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Background: Genotype imputation is a critical preprocessing step in genome-
wide association studies (GWAS), enhancing statistical power for detecting
associated single nucleotide polymorphisms (SNPs) by increasing marker size.

Results: In response to the needs of researchers seeking user-friendly graphical
tools for imputation without requiring informatics or computer expertise, we
have developed weIMPUTE, a web-based imputation graphical user interface
(GUI). Unlike existing genotype imputation software, weIMPUTE supports
multiple imputation software, including SHAPEIT, Eagle, Minimac4, Beagle, and
IMPUTE2, while encompassing the entire workflow, from quality control to data
format conversion. This comprehensive platform enables both novices and
experienced users to readily perform imputation tasks. For reference genotype
data owners, weIMPUTE can be installed on a server or workstation, facilitating
web-based imputation services without data sharing.

Conclusion:weIMPUTE represents a versatile imputation solution for researchers
across various fields, offering the flexibility to create personalized imputation
servers on different operating systems.
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Introduction

The advent of high-throughput sequencing has revolutionized research, significantly
advancing fields like genome-wide association studies (GWAS) and genome selection (GS).
However, a key challenge remains in efficiently imputing low-density datasets to high-
density ones. To fully harness the potential of whole genome sequencing and enhance
statistical power in GWAS, as well as reduce GS costs in animal and plant breeding, a user-
friendly imputation pipeline is essential. Such a pipeline should not require extensive
command-line expertise or specialized knowledge of the Linux environment. Additionally,
the establishment of an imputation server is a powerful means of leveraging computational
resources for large datasets while offering secure, public imputation services.

Genotype imputation is a well-established method, with ongoing developments that
address how factors such as reference panel composition, sample size, and population
structure influence accuracy (Marchini and Howie, 2010; Ye et al., 2019; Huang et al., 2012;

OPEN ACCESS

EDITED BY

Indra Adrianto,
Henry Ford Health + Michigan State University
Health Sciences, United States

REVIEWED BY

Iván Galván-Femenía,
Institute for Research in Biomedicine, Spain
Jonathan Shortt,
University of Colorado Anschutz Medical
Campus, United States
Yunjia Liu,
Henry Ford Health System, United States

*CORRESPONDENCE

Helong Yu,
yuhelong@jlau.edu.cn

You Tang,
tangyou9000@163.com

†These authors have contributed equally to
this work

RECEIVED 22 November 2024
ACCEPTED 27 February 2025
PUBLISHED 17 March 2025

CITATION

Li M, Li Z, Liu D, Li Q, Hu X, Yu J, Lin J, Bi C, Ye G,
Yu H and Tang Y (2025) weIMPUTE: a user-
friendly web-based genotype
imputation platform.
Front. Genet. 16:1532464.
doi: 10.3389/fgene.2025.1532464

COPYRIGHT

© 2025 Li, Li, Liu, Li, Hu, Yu, Lin, Bi, Ye, Yu and
Tang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Technology and Code
PUBLISHED 17 March 2025
DOI 10.3389/fgene.2025.1532464

https://www.frontiersin.org/articles/10.3389/fgene.2025.1532464/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1532464/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1532464/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1532464&domain=pdf&date_stamp=2025-03-17
mailto:yuhelong@jlau.edu.cn
mailto:yuhelong@jlau.edu.cn
mailto:tangyou9000@163.com
mailto:tangyou9000@163.com
https://doi.org/10.3389/fgene.2025.1532464
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1532464


Vergara et al., 2018; Browning and Browning, 2016). Marchini and
Howie (Marchini and Howie, 2010) provide a thorough review of
statistical approaches for genotype imputation, including both
Bayesian and frequentist methods. They highlight key
applications such as boosting GWAS power, fine-mapping loci,
and enabling cross-study comparisons. Other studies focus on
strategies for combining internal and external reference panels in
non-human (Loh et al., 2016) or admixed populations (Chen et al.,
2019; Chattopadhyay et al., 2023), while also demonstrating that
imputation can scale efficiently to millions of reference samples
using memory-optimized models (Howie et al., 2009). Large
reference datasets often require separating the phasing and
imputation processes. Widely used software like Minimac4,
Eagle2, Beagle5, SHAPEIT, and IMPUTE2 each specialize in
different aspects of imputation or phasing (Loh et al., 2016; Das
et al., 2016; Delaneau et al., 2014; Howie et al., 2009; Browning et al.,
2018; Browning et al., 2021). Some, such as Eagle and Beagle,
perform these tasks without relying on a reference panel, making
them versatile for studies without such panels. Others, like
SHAPEIT-IMPUTE2, are particularly effective with admixed
populations due to their robust algorithms. While
Minimac4 excels with homogeneous populations, it is also
effective with diverse datasets when paired with large reference
panels, as seen with the Michigan Imputation Server and TOPMed
Imputation Server. Additionally, Beagle’s Java implementation
offers cross-platform flexibility, whereas Eagle, SHAPEIT, and
Minimac4 are primarily designed for Linux environments.

