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Background: The role of immunogenic cell death (ICD) in cervical cancer (CESC)
is not well understood. This study sought to investigate the significance of ICD in
CESC and to establish an ICDRs prognostic model to improve immunotherapy
efficacy for patients with cervical cancer.

Methods: ICD-associated genes were screened at the single-cell and
transcriptome levels based on AddModuleScore, single-sample gene set
enrichment analysis (ssGSEA) and weighted gene co-expression network
(WGCNA) analysis. Immunogenic cell death-related features (ICDRs) were
constructed using multiple machine algorithms, and ICDRs were evaluated in
training and validation sets to provide quantitative tools for predicting prognosis
in clinical practice. Predictive models were used to risk subgroups for response to
immunotherapy, as well as drug sensitivity. Finally, the expression of ICD-related
genes was verified by RT-qPCR.

Results: Through an integrated analysis of single-cell data, transcriptomic
profiling, and computational modeling, seven ICD-related genes were
identified as highly prognostic for CESC patients. Multivariate analysis
demonstrated that low-risk patients had significantly better overall survival
compared to high-risk patients, confirming the model as an independent
prognostic tool. Assessments of the tumor microenvironment (TME), mutation
characteristics, and drug sensitivity within ICDRs risk subgroups indicated a
stronger immunotherapy response in the low-risk group.
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1 Introduction

Cervical cancer is the fourth most common cancer worldwide, with approximately
660,000 new cases reported in 2022 and approximately 350,000 deaths (Bray et al., 2024). It
remains a significant health issue, particularly in low- and middle-income countries, where
it is a leading cause of cancer incidence and mortality (Girda et al., 2023). Although the
World Health Organization (WHO) has launched a global strategy to eliminate cervical
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cancer, including recommending HPV vaccination for girls under
15, the decline in incidence has been limited (Malagón et al., 2024).

Modern treatments for cervical cancer include radiotherapy,
chemotherapy, targeted therapy and immunotherapy (Li et al., 2023;
Tang and Chen, 2024). From human papillomavirus (HPV)
infection to cervical carcinogenesis involves a series of complex
regulatory mechanisms, among which immunotherapy plays a
crucial role in tumour development and progression and has
become a key area of current research (Awadasseid et al., 2023).
The application of immunotherapy in cervical cancer mainly
includes strategies such as immune checkpoint inhibitors,
therapeutic vaccines, and adoptive T-cell immunotherapy (Ferrall
et al., 2021). By targeting immune checkpoints and modulating
tumour immune escape mechanisms, immunotherapy shows
promising therapeutic perspectives and has become an important
direction in clinical applications and basic research (Fobian et al.,
2025). Patients with advanced or recurrent cervical cancer benefit
from reducing immunosuppression in the tumour
microenvironment by targeting the PD-1/PD-L1 pathway, which
is associated with T-cell exhaustion, and the CTLA-4 pathway,
which inhibits T-cell activation (Horton et al., 2018; Santoro
et al., 2024; Liu K. et al., 2024). However, many patients fail to
benefit from this, suggesting that further research is urgently needed
to explore reliable predictive biomarkers to identify high-risk
patients and guide individualised treatment to improve prognosis.

Immune cell death (ICD) has been recognized as a promising
therapeutic strategy as a regulated cell death process (Wang et al.,
2018). ICD, as a regulated cell death, is capable of being induced by
a variety of stimuli, including pathogen infection, chemotherapy,
targeted drug therapy, and photodynamic therapy (Liu et al., 2024).
By triggering the death of tumor or infected cells through external
stimuli, ICD prompts the transformation of these cells from non-
immunogenic to immunogenic, thereby enhancing anti-tumor
immune responses and establishing long-term immune memory
(Catanzaro et al., 2025). This process typically relies on the release
of immunogenic molecules (DAMPs), which in turn activate
adaptive immune responses (Wang et al., 2018; Fan et al.,
2024). DAMPs enhance the immunogenicity of tumor cells,
attenuate immunosuppression in the tumor microenvironment,
stimulate T-cell-mediated immune responses, and ultimately
promote tumor-specific CD8+ T cell generation and the
establishment of immune memory (Widjaya et al., 2022).
Currently, ICD-based immunotherapy has become an important
direction in tumor therapy. Both chemotherapy (Yerragopu and
Vellapandian, 2023), radiotherapy (Pointer et al., 2022),
photoimmunotherapy (Li et al., 2020), and tumor vaccines can
induce ICD and improve the therapeutic effect (Wang et al.,
2024b). However, the potential of ICD as a prognostic
biomarker or predictor of response to immunotherapy and
chemotherapy has not been fully explored, and further research
strategies are still needed especially in cervical cancer patients.
Therefore, studying and identifying reliable ICD biomarkers is
crucial for assessing the prognosis and treatment response of
cervical cancer patients. A large number of studies have
explored new therapeutic targets by constructing survival
prediction models, a trend that highlights the important
potential of this field in tumor therapy (Zhang et al., 2024c;
Zhang et al., 2024d; Zhang et al., 2024a; Zhang et al., 2024b).

In this study, we constructed a prediction model for ICDRs
associated with CESC based on 33 known ICD-related genes using a
multi-omics analysis combined with various machine learning
algorithms. We divided cervical cancer patients into two subtypes
and verified significant differences between the subtypes in terms of
clinical characteristics, prognosis, gene mutations, tumour
microenvironment (TME), immune checkpoint expression and
drug sensitivity, thus providing new ideas for predicting the
progression of cervical cancer.

2 Material and methods

2.1 Data preparation

Data on cervical cancer, including transcriptomic, mutational,
and clinical information, were sourced from the TCGA and GEO
databases. Clinical data came from TCGA, and TPM values were
extracted for analysis. Genes with an average expression below
0.1 and samples lacking complete clinicopathological data were
excluded, forming the TCGA-CESC cohort. Single-cell RNA
sequencing data were obtained from the GSE44001 dataset.
Additional somatic mutation data in Mutation Annotation
Format (MAF) were obtained from The Cancer Genome Atlas
(TCGA), while copy number variation (CNV) data specific to
TCGA-CESC patients were retrieved from the Xena database.
The IMvigor210 cohort, consisting of patients who received
immune checkpoint blockade (ICB) therapy, was utilized to
evaluate the efficacy of the ICDRs model in predicting sensitivity
to immunotherapy (Mariathasan et al., 2018). A set of 34 ICD-
related genes (Garg et al., 2016; Wang et al., 2021), identified from
previous studies, is presented in Supplementary Table S1.

