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This study focuses on key methodological challenges in genome-wide
association studies (GWAS) of biobank data with time-to-event outcomes,
analyzed using the Cox proportional hazards (CPH) model. We address four
primary issues: left-truncation of the data, computational inefficiency of standard
model-fitting algorithms, relatedness among individuals, and model
misspecification. To manage left-truncation, the common practice is to use
age as the timescale, with individuals entering the risk set at their age of
recruitment. We assess how this choice of timescale influences bias and
statistical power, under realistic GWAS conditions of varying effect sizes and
censoring rates. In addition, to alleviate the computational burden typical in
large-scale data, we propose and evaluate a two-step martingale residual (MR)
approach for high-dimensional CPH modeling. Our results show that the
timescale choice has minimal effect on accuracy for small hazard ratios,
though using time since birth as the timescale – ignoring recruitment age –

yields the highest power for association detection. We find that relatedness, when
ignored, does not substantially bias effect size estimates, while omitting key
covariates introduces significant bias. The two-step MR approach proves to be
computationally efficient, retaining power for detecting small effect sizes, making
it suitable for large-scale association studies. However, when precise effect size
estimates are critical, particularly for moderate or larger effect sizes, we
recommend recalculating these estimates using the conventional CPH model,
with careful attention to left-truncation and relatedness. These conclusions are
drawn from simulations and illustrated with data from the Estonian Biobank
cohort.
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1 Introduction

As time goes on, the data volume in large-scale population-based biobanks is increasing
exponentially. Although the recent decades have seen tremendous increases in sample size, a
similarly valuable data expansion results from prolonged follow-up time and the ability to link
the -omics databases with incident disease data from electronic health records. Therefore, a
large proportion of Genome-Wide Association Studies (GWAS) are mainly focused on
discovery of genetic variants associatedwith the risk of incident diseases. For that purpose, one
needs to apply regressionmodellingmethodology that is designated for censored time to event
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data, rather than using simple methods like linear or logistic
regression models (Hughey et al., 2019; Syed et al., 2016; Staley
et al., 2017). Here, the Cox Proportional Hazards (CPH) modelling
(Cox, 1972) has become a standard in biomedical fields due to its
robustness to distributional assumptions and interpretation of
parameter estimates in terms of Hazard Ratios (HRs).

Despite its robustness, CPH modelling is not assumption-free.
Therefore there is a need for a review of applicability of this method
in the context of large population-based biobanks. Our aim is to
identify sources of possible biases as well as realistic magnitudes of
them in typical GWAS settings.

The most discussed assumption in the context of CPH model is
the proportional hazards assumption, stating that the multiplicative
effect of a risk factor on the hazard of the outcome event is staying
the same throughout the scale of the follow-up time. Recently it has
been pointed out that this is rarely true in practice–on the contrary,
the hazard ratios are almost always time-varying. Therefore the HR
from a CPH model should be interpreted as a weighted average of
the true HRs over the follow-up period (Stensrud and Hernán, 2020;
Hernán, 2010). This could be easily acceptable in GWAS, unless
there is a reason to believe that some genetic variants have a
drastically different effect on the risk during different segments
of the follow-up time.

Some other, often ignored assumptions are related to the special
features of the biobank data. First, we note that the time of recruitment
is usually not a relevant baseline timepoint regarding the outcome
event (unlike in clinical trials, where follow-up often starts at
diagnosis). As the genomic data stays largely constant throughout
the lifetime of an individual, date of birth may seem as a logical time
origin for a GWAS. Using age at the outcome event as the outcome
variable can, however, lead to another problem called left-truncation
or immortal time bias (Thiébaut and Bénichou, 2004; Korn et al.,
1997), as the analysis is still conducted conditionally on the fact that
the individual was alive at the time of recruitment and free of diseases
(sometimes including the outcome event) that would have prevented
the recruitment. To properly account for left-truncation, one should
use methods that use age as timescale, but consider the individual as
being at risk only during the time from recruitment until the outcome
event (or end of follow-up) (Thiébaut and Bénichou, 2004).