Public services like the TOPMed Imputation Server (TIS)
(Taliun et al., 2021) and the Michigan Imputation Server (MIS)
(Loh et al., 2016; Das et al., 2016) have greatly advanced large-scale
imputation in human genetics. TIS utilizes a reference panel of over
97,000 genomes from the NHLBI TOPMed Program, providing
high imputation accuracy for human populations. However, TIS has
limitations, including restricted access due to data-sharing
requirements, limited sample sizes, and data upload constraints.
MIS, while also using robust reference data and supporting phasing
tools like Eagle and Beagle, lacks a complete end-to-end workflow,
such as integrated data preparation and post-imputation filtering.
Other tools like Gimpute (Chen et al., 2019) and MI-System
(Chattopadhyay et al., 2023) have been developed for large
human datasets, but often require command-line proficiency or
fail to provide comprehensive QC steps. Gimpute, for example,
excels in imputation accuracy but lacks a cross-platform
containerized framework, limiting its deployment flexibility. MI-
System, though capable of handling large datasets, is designed for
human studies and demands high computational resources, posing
challenges for non-human applications.

To meet the diverse needs of researchers, we developed
weIMPUTE, a flexible imputation platform supporting both pre-
phasing (Eagle2 or SHAPEIT) and imputation software (Minimac4,
Beagle5, and IMPUTE2). Leveraging Docker technology,
weIMPUTE ensures seamless installation and operation across
different operating systems. It integrates essential quality control
(QC) steps, such as format validation and genome build liftover,
along with post-imputation filtering, providing a comprehensive
and efficient solution. Unlike public servers, weIMPUTE offers local
or server-based installations, allowing users to manage large or
specialized datasets—especially non-human species—without

limitations due to public resource availability. The platform’s
web-based interface makes it easy for researchers to handle
datasets of varying sizes and population structures. Additionally,
weIMPUTE supports user-defined reference panels, a crucial feature
for studies involving underrepresented populations. Through
extensive testing, we have verified that weIMPUTE incurs no
additional computational overhead compared to standard
command-line pipelines, while efficiently utilizing parallel job
execution. While public services like TIS and MIS remain
valuable for moderate-sized human studies, weIMPUTE extends
the scope of imputation to large-scale and non-human applications,
offering deeper workflow customization within a containerized,
cross-platform framework that minimizes reliance on command-
line expertise.

Methods

weIMPUTE is a comprehensive imputation platform that
streamlines the entire imputation process, from data preparation
and phasing to imputing and post-quality control (QC) analysis (see
Figure 1). By integrating these functionalities, weIMPUTE offers
automated imputation for routine tasks, such as data segmentation
and command generation, while allowing manual review for tasks
requiring biological relevance or dataset-specific adjustments. The
platform offers multiple pipelines to attend to various imputing
scenarios, such as data segmentation and parallelization, while still
allowing users to perform customized tasks, including phasing and
imputing large datasets.

Users can conveniently install weIMPUTE on their local
machines and access it through a user-friendly website, which
also ensures data security through efficient datasets management.
To ensure seamless compatibility across multiple operating
systems (OS), all third-party libraries and software used in
weIMPUTE have been packaged using Docker, eliminating the
need for additional environment configuration. To achieve
effective implementation, all modules within weIMPUTE are
written in C++ and Java.

In the subsequent sections, we will delve into the key modules of
the weIMPUTE pipeline, providing insights into its powerful and
user-centric functionalities.

Data preparation

weIMPUTE accepts VCF format as both input and output for
imputation. For Minimac4, which requires M3VCF format for the
reference panel, VCF data will be converted to M3VCF using
Minimac3 or m3vcftools. If the reference and inference panels
use different genome map versions, the Lift-Over module aligns
them accordingly. Input data is automatically segmented by
chromosome, and users can further divide the data within each
chromosome (e.g., into 5 million bp files) for enhanced efficiency.
The QC module ensures the data meets imputation requirements,
such as being phased and consistent in map version and format. If a
file contains too few SNPs, a warning will prompt the user to remove
it from the input list. For sex chromosomes, a dedicated imputation
pipeline is automatically executed.
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weIMPUTE’s Docker architecture and flexible reference panel
support extend beyond human genetics, allowing successful
application in non-human species, such as dogs (Supplementary
Material S2). This adaptability makes weIMPUTE a versatile tool for
diverse genetic architectures, provided an appropriate reference
panel is available.