2.2 Single-cell data processing

Single-cell RNA sequencing analysis and data processing were
conducted using the Seurat package (Stuart et al., 2019). Quality
control procedures were implemented to exclude genes expressed in
fewer than 3 cells and cells expressing fewer than 200 genes. Cells
expressing between 200 and 4,000 genes, with mitochondrial gene
content below 10%, were retained for further analysis.
Mitochondrial and ribosomal RNA (rRNA) ratios were quantified
utilizing the Percentage FeatureSet function. To reduce data
dimensionality, principal component analysis (PCA) was
conducted, with 20 principal components selected as anchors
(dim = 20). Batch effects across samples were addressed using
the Harmony package. Subsequently, dimensionality reduction
was achieved through the application of the t-distributed
stochastic neighbor embedding (t-SNE) function. Dimensionality
reduction was performed using the t-SNE algorithm. Following this,
cell subpopulations were identified through the application of the
FindNeighbors and FindClusters functions, with a resolution
parameter set at 0.1. The AddModuleScore function from the
Seurat package was utilized to evaluate the activity of specific
gene sets across individual cells. Differentially expressed genes
(DEGs) between groups were identified using the FindMarkers
function, with statistical significance determined via the
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Wilcoxon test and an adjusted p-value threshold of less than 0.05.
Differentially expressed genes (DEGs) identified between cells
exhibiting high and low immunogenic cell death (ICD) scores at
the single-cell transcriptomic level were classified as ICD-related.
These genes were subsequently integrated into a weighted gene co-
expression network analysis (WGCNA). Additionally, the R package
CellChat was utilized to investigate intercellular communication (Jin
et al., 2021).

2.3 WGCNA batch identification of
immunogenicity-related genes

Weighted Correlation Network Analysis (WGCNA) is utilized
as a systems biology methodology to identify patterns of association
among samples (Langfelder and Horvath, 2008). ThroughWGCNA,
modules and genes exhibiting the strongest correlation with
immunogenic cell death-related genes (ICDRs) are identified.
After clustering the samples and eliminating outliers, an
appropriate soft threshold is selected to ensure optimal
performance and model stability. Subsequently, differentially
expressed genes are intersected with those identified by WGCNA,
representing ICDRs.

2.4 Development and validation of
prognostic indicators related to ICDRs

To analyze prognostic features associated with ICDR, RNA
sequencing data from the TCGA database was utilized.
Differentially expressed genes between normal and tumor
samples were identified using the R package limma, with
thresholds of |logFC| > 0.5 and adjusted p-value <0.05. Genes
overlapping between the differentially expressed genes and ICD-
related modules from weighted gene co-expression network analysis
(WGCNA) were selected as ICDR. Patients were stratified into high-
and low-risk groups based on the median ICDR risk score. Kaplan-
Meier curves were generated for prognostic analysis, and statistical
significance was evaluated using the chi-square test. Univariate and
multivariate analyses were conducted to assess the combined effects
of clinicopathological factors on survival. Time-dependent ROC
curves for predicting 1-, 3-, and 5-year survival rates were
constructed, and AUC values were calculated to assess model
accuracy. A nomogram was created using the R package RMS,
and the relationship between risk scores and clinical factors,
including age and TNM stage, was analyzed. The accuracy and
reliability of the nomogram were evaluated with ROC curves and
calibration plots, while decision curve analysis (DCA) was used to
assess its net clinical benefit.

2.5 Gene set enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) is a
prevalent technique utilized to evaluate the enrichment score of
specific gene sets within individual samples. The ssGSEA score for
each sample indicates the extent of upregulation or
downregulation of a particular gene set in that sample. To

discern differentially expressed genes and their variations
between high- and low-risk ICDR groups, we utilized the R
package “limma.” Furthermore, functional enrichment and
differences in biological pathways between these groups were
examined using the “org.Hs.eg.db” and “clusterProfiler”
packages. Gene set files for GO terms, KEGG pathways, and
HALLMARK pathways in GMT format were obtained from
MsigDB (version 4.0) (Castanza et al., 2023).

2.6 Correlation analysis between immune
infiltrating cells and gene mutations

To investigate the immunological significance of ICDRs, we
used the CIBERSORT, ESTIMATE and ssGSEA algorithms.
Immunity, stroma, ESTIMATE score and tumour purity were
calculated using the ESTIMATE algorithm. In addition, activity
scores for the seven steps of the anti-tumour immune cycle were
assessed. Immunotherapy responses between high and low risk
groups were analysed using the Immunophenotype Scoring (IPS)
algorithm, and IPS data for the TCGA-CESC samples were obtained
from the Cancer Immunome Atlas (TCIA) database (https://tcia.at/
home) (Yu et al., 2023).

Given the association between increased genetic heterogeneity of
tumours and poor prognosis in cancers such as head and neck
squamous cell carcinoma and breast cancer, as indicated by the
Mutant Allele Tumour Heterogeneity (MATH) score, MATH was
used in this study to measure tumour heterogeneity (Mroz et al.,
2013; Mroz et al., 2015). The mutation profiles of CESC patients
were analysed using the maftools R software package and gene copy
number variations (CNVs) were determined for genes that differed
between the two risk groups.

2.7 Significance of the ICDRs in drug
sensitivity

We evaluated the half maximum inhibitory concentration
(IC50) of common clinical chemotherapy and targeted drugs by
using “pRRophetic” software package. We used Wilcoxon test to
check the difference of IC50 between high and low risk groups, and
p < 0.05 was considered to be statistically significant.

