subgroups
(Figure 5A). Besides, the risk score showed a noteworthy positive
correlation with Type 2 helper T cell, and had a notable adverse
correlation with Activated B cell (Figure 5B). A total of nine immune
checkpoints exhibited sensible expression disparities among high/
low-risk subgroups, including BTNL2, CD276, CD44, HHLA2, and
TNFRSF18, etc. (Figure 5C). Obviously, the TIDE score was
significantly lower in the low-risk subgroup compared to the
high-risk group, indicating a lower likelihood of immune evasion
and better response to immunotherapy among low-risk LSCC
patients (Figure 5D). Eventually, the study found that patients
with low-risk were notably sensitive to Salubrinal, Lenalidomide,
Metformin and others, while those with high-risk were noticeably
sensitive to Docetaxel, AUY922, Embelin, etc. (Figure 5E).

3.6 Immunological microlandscape and
drug sensitivity between clusters

Through consensus clustering analysis, the LSCC samples were
classified into two clusters (Figure 6A), and cluster1 had a poorer
survival state than that of cluster 2 (Figure 6B). The heat map
illustrated the prognostic gene expressions in different clusters and
clinical characteristics (Figure 6C). Moreover, the infiltration levels
of 13 immune cells like Macrophage and Regulatory T cell, and
expression levels of 15 immune checkpoints including BTNL2,
TNFSF9 and others were sensibly different between cluster1 and
cluster2 (Figure 6D). Meanwhile, the TIDE score of cluster 1 was
notably higher than that of the cluster 2, suggesting a higher
probability of LSCC immune evasion of cluster 1 patients
(Figure 6E). Apparently, the patients in cluster 2 were sensibly
sensitive to Rapamycin, Salubrinal, Tipifarnib and so on, while
patients in cluster 1 were more responsive to AZ628, Pazopanib,

AZD7762, etc. (Supplementary Figure S1, Figure 6F). Sankey
diagram demonstrated the relationship among molecular clusters,
high/low-risk subgroups, and DFS status (Figure 6G).

3.7 Expression validation

To investigate the expression of prognostic gene (SERPINA1,
TMC8, RENBP, SDS, and FAM107A), firstly, the three prognostic
genes (RENBP, SDS, and SERPINA1) were remarkably upregulated
in the tumor group compared with the normal in GSE143224 (P <
0.05), in contrast, FAM107A exhibited significantly higher
expression levels in normal samples (P < 0.05). The expression
level of TMC8 was higher in the tumor group samples than in the
normal group, but the difference was not significant (Figure 7A).
Meanwhile,we examined their expression in LSCC tissue by qRT-
PCR and compared it with normal tissue samples, we obtained
similar conclusions. Specifically, our data showed a significant
decrease in the expression of FAM107A and a increase in the
expression of SERPINA1, TMC8, RENBP, in LSCC patients
compared to normal (Figure 7B).

4 Discussion

LSCC is the most common pathological type of LCa and also one
of the most common malignant tumors of the head and neck
(Johnson et al., 2020; Cohen et al., 2019). The incidence of LSCC
has been on the rise in recent years, both in China and other
countries, and its poor prognosis and high mortality rate have
become a major risk factor for human health (Echanique et al.,
2021; Costa et al., 2021; Deng et al., 2020). Despite the continuous
improvement in the diagnosis and treatment of LSCC, including
surgery, radiotherapy, chemotherapy, neoadjuvant therapy,
immunotherapy, or strategies combining different treatment
modalities,the overall survival rate has not been significantly
improved (Qin et al., 2021; Bryan et al., 2016; Karam and Raben,
2019; Guidi et al., 2018). Due to the insidious onset of LSCC, which
has already progressed to mid and late stages in most patients at the
time of diagnosis, and the high recurrence rate, the 3, 5-year DFS of
LSCC has not been significantly improved either (Volkov, 1972;
Obid et al., 2019). Therefore, searching for new targets, early
prediction, early diagnosis, early intervention, and providing new
diagnostic and therapeutic approaches for LSCC may be important
means to improve the prognosis of LSCC patients (Sung et al., 2021).