We also include a format conversion module to accommodate
alternative genomic formats (e.g., PLINK, Hapmap). This module
converts these formats into VCF, streamlining workflows,
especially for users with limited bioinformatics expertise. Once
converted, the data undergo the same segmentation, QC checks,
and lift-over procedures, ensuring consistency regardless of the
initial format. Additionally, weIMPUTE supports standard VCF-
based reference panels, including M3VCF formats for Minimac4,
with support for both publicly available and custom user-
uploaded panels.

To ensure data privacy and security, weIMPUTE’s containerized
deployment isolates imputation jobs from the host environment.
Users can run weIMPUTE in an offline mode on institutional
servers, ensuring that genomic data need not be uploaded
elsewhere. For multi-user scenarios, we recommend enabling
secured web connections and instituting user authentication for
full data protection.

Task management

weIMPUTE offers a task management service that optimizes
computing resources by default. Users are relieved of the burden of
tuning numerous parameters for each phasing and imputation step,
as the default settings are optimized based on pilot testing with

varying segment sizes and thread allocations. These defaults provide
efficient performance across diverse datasets, though researchers
with specialized requirements are encouraged to fine-tune further.
Users have the freedom to select modules and determine their
running order. Within each module, if multiple input files are
present, they will be automatically assigned to different threads,
optimized based on available computing resources. Task status can
be monitored online or offline, and the storage management module
handles automatic deletion of uploaded and output data files.
Administrators can set a timer to determine when these files
should be deleted.

Imputed data merging and filtering

After imputation, the post-QC module assesses the success of
the imputation process. Users have the option to filter imputed
variants based on imputation quality scores (r2 value). If desired,
users can use the merge module to combine the filtered segment files
into a single whole chromosome file.

Platform portability

weIMPUTE is containerized using Docker, making it cross-
platform and easily accessible through a web browser on any OS that
has Docker installed. For imputing large datasets, weIMPUTE can
be installed on powerful computing nodes, allowing remote access
through a laptop’s web browser. Users can check and modify the
imputation job status at any time without the need to log into the
computing node.

FIGURE 1
The workflow of phasing and imputation in weIMPUTE.

Frontiers in Genetics frontiersin.org03

Li et al. 10.3389/fgene.2025.1532464

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1532464


Results

Time consumption and memory usage

Given that phasing and imputation are computationally intensive
tasks, excessive computing resource usage can be a concern for GUI-
based imputation software. To validate weIMPUTE’s effectiveness as
an imputation service, we compared its time consumption and
memory usage to traditional command line operations. The results
show that weIMPUTE’s GUI-based approach exhibits similar time
and memory costs as command line usage (see Figure 2). Leveraging
Docker as a lightweight container, weIMPUTE effectively provides
imputation services with optimal resource utilization.

Benchmarks were conducted on a dataset simulated using sim-ped,
consisting of six groups ranging from 450 to 2,000 samples and
containing 32,503 SNPs with a genotype missing rate of 0.1%. The
computational environment included a server equipped with an Intel(R)
Xeon(R) Gold 6138 CPU (80 cores, 160 threads) and 440 GiB of RAM.
All tasks were executed in a Docker-based environment to minimize
system overhead and standardize the benchmarking process.

Resource requirements and practical
guidelines

Our simulated data is based on the real 1 KG (1,000 Genomes)
data (1000 Genomes Project Consortium et al., 2015), using 1 KG

individuals as founders. Specifically, we used the European (EUR)
whole genome sequencing (WGS) data from the 1000 Genomes
Project, which can be accessed via ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20100804/. Under single-threaded conditions, peak
memory usage remained below 700 MB across Eagle, SHAPEIT,
Beagle, IMPUTE2, and Minimac4 (Supplementary Material S3), with
Docker’s container overhead proving negligible. By increasing the
number of threads to utilize multicore environments, runtime was
substantially reduced without a significant rise in memory
consumption. For researchers handling datasets of this size or
larger, we recommend allocating at least 2–4 GB of RAM per
active thread, particularly when dealing with multiple parallel tasks
on HPC clusters or cloud-based infrastructure. Moreover, segment-
based workflows—splitting large chromosomes into smaller blocks
(e.g., 5–10Mb segments)—help mitigate the wall-clock time, allowing
weIMPUTE to deliver efficient and robust performance while
accommodating a broad spectrum of computational budgets.

weIMPUTE integrates an efficient error-handling mechanism to
enhance user experience and ensure system stability. For common
issues such as inconsistent chromosome naming, mismatched
genome builds, or insufficient memory, the system automatically
generates alerts. The user interface highlights failed tasks in the job
queue and provides downloadable log files, enabling users to quickly
diagnose and resolve problems. Additionally, the admin panel
continuously monitors hardware resource usage, including CPU
and memory allocation, allowing users to optimize performance by
adjusting resource settings or task configurations. These features

FIGURE 2
Phasing and imputation time comparison of weIMPUTE web service and command line version of various software combinations.
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offer convenient troubleshooting support, particularly for
novice users.