2.8 Experimental validation of key ICDRs
expression via RT-qPCR in CESC

RNA was extracted from two cervical cancer cell lines (SiHa
and Hela) and the immortalized epithelial cell line HaCaT using
the RNA extraction kit (R0027; Beyotime Biotechnology, Nanjing,
China). The RNA was reverse-transcribed into cDNA using the
PrimeScript RT reagent kit (R323-01; Vazyme). Real-time PCR
(RT-PCR) was conducted on a QuantStudio five system, and data
were analyzed based on comparative CT values. Gene expression
levels were normalized to GAPDH as a reference. Results are
presented as mean ± standard deviation (SD) from three
independent experiments. Primer sequences are provided in
Supplementary Table S6.
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2.9 Statistical analyses

All statistical analyzes were performed using R software (version
4.4.1). Differences between groups were analyzed using the
Wilcoxon test, and KM curves were analyzed using the Log-rank
test. Univariate and multivariate Cox regression were performed for
independent prognostic analysis. Spearman’s correlation analysis
was used to examine the relationship between risk score and
immune cell infiltration. RT-qPCR results were analyzed using
the student’s test. Two-sided P values less than 0.05 were
considered statistically significant.

3 Result

3.1 Analysis of immune cell death genes in
single-cell transcriptome data

Figure 1 outlines the study’s workflow. We analysed the scRNA-
seq dataset GSE44001 and identified 24,302 cells divided into 31 cell
clusters (Supplementary Figure S1A). Based on marker genes, these
clusters were further classified into 10 cell types, including
fibroblasts, macrophages, monocytes, endothelial cells, NK cells,
T cells, epithelial cells, columnar epithelial cells, squamous epithelial
cells and tumour cells (Figure 2A). The heatmap shows the top four
marker genes for each cell type (Figure 2B). To assess the activity of
immunogenic cell death (ICD) genes in different cell types, we
calculated the expression levels of 34 ICD-related genes in individual
cells using the ‘AddModuleScore’ function in Seurat (Figure 2C).

Among the 10 cell types, NK cells, macrophages and endothelial cells
had the highest ICD activity (Figure 2D). Subsequently, the cells
were classified into high and low ICD groups based on their ICD
activity, and 349 differentially expressed genes were identified for
further analysis (Supplementary Table S2).

3.2 Identification of modular genes related
to ICDs through WGCNA analysis using
large-scale transcriptomic data

ICD as an anti-cancer therapeutic ‘saviour’ capable of activating
adaptive immune responses (Galluzzi et al., 2024). We aimed to
derive a gene set enrichment score using the ssGSEA algorithm for
specific samples to identify differences in pathway activity or
biological functions across samples. ICD gene activity scores were
calculated for each TCGA-CESC sample by using the ssGSEA
algorithm, and these scores were used as phenotypic data in the
WGCNA analysis.

To identify modules significantly associated with ICD gene
scores, we conducted WGCNA on the TCGA-CESC dataset.
After excluding outlier samples, co-expression networks were
constructed using ICD-associated DEGs identified from single-
cell sequencing data (Figure 3A). The optimal soft threshold
power was set at 7 (R2 = 0.76) to ensure a scale-free topological
network (Supplementary Figure S1B). Parameters included a
minimum module gene number of 60 and a gene similarity
threshold (MEDissThres) of 0.25, resulting in 18 distinct
modules (Figure 3B).

FIGURE 1
Flowchart in this study.
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The MEbrown module showed a strong correlation with ICD
gene scores from RNA-seq data (correlation = 0.76, Figure 3C).
Additionally, a significant positive correlation was observed between
gene importance and module membership in the MEbrown module
(correlation = 0.9, P < 0.001, Figure 3D). This indicates that the
module not only exhibits structural consistency (co-expression
patterns) but also contains core genes that play critical roles in
ICD-related processes.

The differential gene expression analysis of cervical cancer
samples and normal samples using a volcano plot (|logFC| > 0.5,
adjusted P < 0.05; Figure 3E) showed differentially expressed genes
(DEGs). By intersecting the 24 genes in the brown module with the
RNA-seq DEGs, we identified eight genes to construct the risk score
model (Figure 3F), which were termed immunogenic cell death-
related genes (ICDRs).

Gene ontology (GO) enrichment analysis of the ICDR genes
(Figure 3G) showed that these genes were involved in biological
processes (BPs) such as ubiquitin-like protein ligase binding,
endopeptidase regulator activity, pentosyltransferase activity, and
MHC protein binding. In terms of cellular components (CC), these
genes are associated with cytoplasmic vesicle lumen and secretory
granule lumen. In terms of molecular function (MF), the ICDR
genes are associated with pathways such as negative regulation of
defence responses, suppression of immune responses, cellular

responses to ICD and responses to type I interferon
(Supplementary Table S3).

3.3 ICDs risk modeling predicts the
prognosis of patients with CESC

Univariate regression analysis identified six ICDRs significantly
associated with CESC patient prognosis. The TCGA dataset was
divided into a training set, while the GEO dataset was used as a
validation set. Using 101 machine learning algorithms, predictive
models were constructed, and their performance was evaluated by
calculating the consistency index (C-index) for each validation
cohort (Figure 4A). Among the algorithms, the StepCox
algorithm performed well, but after excluding overfitting models
in the training set, the StepCox [both]+GBM model demonstrated
the best validity with an average C-index of 0.688.

KM survival analysis revealed that high-risk patients had
significantly worse prognoses in the TCGA training set (Figure 4B).
However, in the GEO dataset, although high-risk patients showed a
similar trend, the p-value exceeded 0.05, indicating no significant
difference (Figure 4C). Additionally, worse disease-specific survival
(DSS) and progression-free interval (PFI) were observed in the low-
risk group compared to the high-risk group (p < 0.001, Figures 4D, E).