Trp metabolism produces a variety of active substances with
physiological effects, which are important for maintaining cell
activation and proliferation (Neavin et al., 2018; Conejos et al.,
2021). Trp and its metabolites have diverse biological effects in the
regulation of multiple diseases (Conejos et al., 2021; Ding et al., 2020;
Wu et al., 2020). In particular, Trp and its metabolites play an
important role in tumor formation and evolution (Kwiatkowska
et al., 2021; Tanaka et al., 2021). Perez L et al. (Perez-Castro et al.,
2023) showed that Trp metabolites activate the aromatic receptor
(AHR), increase malignant degree, and inhibit anti-tumor immune
responses. In a study of oral squamous cell carcinoma (OSCC),
Tryptophanyl-tRNA synthetase (TrpRS) expression was upregulated
in tumor tissues, and the expression level of TrpRS correlated with
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FIGURE 5
Immune microenvironment analysis of the TCGA-LSCC cohort: (A) Box plot of infiltration abundance of 28 immune cells in high and low-risk
groups. (B) Correlation analysis between 28 immune cell and risk score; Correlation scatter plot between risk score and Type 2 helper T cell; Correlation
scatter plot between risk score and activated B cell; (C)Differentially expressed immune checkpoint genes in high and low-risk groups. (D) The TIDE score
in high and low-risk groups. (E) The estimated IC50 values for top five drugs of significant differences between high and low-risk groups. * means p <
0.05,** means p < 0.01,*** means p < 0.001,**** means p < 0.0001. LSCC, laryngeal squamous cell carcinoma; IC50, half maximal inhibitory
concentration; TIDE, tumor immune dysfunction and exclusion.
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FIGURE 6
Consensus clustering analysis of the TCGA-LSCC cohort. (A)Cumulative distribution function curves for samples that are from TCGA-LSCC cohort;
Curves for the delta area under the cumulative distribution function curves for samples that are from TCGA-LSCC cohort; The two sample clusters (k = 2)
was displayed as a heat map. (B) The prognosis of two TCGA-LSCC clusters is displayed as a K-M curve. (C) The risk model genes expressions in different
clusters and clinical characteristics as a heat map. (D) Differentially infiltrated immune cells between different clusters; Differentially expressed
immune checkpoints between different clusters. (E) The TIDE score between different clusters. (F) The estimated IC50 values for top five drugs of
significant differences between different clusters. (G) The relationship among molecular clusters, high/low-risk groups, and DFS status are displayed as
sankey diagram. LSCC, laryngeal squamous cell carcinoma; IC50, half maximal inhibitory concentration, TIDE, tumor immune dysfunction and exclusion;
K-M, Kaplan-Meier.
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the clinicopathological features of OSCC patients (Lee et al., 2015).
Another study regarding head and neck squamous carcinoma
(HNSC) showed that IDO and TDO2 are indicators of
immunosuppression and poor survival in HNSC patients, and
that IDO1 in HNSC is negatively correlated with programmed
cell death protein ligand 1 (PDL-1) (Riess et al., 2020).
Additionally, studies revealed that TMRGs also play significant
roles in LSCC and OSCC. For instance, drugs that inhibit the
overexpression of Akt1 (RAC-α serine/threonine-protein kinase)
and Akt2 (RAC-β serine/threonine-protein kinase) without
reducing MAOB expression could serve as lead compounds for
the treatment of oral squamous cell carcinoma (OSCC) (Sharif Siam
et al., 2021). Furthermore, ACAT1 inhibitors have been shown to
enhance the therapeutic efficacy of CSCs-DC vaccines in a mouse

model of postoperative recurrence of head and neck squamous cell
carcinoma (HNSCC), suggesting that ACAT1 may play an
important role in cancer immunotherapy (Chen et al., 2017).
Additionally, both low and high expression levels of
ALDH2 have been associated with tumor progression, depending
on the type of cancer, indicating that ALDH2 is a potential
therapeutic target for cancer treatment (Zhang and Fu, 2021).