A common feature of biobank cohorts is genetic relatedness of the
participants, violating the assumption of independent observations in
the sample. For continuous trait GWAS, the use ofmixed linearmodels
has been recommended in such cases (Thornton et al., 2012; Yu et al.,
2006; Kang et al., 2008; Zhang et al., 2010; Pankratz et al., 2005). Similar
approach could be used in survival analysis (mixed effects Cox
regression, frailty models) (Dey et al., 2022).

When the outcome event is an incident disease, mortality due to
other causes will always be a competing event–censoring the
individuals where the follow-up ended due to death, ignores the
assumption of independent censoring. In this case, one may
consider using a proper model for competing risks (Fine and
Gray model). However, when the focus is not on risk prediction,
but on parameter estimation, censoring the competing outcomes is
still acceptable (Austin et al., 2016; Therneau and Grambsch, 2000).

As the biobank cohorts are mostly not random samples from the
population, also other sources of selection bias are likely (Schoeler
et al., 2023), that could sometimes be addressed by proper use of
sampling weights.

In addition to the biases resulting from sample design, also some
computational approaches used in GWAS may become sources of
bias. Due to the significant increase in the size of genotyped samples
over the past few decades, both in terms of the number of genotyped
subjects and the number of genetic variants genotyped or imputed,
most of proposed tools for running CPH modeling in GWAS setting
have become computationally prohibitive and not easily scalable
(Rizvi et al., 2019; Lemieux Perreault et al., 2016; Syed et al., 2017;
Gogarten et al., 2012). In some studies, a two-stage approach involving
martingale residuals that dramatically reduces the computing time,
has been used (Joshi et al., 2016; Timmers et al., 2019). Although it has
shown to perform well in some simulations, it is still unclear, whether
it creates biases in parameter estimates in some realistic cases.

In classical linear regression with independent covariates,
consistent and unbiased estimates for the remaining coefficients
can be obtained even if some covariates are omitted. However, this
property does not extend to non-linear models, including logistic
regression and CPH model neither in randomized or observational
setting (Gail et al., 1984; Lagakos and Schoenfeld, 1984; Struthers
and Kalbfleisch, 1986; Bretagnolle and Huber-Carol, 1988; Morgan
et al., 1986; Lin et al., 2013).

In a CPH model, omitting an important risk factor for the
outcome leads to violation of the proportionality assumption with
respect to other variables in the model, leading to omitted variable
bias, which can significantly distort estimates and conclusions.

In GWAS context one still needs to keep in mind the main task
of identifying the potential disease-associated variants in the set of a
large number (often more than 20 millions) of genotyped variants.
As the focus is on hypothesis testing rather than precise effect
estimation, small biases are not a cause of concern, if the nominal
Type 1 error is properly controlled after. Therefore, if there is a
trade-off between bias and power, a biased estimator may be
preferable if it leads to greater power.

The main aim of the present study is to assess the magnitude of
bias and power in realistic GWAS settings, where the “naive” CPH
model is used, while ignoring left-truncation and/or relatedness of
individuals, possibly using the martingale residual approach to
speed up the computation. We explore these questions
analytically and also by a simulation study, clarifying the need
for various bias-reduction measures in GWAS settings.

Finally we also address the option to combine participant genotypes
and parental outcome data, when the biobank cohort is relatively recent
and the number of events still low (especially for mortality outcomes).
Clearly, the estimated HRs in this case will not be unbiased. We derive
the expression for the bias analytically and demonstrate the performace
of this approach in a small-scale simulation. All simulations and
analyses are performed using R software (R Core Team, 2023).

2 Sources of bias

2.1 Timescale choice

2.1.1 The effect of timescale on the likelihood for
the cox proportional hazards model

Suppose T is the time to event variable of interest. Here and
hereafter we are considering the Cox proportional hazards (CPH)
model defined as
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h(t|X) � h0(t)eXβ,
where h0(t) is the baseline hazard function at time T � t, X is the
matrix of covariates and β is the vector of the parameters.