FIGURE 2
Single Cell Transcriptome Analysis of Immunogenic Cell Death (ICD) Gene. (A) t-SNE plot illustrating cell types identified based onmarker genes. (B)
Heatmap displaying the top four marker genes for each cell population. (C) Immunogenic cell death (ICD) activity scores across individual cells. (D)
Distribution of ICD scores among various cell types.
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3.4 Assess the independent prognostic
significance of ICDs

We performed univariate (Figure 5A) and multivariate
(Figure 5B) Cox regression analysis to evaluate the role of
ICDRs as an independent prognostic factor for CESC. The

results confirmed that ICDRs significantly affected the
prognosis of CESC and was independent of other clinical
variables, so we used it as an independent prognostic indicator
(P < 0.001), and the OS prognostic analysis of the validation cohort
(Figures 5C,D) further confirmed the independent prognostic
value of ICDR (HR 1.292, CI 0.238–7.014, P = 0.766), and DSS,

FIGURE 3
Single Cell Transcriptome Analysis of Immunogenic Cell Death (ICD) Gene. (A) Hierarchical clustering dendrogram of TCGA-CESC samples, with a
heatmap below showing ICD scores calculated via the ssGSEA algorithm. (B) WGCNA clustering dendrogram analysis. (C) Module-trait relationships.
Heatmap showing correlations between genetic modules and clinical features, with red indicating positive correlations and blue indicating negative
correlations. p-values are shown in parentheses. (D) Scatterplot depicting the correlation between gene significance (GS) and module membership
(MM) in the brown module. (E) Volcano plot of differential analysis results for TCGA-CESC tumor and normal samples, with the top five up- and
downregulated genes labeled. (F) Venn diagram illustrating overlapping genes between the MEbrown module and RNA-seq DEGs. (G) GO enrichment
analysis of the identified genes.
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DFI and PFI were similarly analyzed (Supplementary Figures
S2A–C). In addition, ROC curve analysis showed that the AUC
values at 1, 2, and 3 years were all high (0.859, 0.88, and 0.852,
respectively), indicating that the model had high predictive
reliability (Figure 5E). In order to verify the clinical
applicability of the dicing model, the ICDR was combined with
independent prognostic indicators to construct a prediction
nomogram to quantitatively evaluate survival, age, and TNM
stage (Figure 5F). The calibration curve verified the accuracy of
the nomogram (Figure 5G). The calibrated AUC values at 1, 3, and
5 years were 0.695, 0.547, and 0.508, respectively (Figure 5H),
reflecting the predictive ability of the prediction model over time.

3.5 Clinical relevance of predictive models
for ICDRs

We conducted a correlation analysis between the
clinicopathological characteristics of CESC patients and the
ICDRs prediction model. The results from the TCGA dataset
revealed a significant association between the risk score and
several factors, including age, stage, and clinical status
(Figure 6A). Furthermore, clinical Circos plot analysis

demonstrated a statistically significant relationship between
survival status and patient prognosis (P < 0.001), underscoring
the critical role of survival status in tumor progression. Notably, a
significant correlation was observed between survival status and N
stage (Figure 6B). Compared with patients in early stages such as
M0, I-II, and T1-2, patients in advanced stages, including M1 (P =
0.26), III-IV (P = 0.27), and T3-4 (P = 0.6), had significantly higher
risk scores (Figures 6C–E). These findings suggest that ICDR is
associated with a worse prognosis in patients with CESC. In
addition, ROC curve analysis showed that ICDR achieved AUC
0.604 in predicting theM stage of CESC patients (Figures 6F, G). It is
worth noting that the T4 stage distribution in the low-risk group was
slightly higher than that in the high-risk group (Supplementary
Figure S2M). These results indicate that combining ICDR with
clinical information can improve the predictive accuracy of
the model.

Furthermore, Kaplan-Meier survival analysis demonstrated
that ICDRs have a distinct prognostic effect across various
clinical subgroups, including age, stage, T, M, and N (Figures
6H–M; Supplementary Figures S2D–G). Supplementary analysis
of five ICDRs-related genes was conducted using the
GEPIA2 database (http://gepia2.cancer-pku.cn/) (Supplementary
Figures S2H, I).

FIGURE 4
ICDRs risk modeling predicts the prognosis of patients with CESC. (A) Development of machine learning-based prognostic models for risk
assessment, with the C-index calculated across all validation datasets. (B, C) Kaplan-Meier curves illustrating OS analyses for ICDR-based risk subgroups
in the training set (TCGA) (B) and validation set (GEO) (C) using the log-rank test. (D, E) Kaplan-Meier curves showing DSS (D) and PFI (E) analyses within
TCGA risk subgroups.
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3.6 Biological functional differences
between high and low risks

Given that ICDRs have a significant impact on the prognosis of
CESC, we performed GSEA enrichment analysis on the risk
subgroups of ICDRs to understand the differences in biological
functions between different risk subgroups. We found that
immune-related pathways such as INTERFERON_GAMMA_
RESPONSE and ALLOGRAFT_REJECTION, cytokine signaling-
related pathways such as IL6-JAK-STAT3 signaling pathway, and
inflammatory response pathways such as type I interferon-α pathway

were significantly enriched in the low-risk group (Figure 7A). In
contrast, pathways related to EMT, glycolysis, angiogenesis, andMYC
target gene regulation were significantly enriched in the high-risk
group (Figure 7B). Further study findings (Supplementary Table S4)
showed that the activities of glycolysis and Hedgehog signaling
pathways were enhanced in the high-risk group, while the
activities of ALLOGRAFT_REJECTION, INTERFERON_
GAMMA_RESPONSE, IL6_JAK_STAT3, and IL2_
STAT5 signaling pathways were significantly enhanced in the low-
risk group (Figure 7C). Correlation analysis between ICDRs risk
subgroups and other pathways (Figure 7D) showed significant

FIGURE 5
Assess the independent prognostic significance of ICDs. (A, B) Forest plots for univariate and multivariate prognostic analysis in TCGA-CESC. (C, D)
Univariate and multivariate analysis of OS-related clinical characteristics and ICDRs in GEO. (E) ROC curves evaluating TCGA predictive performance for
1-, 3-, and 5-year OS. (F) Nomograms integrating ICDRs with clinical factors such as age, grade, stage, and T. (G) ROC curves assessing nomogram
performance for predicting 1-, 3-, and 5-year OS. (H) Calibration curves of the nomogram for 1-, 3-, and 5-year OS predictions.
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associations with tumor-related pathways. The KM curve of the
Hallmark pathway showed that pathways positively correlated with
ICDR, such as glycolysis, TGF_BETA_SIGNALING, and
CHOLESTEROL_HOMEOSTASIS, were associated with poor
prognosis (Figures 7E–G). In contrast, KRAS_SIGNALING_DN
and ALLOGRAFT_REJECTION was negatively correlated with the
ICRD risk subgroup, which had a good prognosis. Moreover, IL-6_
JAK_STAT3_SIGNALING, INFLAMMATORY_RESPONSE, P53_
PATHWAY, and IL2_STAT5_SIGNALING showed better
prognosis in the low-risk group (Supplementary Figures S3A–F).