In this study, we analyzed the RNA-seq data, copy number,
somatic mutation data and clinicopathological features of the
TCGA-LSCC dataset to explore the mechanisms related to Trp
metabolism in LSCC, and finally identified five genes (SERPINA1,
TMC8, RENBP, SDS, and FAM107A) to establish a risk model.
Tryptophan metabolism, particularly through the kynurenine
pathway, plays a crucial role in shaping the tumor immune

FIGURE 7
(A): The expression of prognostic gene in GSE143224. (B): Expression validation of prognostic gene in our study.
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microenvironment (Qin et al., 2021). Key enzymes such as
IDO1 and TDO2 catalyze the conversion of tryptophan to
kynurenine, producing immunosuppressive metabolites that
inhibit anti-tumor immune responses (Prendergast et al., 2014).
In LSCC, the upregulation of these enzymes may lead to increased
immune evasion and tumor progression. Additionally, TMRGs may
affect the infiltration of immune cells such as Tregs and MDSCs,
which contribute to an immunosuppressive microenvironment
(Perez-Castro et al., 2023). The potential pathway interactions of
TMRGs in LSCC are illustrated in Figure 8. In addition, two
molecular clusters related to Trp metabolism were also identified.

The SERPINA1 encodes the alpha-1 antitrypsin (AAT) protein,
which is involved in the regulation of enzyme activity and protein
metabolism, as well as cell growth, differentiation, motility and
signaling (Ando et al., 2021; Lim et al., 2020; Cipriani et al., 2018).
Previous research findings have indicated that there is a significant
upregulation of SERPINA1 in various types of tumor tissues, which
has been strongly linked to the advancement and prognosis of
tumors. Jiang and Hu (2020) found that SERPINA1 expression
was linked to the development of gastric cancer and enhanced
the invasion and migration of the disease’s cells. As a result, it
may offer a viable target for the disease’s prevention. Kwon et al.
(2015) found that SERPINA1 expression was linked to poor
prognosis of colorectal cancer, as well as tumor stage, and lymph
nodemetastasis, and that overexpression of SERPINA1 increased the
capacity of cancer cells to invade and migrate, whereas silencing of
SERPINA1 expression decreased this capacity. In hepatocellular
carcinoma, Dongre and Weinberg (2019) reached a similar
conclusion that patients with high expression of SERPINA1 in
hepatocellular carcinoma tissues may have a higher risk of
recurrence and metastasis. The expression level of SERPINA1 in
oral tumor tissues was notably higher than normal tissues, which
was associated with the progression, metastasis and prognosis of the
tumor (Kawahara et al., 2016). In our study, we used qRT-PCR to
detect the expression level of SERPINA1 in tumor and adjacent
tissues of LSCC patients, and the results showed that the expression

level of SERPINA1 in LSCC was significantly higher, which was in
line with the results of other scholars’ studies.

The mammalian transmembrane channel-like (TMC) gene
family consists of eight genes, ranging from TMC 1 to 8, and
TMC8 is also known as EVER2. It is widely acknowledged that
individuals diagnosed with HNSC frequently exhibit HPV infection,
and studies in recent years have suggested that common variants of
TMC8 are noteworthily related to HPV infection andHNSC patients
prognosis (Lin et al., 2021). Liang et al. (2015) also have reported a
correlation between genetic variation in TMC8 and the occurrence
of high-risk HPV infection as well as its role in the development of
HNSC, and it is also a fundamental regulatory factor for the
persistence and carcinogenicity of HPV infection. In addition,
TMC8 has the potential to impact tumor behavior by modulating
immune pathways; The presence of TMC8 in tumor tissues showed a
significant and positive correlation with the infiltration of various
immune cells, including B cells, CD4+ T cells, macrophages, CD8+

T cells, and dendritic cells, and TMC8 may increase the infiltration
of cytotoxic T cells and B lymphocytes by influencing the functionality
of CD4+ T cells (Liang et al., 2015). According to a study by Lin et al.
(2021) TMC8 expression was shown to be considerably higher in
HPV-positive HNSC patients. This finding indicated a positive link
between Th2 infiltration and B cell enrichment, indicating that TMC8
may operate as a barrier to HPV through Th2 cells. We propose that
TMC8 could potentially contribute to the development of resistance
against HPV infection, consequently reducing the vulnerability of
LSCC patients.