To estimate the parameter ψ � eβ using the CPH model, one
needs to find the value of β that maximizes the partial
likelihood function:

Lc(β) � ∏
r

j�1
Lj(β) � ∏

r

j�1

exp(x(j)β)
∑l∈R(t(j)) exp(xlβ),

where x(j) is the value of X for an individual who died at the jth
observed death time t(j), xl are the values of X for the individuals
in the risk set at t(j) and r is the number of events. Note that the
risk set R(t(j)) consists of individuals observed to survive up
to t(j).

The choice of timescale determines the definition of the time
variable T, with important implications for how survival time and
risk sets are interpreted. In what follows, we use death as the event of
interest for concreteness, but the event could be any relevant
outcome (e.g., diagnosis, recovery, or relapse).

1. When the timescale is time since birth, T is defined as age at
death, with t(1) being the survival time of the youngest
individual at death, etc. The risk set R(t(j)) contains
individuals who died at older age than the individual dying
at age t(j). The size of the risk set decreases with increasing t as
each deceased or censored individual is removed from the risk
set and no additional individuals are added. This time scale
ignores the recruitment and follow-up times–the risk set at t(j)
may contain individuals who are recruited to the study at a
later age than t(j).

2. When T is time since recruitment, then the death times t(j) are
ordered according to the time spent under follow-up,
regardless of the actual age of the participant. The risk set
R(t(j)) contains individuals who, since recruitment have been
followed for a longer period than tj. Thus, the size of risk set
here is also a decreasing function of t.

3. With age as timescale, T is the age at death as in case 1.
However, the risk set only contains the individuals who are
under follow-up at the age t(j). Therefore the size of the risk set
is not necessarily decreasing, as an individual who is recruited
at age t and dies or is censored at age tp is only included in the
risk sets R(t(j)) where t≤ t(j) < tp.

For example, consider individual A who was born in 1940,
recruited into the study in 2010 at age 70, and died in 2015 at age
75. Under time since birth as the timescale, A’s event time is
75 years. Under time since recruitment, the event time is 5 years.
When age is used as the timescale, A contributes to the risk sets
only between ages 70 and 75, the period during which they are
under observation.

In the analysis of a birth cohort, all three apporaches are
equivalent as in this case time since recruitment is equivalent to
time since birth. In studies where recruitment time is a meaningful
time origin (such as time at a diagnosis or start of treatment), it is
natural to use time since recruitment as timescale. In biobank
cohorts it would be more natural to use time since birth
as timescale.

2.1.2 Potential bias with time since birth
as timescale

Obviously, for unbiased estimation the risk setR(t(j)) should be
a random sample from the corresponding risk set in the population.
However, when time of birth is used as the time origin (case 1) the
risk set at t is partly selected conditionally on events (recruitments)
that occur after t and thus also conditionally on the fact that the
individuals survive (and have no outcome events) before their
potential recruitment time (say, time t + δ). As a result, low-risk
individuals will be over-represented in that risk set (as they have
more chance to survive up to time t + δ), leading to overestimation
of the hazard ratio.

Still, while using time of birth as time origin and ignoring left
truncation, — and assuming that age at recruitment is independent
of the covariates X — no bias is anticipated under the null
hypothesis (ψ � 1, equivalently β � 0). Therefore the question
remains, whether the approach of using age as timescale and
time of birth as time origin could still be valid or even preferred
for hypothesis testing due to potentially better power.

2.1.3 Potential bias with time since recruitment
as timescale

A standard “textbook” approach would be to use time since
recruitment (case 2) as timescale, while the effect of age is accounted
for by proper adjustment. Korn et al. (1997) have determined two
sufficient conditions–when either one is satisfied, the age-adjusted
CPH models with time since recruitment as timescale and CPH
models with age as timescale give the same results:

1. The baseline hazard function h0(t) can be presented as an
exponential function: h0(t) � c · exp(γt) for some c> 0 and γ .