Collectively, these findings revealed significant differences in
ICDRs risk subgroups with GO, KEGG, and Hallmark pathways,
highlighting their potential as prognostic markers.

3.7 Tumor heterogeneity and mutation
profiles across high-risk and low-risk groups

Tumor cells develop intratumoral heterogeneity (ITH)
through continuous clonal evolution, which is closely associated

FIGURE 6
Evaluation of the Clinical Relevance of the ICDRs Risk Prediction Model. (A) Comparison of clinical characteristics of ICDR risk subgroups. (B)
Correlation analysis of clinical characteristics between high-risk and low-risk subgroups. (C–E)Differences in risk scores between patients grouped by M
stage, grading, and T stage. (F) Distribution of M stage in ICDR risk subgroups. (G) ROC curves assessing the predictive accuracy of ICDR for M-stage in
CESC. (H–M) Kaplan-Meier survival curves for ICDR in patients with CESC by age, stage, T, M and N.
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with poor drug prognosis (Andrade et al., 2023). ITH results in the
emergence of tumor cell subpopulations with higher proliferation
rates, greater invasiveness, and varying drug sensitivities,
complicating treatment strategies (Elza et al., 2014). ITH was
quantified using the Mutated Allele Tumor Heterogeneity
(MATH) algorithm, where higher MATH scores indicate
greater heterogeneity. High-risk CESC patients exhibited
significantly higher MATH scores compared to the low-risk
group (Figure 8A).

The ICDRs prediction model and MATH were combined for
prognostic evaluation, and the results showed that the prognosis of
patients with “high risk + high MATH” was significantly worse

than that of patients with “low risk + low MATH” (p < 0.0001,
Figure 8B). This indicates that the combined index provides a
more accurate prognosis for CESC patients. Further mutation
analysis found significant differences in mutation rates (Figures
8C, D), with ADGRV1 and LRP1B mutations more frequently in
the high-risk group. Fisher’s test confirmed that the mutation
frequency of LRP1B was higher in the high-risk group, showing a
co-mutation pattern (Figures 8E, F). In addition, we analyzed the
copy number variation levels of the seven key genes of the ICDRs
prediction model and found that except for the two genes
STAT1 and KLHDC7B, the CNVs of other genes were
significantly missing (Figure 8G).

FIGURE 7
High-risk/low-risk functional enrichment analysis. (A) Mountain range plot displaying GO terms enriched in pathways specific to the low-risk
group. (B) KEGG pathways enriched in the high-risk group. (C) Differential analysis of HALLMARK pathway activities between high- and low-risk groups
based on GSVA scores. (D) Correlation analysis between GSVA scores of marker pathways and risk scores. (E–G) Kaplan-Meier curves showing the
relationship between OS and GSVA scores for Glycolysis, TGF_BETA_SIGNALING, and CHOLESTEROL_HOMEOSTASIS pathways.
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3.8 Analysis of cellular communication
between ICDR risk subgroups

We analyzed the role of ICDRs in tumor immune
microenvironment by using the previous data of single
cell transcriptome, and we analyzed the distribution of
several key genes (PSME2, TYMP, KLHDC7B, GBP5,
EPSTI1, STAT1 and OAS2) in different cell types
(Figure 9A). These genes are mainly distributed in columnar
epithelial cells, tumor cells and monocytes. Subsequently, we
use tumor cells as a standard to analyze and predict the risk
scores of different cells in the model (Figure 9B). Columnar
epithelial cells, monocytes and macrophages scored higher than
tumor cells.

Cellular communication plays a role in tumour immunity
through a variety of mechanisms, particularly in the interaction
of malignant tumour cells with other cell subpopulations.
Therefore, in this study, tumour cells were classified into
high-risk and low-risk groups based on risk scores of ICDRs,
their cellular communication patterns in the tumour
microenvironment (TME) were analysed, and potential
interactions with other cell types were assessed. The results

FIGURE 8
Relationship with genomic mutations and intratumor
heterogeneity. (A) Violin plot comparing tumor heterogeneity (MATH)
scores for mutant alleles between high- and low-risk subgroups. (B)
Kaplan-Meier curves showing overall survival (OS) based on
combined MATH and ICDRS risk scores. (C, D) Waterfall plots
illustrating somaticmutation patterns in high- and low-risk subgroups.
(E, F)Heatmaps displaying correlations of the top 20mutated genes in
high- and low-risk subgroups. (G) CNV variant levels in differential
genes between subgroups, with red indicating amplifications and
green deletions. *P < 0.05; **P < 0.01; ***P:< 0.001; ****P < 0.0001.

FIGURE 9
Analysis of TME differences between ICDR-based risk subgroups.
(A) Single-cell RNA-seq analysis of PSME2, TYMP, KLHDC7B, GBP5,
EPSTI1, STAT1, andOAS2 expression across various cell types. (B) ICDR
scoring across cell types using tumor cells as a reference. (C–E)
Interaction diagrams depicting cell communication networks for the
LAMININ, MK, and CD99 signaling pathways among different
cell types.

Frontiers in Genetics frontiersin.org11

Ning et al. 10.3389/fgene.2025.1532523

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1532523


showed that high-risk tumour cells communicated more actively
with multiple cell types, especially in the LAMININ, MK and
CD99 signalling pathways (Figures 9C–E). This phenomenon
suggests that high-risk tumour cells may play a more important
role in tumour progression, which may also explain their
poorer prognosis.