RENBP encodes renin-binding protein, an important regulator
in the renin-angiotensin-aldosterone system, which is responsible
for participating in blood pressure regulation and maintenance of
sodium homeostasis. RENBP has been proved to be expressed in
mouse lungs and may promote local lesion development through an
inflammatory response (Huffnagle et al., 2017), so we hypothesized
that micro-metabolic changes induced by inflammation in LSCC
may affect RENBP gene expression and consequently affects
tumorigenesis.

FIGURE 8
The potential pathway interactions of TMRGs in LSCC.
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The family with sequence similarity 107 member A (FAM107A)
gene, also known as DRR1 or TU3A, a specific set of codons encodes
multiple amino acids. Previously published studies have shown that
FAM107A has reduced expression in various tumor tissues,
including prostate cancer, hepatocellular carcinoma, lymphoma
and non-small cell lung cancer, which exhibits the properties of
an oncogene (Vanaja et al., 2006; Udali et al., 2015; Lawrie et al.,
2018; Pastuszak-Lewandoska et al., 2015); while FAM107A was
highly expressed in the aggressive component of gliomas and was
associated with increased aggressiveness and disease progression in
neuroblastoma, meningioma and malignant glioma (Mu et al., 2017;
Asano et al., 2010; Fevre-Montange et al., 2009; Nakajima and
Koizumi, 2014). The study of Kiwerska et al. (2017) found that
FAM107A functioned as an oncogene in LSCC, and it led to the
decrease of its expression in LSCC through DNA methylation and
combined deletion. In the present study, the expression level of
FAM107A in tumor tissues was significantly lower than that in the
adjacent normal tissues, which was in line with the findings of
other scholars.

Compared with other genes, SDS has not been deeply studied in
LSCC, and the specific mechanism of SDS as a pro-carcinogenic
gene in LSCC still needs to be further explored in the future.

We further confirmed that risk score alone was an independent
prognostic factor by univariate Cox analysis of clinical
characteristics and risk score, and in turn created a nomogram
for prediction of risk and survival probability in LSCC. Hallmark
pathway enrichment analysis reveals the risk model was also
engaged in bile acid metabolism, fatty acid metabolism,
xenobiotic metabolism, heme metabolism, IL6 JAK
stat3 signaling and other hallmark pathways.

Immunotherapy is currently a more promising means of tumor
treatment, especially immune checkpoint-based immunotherapy,
which has made significant breakthroughs in the treatment of
various tumors and reshaped the landscape of tumor treatment
(Marabelle et al., 2020; Kruger et al., 2019; Ribas and Wolchok,
2018). In this study, we found that a total of nine immune
checkpoints were sensitively expressed in high/low-risk
subgroups. The high risk subgroup had much higher levels of
immune checkpoint gene expression, such as Neuropilin-1
(NRP1). NRP1 is a neuronal and endothelial cell receptor
essential for normal embryonic development and angiogenesis,
whereas it suppresses anti-tumor immune response in the
formation and development of malignant tumors, which
correlates with poor clinical outcome (Delgoffe et al., 2013;
Overacre-Delgoffe et al., 2017). On the one hand, NRP1
promotes tumor cell growth through multiple pathways, such as
neoangiogenesis, metastasis; on the other hand, NRP1 facilitates
immune escape by regulating intra-tumor Treg cells and CD8+ T
and orchestrating multiple inhibitory processes in the tumor
microenvironment (TME) (Overacre-Delgoffe et al., 2017; Liu
et al., 2020). As a member of the B7/CD28 family, the
molecular structure of human endogenous retrovirus-H long
terminal repeat-associated protein 2 (HHLA2) shares some
homology and similarity with other B7 family members, such as
PD-L1, and exhibits both co-stimulatory and co-inhibitory effects
on T cells (Janakiram et al., 2017; Xiao and Freeman, 2015)
TMIGD2 is one of the specific receptors for HHLA2, often also
known as CD28H (Zhu et al., 2013). It has been discovered that