For data privacy and security, weIMPUTE’s containerized
deployment isolates imputation jobs from the host environment.
Users can run weIMPUTE in an offline mode on institutional
servers, ensuring that genomic data need not be uploaded elsewhere.
For multi-user scenarios, we recommend enabling secured web
connections and instituting user authentication for full data protection.

GWAS integration and workflow
enhancement

As many researchers use imputed genotypes for downstream
analyses, such as GWAS or genomic selection, we have introduced a
weIMPUTE_GWAS module with enhanced features for post-
imputation filtering and analysis. Before this, users can perform
minor allele frequency (MAF) and Hardy-Weinberg equilibrium
(HWE) filtering through the format conversion QC module.
Additionally, the module provides a simplified graphical interface
for widely used GWAS tools, such as GAPIT (Lipka et al., 2012;
Tang et al., 2016; Wang and Zhang, 2021).

By seamlessly integrating weIMPUTE and weIMPUTE_GWAS,
users can now filter variants, configure GWAS inputs (e.g., genotype
files, phenotype data, covariates), execute association analyses, and
visualize results—all within a single platform. This integration
eliminates the need for transferring data between software
packages and ensures that both post-imputation filtering and
downstream analyses remain accessible and efficient, especially
for researchers with limited computational expertise.

To further demonstrate the application of weIMPUTE, we present
a case study (Supplementary Material S2) involving genotype
imputation and genome-wide association study (GWAS) analysis in
a dataset of 4,341 domestic dogs (Huang et al., 2017). The procedure
includes uploading the MAP file for chromosome 1 (Supplementary
Material S2), followed by haplotype phasing using EAGLE
(Supplementary Material S2; Figures 2). After phasing, genotype
imputation is performed using BEAGLE (Supplementary Material
S2). Subsequently, quality control (QC) is applied, with a minor
allele frequency (MAF) threshold set to 1% and Hardy-Weinberg
equilibrium (HWE) filtering (Supplementary Material S2). After data
cleaning, the GWAS analysis module is used to investigate the
relationship between canine hip dysplasia (CHD) and genetic markers.

Through this process, multiple SNPs significantly associated with
CHD were successfully identified, with SNP BICF2S23441691 showing
a strong association across several models (Supplementary Material S2;
Supplementary Table 1). The reliability of these findings is confirmed by
the Manhattan plot (Supplementary Material S2) and QQ plot
(Supplementary Material S2) of the output data.

Server setup

weIMPUTE leverages Docker to enable parallel job submissions
on servers or HPC clusters with multiple cores. In the updated
documentation (Supplementary Material S1), we provide step-by-
step instructions for installing Docker, pulling the weIMPUTE
container, and customizing resource allocation. This approach

ensures minimal command-line usage while allowing large
datasets to be processed efficiently.

Conclusion

weIMPUTE integrates multiple phasing tools (Eagle2,
SHAPEIT) and imputation tools (Minimac4, Beagle5, IMPUTE2),
each optimized for specific scenarios. Minimac4 is effective with a
single, homogeneous reference panel, while IMPUTE2 supports
combining multiple reference panels for admixed populations.
Eagle2 is efficient for large datasets with homogeneous ancestry,
while SHAPEIT is recommended for admixed datasets. For studies
with over 1,000 individuals, data can be divided into chromosome
chunks for parallel processing, a step automated within weIMPUTE.

While weIMPUTE automates many processes, manual checks,
such as adjusting segment sizes or verifying allele concordance,
remain essential, particularly for rare variants or non-human
populations. The platform offers flexibility for users to select the
most suitable tools and configurations for their studies, in line with
established best practices such as those proposed by van Leeuwen et al.
(2015) (van Leeuwen et al., 2015). The weIMPUTE_GWAS module
provides basic QC functions such as MAF, HWE, and r2 filtering, but
users may need additional tools for more complex QC. We
recommend incorporating extra QC steps to ensure high-quality data.

In summary, weIMPUTE offers a comprehensive solution for
genotype imputation, including data quality control and streamlining
the process. Its cross-platform compatibility and user-friendly interface
make it suitable for diverse species, as demonstrated by a case study
involving 4,341 domestic dogs. By optimizing the imputation workflow,
weIMPUTE addressesmissing data issues and supports complex genetic
studies, proving effective in handling large-scale datasets.

With weIMPUTE, researchers can seamlessly perform imputation
without extensive command line knowledge. While the platform
automates routine computational processes for efficiency, it also
allows flexibility for manual data review and optimization to
ensure accurate and biologically relevant results. This integration
of functionalities and platform portability empowers researchers to
harness the full potential of whole genome sequencing technology,
expand sample sizes, and enhance statistical power in various research
fields. weIMPUTE emerges as a valuable resource, advancing the field
of genotype imputation and contributing to research advancements
across different species and domains.
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