3.9 Correlation analysis between ICDRs and
immune infiltrating cells

The immune microenvironment of CESC patients was
comprehensively analyzed using multiple computational
algorithms, including ESTIMATE, ssGSEA, and CIBERSORT.

FIGURE 10
Relationship between ICDRs and immune cell infiltration in the immune microenvironment. (A–C) Comparison of immune status between high-
and low-risk subgroups using immune scores, ESTIMATE scores, and tumor purity. (D, E) Analysis of the relationship between immune pathway activity
and risk groups using the ssGSEA and CIBERSORT algorithms. (F) Heatmap showing associations between TME-infiltrating cells and ICDR-related genes.
(G) Correlation analysis between TME-infiltrating cells and ICDR-related genes. *P < 0.05; **P < 0.01; ***P:< 0.001; ****P < 0.0001.
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The analysis revealed that the high-risk group exhibited significantly
higher tumor purity but lower immune and ESTIMATE scores
(Figures 10A–C). Moreover, the high-risk group demonstrated
elevated cytolytic activity and type II interferon response activity
(Figure 10D). Immune cell infiltration profiling indicated a greater
abundance of CD8+ T cells and M1 macrophages in the low-risk
group, whereas CD4+ memory-activated T cells, M0 macrophages,
and dendritic cells were more active in the high-risk group
(Figure 10E; Supplementary Table S5).

The heat map shows the correlation between the seven genes and
tumour-infiltrating immune cells in the ICDRs prediction model
(Figure 10F). It is worth noting that CD4+ memory activated status,
CD8 T cells and M1 macrophages are positively correlated with the
seven genes, while M0 macrophages and activated plasma cells are
significantly negatively correlated. Pearson correlation analysis
identified eight immune cell types significantly associated with

ICDRs (P < 0.05) (Figure 10G). Kaplan-Meier survival analysis
revealed that six immune cell types—M2macrophages, resting mast
cells, activated NK cells, monocytes, resting NK cells, and
M0 macrophages—were significantly correlated with patient
prognosis (log-rank test, P < 0.05). These findings underscore the
critical role of immune cell infiltration within the tumor
microenvironment (TME) in influencing survival outcomes
(Supplementary Figures S4A–F).

3.10 Analysis of the correlation between
ICDRs and the anti-cancer immune cycle, as
well as the response to immunotherapy

To further investigate the relationship between ICDRs and
immunotherapy, we evaluated the activity of each step in the

FIGURE 11
Analysis of the correlation between ICDRs and the anti-cancer immune cycle, as well as the response to immunotherapy. (A) Heatmap illustrating
differences in seven-step anticancer immune cycle activity between high- and low-risk groups. (B)Differential expression of immune checkpoints across
high- and low-risk subgroups. (C)Comparison of IPS scores between high- and low-risk groups. (D–E) Box plots showing the proportion of patients with
CR/PR or SD/PD receiving immunotherapy in the IMvigor210 cohort, alongside differences in risk scores. (F) Box plots depicting risk scores among
patients with CR, PR, SD, and PD in the IMvigor210 cohort. *p < 0.05; **p < 0.01; ***p < 0.001.
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anti-cancer immune cycle, aiming to elucidate the role of immune
cells in cancer immune responses. Our analysis (Figure 11A)
revealed significant differences between ICDRS risk subgroups at
steps 2, 4, 6, and 7 of the anti-cancer immune cycle. These findings
suggest that in the low-risk group, immune cells exhibit stronger
anti-cancer activity throughout the functional cycle. Previous
studies have shown that high expression of immune checkpoint
inhibitors (ICIs) is associated with improved anticancer response.
To further explore this, we analyzed the expression levels of immune
checkpoints in ICDRs risk subgroups, and several immune
checkpoints, including LAG3, LILRB4, and TIGIT, were
significantly more expressed in the low-risk group (Figure 11B).
In addition, to validate these findings, we examined the immune
phenotype score (IPS) in the TCIA database. Higher IPS scores
generally predict better response to ICI treatment. Our analysis
showed that the IPS score was higher in the low-risk group
regardless of the expression pattern of PD-1 and CTLA-4, further
supporting our hypothesis (Figure 11C).

Furthermore, to assess the clinical relevance of ICDRs in
immunotherapy response, we analyzed the IMvigor210 cohort.
We calculated the risk scores for each patient, categorizing them
into high-risk and low-risk groups. Chi-square tests revealed that the
low-risk group had a significantly higher proportion of patients with
complete or partial responses (CR/PR), whereas the high-risk group
exhibited a greater number of patients with stable disease or
progressive disease (SD/PD) (Figure 11E). Moreover, CR/PR
patients had significantly lower risk scores compared to SD/PD
patients (Figures 11F, G), indicating that ICDRs play a crucial role in
predicting immunotherapy outcomes and that patients in the low-
risk group are more likely to experience favorable treatment
responses. These findings collectively suggest that ICDRs serve as
an important predictor of immunotherapy response, with patients in
the low-risk group being associated with better clinical outcomes.

3.11 Analysis of the responsiveness to
different chemotherapeutic agents in high-
risk and low-risk groups

We assessed the IC50 values of targeted therapies in ICDRs
risk subgroups using tumor drug sensitivity genomics (GDSC).
The results showed that OSI-906 and BMS-754807 exhibited lower
IC50 values in the high-risk group, indicating greater sensitivity
(Figures 12A, B). Correlation analysis revealed a significant
negative correlation between risk score and IC50 for these
drugs (Figures 12E, F). Conversely, sunitinib and ABT-888 had
lower IC50 values in the low-risk group, with a significant positive
correlation to the risk score (Figures 12C, D, G, H). These findings
suggest that the high-risk group is more sensitive to OSI-906 and
BMS-754807, while the low-risk group responds better to
mitomycin C and ABT-888.