several solid tumors have high expressions of HHLA2, including
breast cancer (Liu et al., 2017), osteosarcoma (Koirala et al., 2016),
colon cancer (Zhu and Dong, 2018), clear cell carcinoma of the
kidney (Chen et al., 2019), and bladder cancer (Lin et al., 2019),
and so on. Based on this, HHLA2/TMIGD2 is expected to be one of
the new pathways and targets for tumor immunotherapy,
especially providing new ideas for PD-L1-negative tumor
immunotherapy. Some published research indicated that
HHLA2 may have different effects on prognosis in different
types of tumors. On the one hand, overexpression of HHLA2 in
pancreatic, ampullary and ovarian carcinoma is closely associated
with a favorable prognosis (Boor et al., 2020; Xu G. et al., 2021). On
the other hand, co-expression of HHLA2 and PD-L1 in renal clear
cell carcinoma shows a poor prognosis (Zhou et al., 2020). In our
study, HHLA2 was highly expressed in patients with low-risk,
suggesting that LSCC patients with low-risk may benefit from
immunotherapy based on this target. CD40LG (also known as
CD154) is the ligand gene for CD40, belonging to the tumor
necrosis factor (TNF) gene superfamily, predominantly
expressed on activated T cells and platelets (Kuhn et al., 2019).
It is also involved in tumor pathogenesis and anti-tumor immunity
(Hassan et al., 2015). CD40−CD40LG interaction is an important
signal for B-cell proliferation, activation biomarker expression and
immunoglobulin production, which directly inhibits the growth of
CD40-positive tumor cells and may indirectly inhibit tumor
growth by downregulating the immune response (Laman et al.,
2017; Jansen et al., 2016). Yuan et al. (2021) found that CD40LG is a
valuable prognostic molecular marker in breast cancer, and its low
expression is associated with poor outcomes. In our study, we
found that CD40LG was lowly expressed in the high risk subgroup,
which may be associated with a poorer prognosis in these patients.
For the TIDE score, it was higher in patients with high-risk than
low-risk, suggesting that high-risk patients may have a higher
likelihood of immune escape in response to immune checkpoint
therapy, which may have a negative impact on the effect of
immunotherapy in these patients.

To explore the role of risk model in LSCC chemotherapy and
find chemotherapy-sensitive drugs in high/low-risk subgroup, we
performed a drug sensitivity analysis and found that patients in
the low-risk subgroup were sensitive to Salubrinal, while those in
the high-risk subgroup were sensitive to these drugs including
Docetaxel, AUY922, Embelin, and CHIR.99021. Salubrinal is a
selective inhibitor of eIF2α that acts by inducing phosphorylation
and inhibiting dephosphorylation of eIF2α. Salubrinal was found
to act differently when combined with different types of
chemotherapeutic agents, it can enhance the inhibitory effect
of drugs such as doxorubicin on tumors (Jeon et al., 2016);
whereas in combination with platinum-based drugs, Salubrinal
attenuates the antineoplastic efficacy of platinum-based
chemotherapeutic agents (Chen et al., 2011; Feng et al., 2013).
Therefore, when selecting chemotherapeutic drugs for patients in
the high-risk subgroup, attention should be paid to the rational
selection of drugs to maximize the antitumor activity of different
types of drugs.

Based on consensus clustering analysis, we identified two
different clusters, and the cluster 1 had worse DFS compared to
the cluster 2. The proportions of immune cells such as MDSC,
Macrophage, and Regulatory T cells were also higher in cluster
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1 than in cluster 2 subtype, which is important for the formation of
an immunosuppressive tumor microenvironment and the inhibition
of migration and infiltration of immune cells into tumor tissues, and
this may be one of the reasons for the worse DFS of the cluster 1,
which is in line with the studies of other scholars (Sica and
Massarotti, 2017; Wang et al., 2021).