To validate the gene expression levels in the prediction model of
ICDRs, the mRNA expression levels of the seven ICDR genes were
analyzed in cervical cancer cell lines, including normal epithelial
cells (HaCaT) and two cervical cancer cell lines (SiHa and HeLa).
The analysis showed that OAS2, KLHDC7B, STAT1, TYMP,
PSME2 and GBP5 were significantly upregulated in cervical
cancer cells compared with normal epithelial cells (Figures 12I–N).

4 Discussion

Cervical cancer is one of the most common gynecological
tumors, with about 500,000 new cases diagnosed globally each
year, including about 90,000 cases in China (Malagón et al.,
2024). At present, the incidence of cervical cancer continues to
rise, and the age of onset gradually tends to be younger. Although the
HPV vaccine has been widely promoted, cervical cancer remains a
major global health challenge (Liu K. et al., 2024). This situation
highlights the urgent need for precision medicine to promote early
detection, timely diagnosis, and effective treatment (Desravines
et al., 2024). Immunotherapy, as the most promising tumor
treatment method, plays a key role in determining patient
prognosis and treatment strategy (Chen et al., 2024; Liu et al.,
2024c). Nevertheless, challenges such as low immunogenicity,
gene instability, and antigenic variation remain, causing many
tumor cells to escape immune surveillance (Han et al., 2024).
Many studies have focused on finding new targets to optimize
treatment strategies and improve patient outcomes, These
included genes related to angiogenesis (Deng et al., 2024), matrix
immune marker genes (MIS) (Czekay et al., 2022), and anoikis-
related genes (ARGs) (Wang M. et al., 2024). However, although
immunogenic cell death (ICD) has been suggested to have the ability
to induce specific immune responses and regulate tumor immunity
(Wang et al., 2018), its role in cervical cancer has not been fully
focused. In this study, by identifying immunogenic genes associated
with cervical cancer, a variety of machine learning algorithms were
used to construct an ICDRs prognostic model, and the relationship
between ICDRs and immune infiltrating microenvironment was
further analyzed.

In this study, we analysed immune-related genes associated with
CESC using single-cell datasets, combined WCGNA and RNA-seq
analyses, and constructed a prediction model for ICDRs using a
multi-machine algorithm. The prediction model for ICDRs was
found to exhibit robust predictive performance by validation in
multiple CESC-related cohorts. Further univariate and multivariate
Cox regression analyses showed that the prediction model for
ICDRs had the potential to be an independent prognostic
indicator. Subsequent analysis of clinical indicators of CESC
patients using the ICDRs prediction model found a significant
correlation between patient survival status, M and N staging and
the ICDRs prediction model, further highlighting its potential to
more accurately monitor tumour progression and prognosis by
integrating molecular and clinical pathological indicators,
surpassing traditional TNM staging. Modern research has shown
that in targeted therapy for triple-negative breast cancer, restoring
IFN-γ signalling in vivo can enhance the immune response (Lazovic
et al., 2025). In PD-1 immunotherapy, IFN-γ signalling can be
activated by inhibiting glycolysis and restoring the activity of the
HK2/Lactate/IFN-γ axis, thereby further enhancing the immune
response (Xu et al., 2025). In addition, the recombinant HPV-16E7d
vaccine can also promote the immune response by activating IFN-γ,
thereby achieving an anti-tumour effect (Gachpazan et al., 2025).
The significant enrichment of immune-related pathways, especially
those related to IFN-γ and various cytokines, in the low-risk group
further indicates that patients in this group may have a better
prognosis, which may be closely related to enhanced immune
activation and a stronger immune response. On the other hand,
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studies have also shown that inhibiting epithelial-mesenchymal
transition (EMT) can effectively resist tumor drug resistance and
metastasis, while inhibiting glycolysis is considered a potential
strategy for cancer treatment (Ma et al., 2023; Mao et al., 2025).
Our study suggests that the high-risk group may have a more
aggressive phenotype and a poorer prognosis. This immune
response helps to stop tumour growth by enhancing the ability of
the immune system to detect and clear tumour cells. These findings
highlight the importance of tailoring interventions to the different
characteristics of high- and low-risk groups in order to effectively
control the progression of cervical cancer.

In the tumour immune microenvironment (TME), complex
intercellular communication between tumour cells, immune cells

and stromal cells plays a crucial role in tumour progression and
treatment response (Yin et al., 2024). Our analysis identified the
mutual communication between different cell subsets, and the
results showed that despite the existence of cell communication,
there was a break in most of the intercellular communication in the
high tumour cell group. This break may lead to a lack of
communication of immune cells, which in turn helps tumour
cells escape from the surveillance and attack of the immune
system. In addition, we also analysed the relationship between
ICDRs and the TME, and the results showed that the low-risk
group had significantly higher scores in terms of stromal score and
immune score. The low-risk group was significantly positively
correlated with TME-related characteristics, including immune

FIGURE 12
Analysis of the responsiveness to different chemotherapeutic agents in high-risk and low-risk groups. (A–D) Box plots comparing drug sensitivity to
OSI-906 (A), BMS-754807 (B), mitomycin C (C), and ABT-888 (D) in high- and low-risk groups. (E–H) Correlation analysis of IC50 values with risk scores
for OSI-906 (E), BMS-754807 (F), mitomycin C (G) and ABT-888 (H). (I) Verify the mRNA expression levels of the seven genes in the ICDRs prediction
model in HaCaT, Hela and SiHa cells. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Genetics frontiersin.org15

Ning et al. 10.3389/fgene.2025.1532523

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1532523


checkpoints and type I interferon responses. Of particular note, the
low-risk group showed a significant increase in CD8+ T cells and
M1 macrophages, which have been shown to promote the
infiltration of inflammatory cells in the tumour
microenvironment (Chen et al., 2023), further demonstrating that
patients in this group have a better prognosis through a stronger
immune response. In addition, it was found that seven genes in the
ICDRs prediction model were positively correlated with CD4+

memory activated status, CD8 T cells and M1 macrophages. This
phenomenon may reveal that the genes related to the ICDRs
prediction model can regulate the active participation of immune
cells and promote the immune clearance of tumors.