Trp metabolism is closely associated with the formation of
the tumor immune microenvironment and impacts anti-tumor
immune responses through multiple pathways. Increased activity
of rate-limiting enzymes in Trp metabolism leads to Trp
depletion in the tumor microenvironment, which in turn
induces cell-cycle arrest of peripheral T cells and promotes the
generation of Tregs (Wolf et al., 2015; Fallarino et al., 2006).
Moreover, Kyn, a metabolite of Trp metabolism, can activate
AHR on CD4+ T cells and induce differentiation of CD4+ T cells
to regulatory T cells (Mezrich et al., 2010). Within the tumor
microenvironment, Tregs inhibit the function of effector T cells
by secreting inhibitory cytokines or interacting with antigen-
presenting cells, thereby modulating anti-tumor immune
responses. This aligns with the immune cell infiltration
pattern we observed in cluster 1, suggesting that Trp
metabolism plays a pivotal role in shaping an
immunosuppressive microenvironment. We further examined
the expression of immune checkpoint genes across various
clusters. Intriguingly, a higher degree of suppression was
observed in cluster 2 compared to cluster 1, suggesting that a
favorable clinical outcome for cluster 2 may be achieved through
immune checkpoint blockade rather than immune cell
infiltration, and this is similar to the study by Luo P et al. on
Trp metabolism in gastric cancer (Luo et al., 2023). Meanwhile,
the TIDE score of cluster 1 was significantly higher than that of
cluster 2, indicating that patients in cluster 1 are more likely to be
refractory to immunotherapy, leading to a poorer prognosis. In
the analysis of chemotherapeutic drug sensitivity between the
two molecular subtypes, we found that patients in cluster 1 were
more sensitive to drugs such as AZ628, AZD7762, CEP.701,
KIN001.135, and Pazopanib, while patients in cluster 2 were
more sensitive to rapamycin, Salubrinal, and Tipifarnib.

Our study suggests that high-risk LSCC patients may have a
poorer response to immunotherapy, as indicated by higher TIDE
scores and lower immune cell infiltration. While our findings are
based on bioinformatics analysis and require experimental
validation, they provide a potential framework for identifying
patients who may benefit less from standard immunotherapy
approaches. In clinical settings, this could help in stratifying
patients for alternative or combination therapies. For instance,
for high-risk patients, personalized immunotherapy strategies
could be developed. In addition to conventional immunotherapy,
combination treatments (such as chemotherapy, targeted
therapy, or other immunotherapeutic approaches) could be
considered to improve treatment outcomes. Future research
should focus on validating these findings through prospective
clinical trials and functional studies to explore the therapeutic
potential of targeting specific TMRGs or immune
checkpoints in LSCC.

Nevertheless, it is important to acknowledge certain
limitations in our investigation. Firstly, the data utilized in
our study were retrospectively collected from the TCGA and

GEO databases. Therefore, the potential bias in case selection
might affect the results. Secondly, these data were analyzed only
by bioinformatics, and future investigations should include
relevant in vivo and in vitro validation experiments to confirm
the efficacy of risk modeling. In addition, the molecular
mechanisms associated with Trp metabolism in LSCC remain
to be further validated. In addition, the molecular mechanisms
associated with Trp metabolism in LSCC remain to be further
validated. Moreover, the sample size of our qRT-PCR validation
was relatively small, which limits the robustness of our findings.
Future studies should validate the identified TMRGs in larger
patient cohorts. Furthermore, functional assays, such as gene
knockdown or overexpression studies, are needed to establish the
mechanistic roles of these genes in LSCC progression.
Additionally, immunohistochemistry or Western blot analysis
should be incorporated to verify protein-level expression and
localization.

5 Conclusion

In this study, five TMRGs (SERPINA1, TMC8, RENBP, SDS
and FAM107A) were identified to further establish a risk model,
which had specifically good predictive performance, and can
provide an effective method for evaluating the prognosis LSCC
patients. The nomogram based on the five TMRGs can provide a
concise and digital predictions to patients through simple
calculations. Our study also reveals the clinical significance of
Trp metabolism and its underlying association with LSCC, which
may provide a new approach for personalized comprehensive
treatment of LSCC patients.
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