Genetic mutations play an important role in the occurrence,
progression, treatment response and recurrence of tumours
(Moreno-Gonzalez et al., 2024; Yin et al., 2024). We analysed the
genetic mutation characteristics and intratumour heterogeneity
(ITH) of different risk subgroups, and the results showed that
the high-risk subgroup had a higher ITH level and enhanced
metastasis potential, which was consistent with its poorer
prognosis. This was further supported by the validation results of
the IMvigor210 cohort, which showed that patients in the low-risk
group had higher complete response (CR) and partial response (PR)
rates, while patients with stable disease or progressive disease (SD/
PD) had higher risk scores, indicating a poorer prognosis for the
high-risk group. These results indicate that the ICDRs risk score can
effectively predict the outcome of immunotherapy, and that low-risk
patients may obtain more significant treatment benefits. In addition,
drug sensitivity analysis revealed four potentially effective
therapeutic drugs: mitomycin C, ABT-888, BMS-754807, and
OSI-906, which can significantly inhibit tumour progression in
the clinic. Mitomycin C inhibits tumour growth by targeting
DNA synthesis (Gorodnova et al., 2020). OSI-906 and BMS-
754807 are IGF-1R/IR inhibitors (Godina et al., 2024), the
former of which affects tumour progression by regulating the
insulin and IGF-2 signalling pathways influences tumour
progression (Lodjak et al., 2023); the latter induces apoptosis and
shows significant anti-tumour effects by inhibiting the ATP-
competitive tyrosine kinase activity of IGF-1R (Hassan et al.,
2024). ABT-888, a PARP inhibitor, enhances anti-tumour
immune responses by regulating DNA repair mechanisms (Li
et al., 2023; Luo et al., 2024). These drugs have good application
prospects in the immunotherapy of cervical cancer.

The seven key genes in the ICDRs prediction model play an
important role in the progression of various tumors and have broad
clinical application prospects as potential biomarkers. For example,
EPST1 is considered to have immunomodulatory activity and show
anti-tumor potential (Zhang X. et al., 2024); OAS2, as a T cell
exhaustion-related gene, has been shown to play a role in the
regulation of immune responses in breast cancer and non-small
cell lung cancer (Lu et al., 2024; Ching et al., 2025). In addition,
KLHDC7B has been found to promote the proliferation and
migration of bladder urothelial carcinoma cells (Hou et al.,
2024). STAT1 plays a key role in regulating the effect of
chemotherapy (Buttarelli et al., 2019); TYMP is considered to be
a potential prognostic marker for ovarian cancer and breast cancer
(Liu S. et al., 2025; Tao et al., 2025); GBP5, as an immune response
regulator, can affect tumor progression (Zou et al., 2024); and
PSME2 is closely related to the progression of various tumors (Li

R. et al., 2024). The above analysis shows the important biological
functions of the relevant genes in the ICDRs prediction model in
different tumor types, and further confirms the broad application
prospects of the prediction model in prognosis assessment. Through
further experiments, we verified the expression levels of the seven
genes in the ICDRs prediction model in cervical squamous cell
carcinoma and found that most of the genes were overexpressed.
Overall, these results further support the reliability of risk scores as
predictive indicators.

Translating ICDRs predictive models into clinical practice is of
great significance in helping patients and clinicians make more
accurate and personalised treatment decisions. First, the models
provide personalised treatment plans for patients, so that they can
make more accurate treatment choices based on specific risk scores.
Patients in the high-risk group need to receive more active treatment
interventions, while patients in the low-risk group can adopt
standardised treatment plans to optimise treatment effects.
Second, predictive models help optimise the intensity of
treatment and the allocation of medical resources. In clinical
practice, patients in the high-risk group require more attention
and intensive treatment, while patients in the low-risk group can
avoid over-treatment, reduce the burden on medical care, and
improve overall medical efficiency. Third, ICDRs prediction
models can improve the effectiveness of early intervention and
disease monitoring. Compared with patients in the low-risk
group, patients in the high-risk group should be more actively
intervened at an early stage, so as to improve treatment effects,
prolong survival, and reduce misdiagnosis. Fourth, the model
promotes shared decision-making. By providing patients with
clear risk information, they are fully informed and can
participate in clinical decision-making, making informed choices
based on personal risk, thereby improving treatment compliance.
Fifth, ICDRs predictive models provide important support for long-
term treatment outcome evaluation and follow-up research. As the
model continues to be optimised and validated, it provides a new
perspective on clinical treatment and helps to promote the
exploration of new treatment options.

In summary, this study constructed a risk prediction model
based on seven ICDRs genes throughmulti-omics joint analysis. The
model can effectively predict patient prognosis, tumour
microenvironment (TME) characteristics, immune function,
immunotherapy response and drug sensitivity. This study
combined machine learning algorithms and single-cell
transcriptome technology to construct an ICDRs prediction
model, providing new ideas for personalised treatment strategies
for cervical cancer (CESC) patients. Current research has shown that
ICDRs are closely related to tumorigenesis and development in
multiple tumor types, such as hepatocellular carcinoma (Sun et al.,
2024), colorectal cancer (Liu H. et al., 2025), ovarian cancer (Gao
et al., 2024), and lung adenocarcinoma (Li S. et al., 2024). However,
the role of ICDRs in other tumor types needs to be further verified
and studied in depth. In the context of prediction, prevention and
personalised medicine (PPPM), our findings can guide the
development of new therapies and prevention strategies for
cervical cancer (Wang et al., 2018). By improving disease
management and reducing economic burden, ICDRs prediction
models are expected to be an important tool for advancing
precision medicine for cervical cancer.
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5 Conclusion

In this study, we constructed an ICDRs model to predict the
prognosis of cervical cancer patients and revealed immune
differences between different risk groups, highlighting its
potential for clinical application. In addition, we predicted the
sensitivity of patients to immunotherapy and chemotherapy,
providing a valuable reference for personalised treatment.
Overall, the application of this model in clinical practice can
effectively improve the prognosis assessment of cervical cancer
patients, optimise treatment decisions, and provide more accurate
personalised treatment plans.
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