2. The covariate of interest and age at recruitment are statistically
independent.

If neither of the two conditions is fulfilled, Korn et al. suggest
using CPH models with age as timescale, as they believe the
outcomes to change more as a function of age rather than a
function of time since recruitment.

The first condition holds when hazard of the outcome is
expected to increase rapidly as a function of age, following a
Gompertz distribution (often appropriate for human
mortality data).

Korn et al. did not provide a formal proof for the second
condition, whereas Thiébaut and Bénichou (2004) found that
mismodeling of age as an adjustment factor in a follow-up-
dependent CPH model rather than as a timescale could also
result in bias, on the contrary to the reasoning by Korn et al.
Other authors have shown that bias can be detected even when a
variable independent from the variable of interest has been omitted
from the CPH model (Gail et al., 1984; Lagakos and Schoenfeld,
1984; Struthers and Kalbfleisch, 1986; Bretagnolle and Huber-Carol,
1988). One can argue that while modelling all-cause mortality, the
second condition basically states that the covariate of interest cannot
affect mortality as the distribution of this covariate would otherwise
change with age, making them dependent. The distribution stays
invariable, when the covariate does not affect mortality.

Thiebaut et al. also suggest using age as timescale rather than
time since recruitment, as the underlying mechanisms of these
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models are different. They point out that usually the time when
subject comes under observation does not coincide with the time
when the subject becomes at risk for the outcome of interest. This is
especially true in the biobank context.

Again, our question is related to the practical implementation of
these findings in the context of GWAS–what is the effect of timescale
choice in a range of realistic settings on bias in parameter estimates
as well as on power to detect an association. We will try to shed some
light on these questions using a simulation study.

2.2 Dependent observations

Independence of observations is a central assumption in most
modeling approaches, including the CPH model. However, in
population-based biobanks it is common to encounter genetically
related individuals, which violates this assumption and can
introduce biases. A general approach to address population
structure in GWAS is to add principal components (PCs) as
covariates (Novembre and Stephens, 2008; Price et al., 2006). While

PCs primarily address population stratification, they also might help in
identifying and accounting for cryptic relatedness within the sample.
However, specializedmethods are preferable for explicitly adjusting for
related individuals alongside population stratification. These methods
include using a kinship matrix (Thornton et al., 2012), linear mixed
models (Yu et al., 2006; Kang et al., 2008; Zhang et al., 2010; Pankratz
et al., 2005), or frailty models (Dey et al., 2022), which are more
effective than PCs alone, but are computationally prohibiting.

2.3 Omitting covariates

The CPH model relies on the fundamental assumption that the
effect of each covariate is proportional over time and relative to other
covariates in themodel. Although covariate effects can be approximately
proportional in reality, apparent non-proportionality often results from
model misspecification (Gail et al., 1984). Even in randomized trials
where all known and unknown confounders are balanced between study
arms, omitting a covariate can lead to bias in treatment effect estimates.
This bias is particularly problematic in observational studies, where

FIGURE 1
Performance metrics of CPH with different timescales: age, account for left-truncation (TA), time since birth (TB) and time since recruitment with
age adjustment (TR+A) under different censoring rates (CR) and minor allele frequencies (MAF), encompassing the Bias (a) and Coverage (b).
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neither the observed covariates nor unmeasured confounders are
balanced across groups with different exposure levels (or genotypes).
Consequently, the risk of omitted variable bias is significant, potentially
leading to asymptotic biases. This results in systematically incorrect
estimates, which can mislead conclusions about the relationships
between variables. The severity of bias depends on the distribution of
the omitted covariate, strength of its effect and censoring. Although one
cannot directly adjust for unmeasured covariates, their potential impact
can be assessed by sensitivity analyses (Lin et al., 2013), but that is hardly
ever done in GWAS setting.

2.4 Other issues

In addition to the problems mentioned above, there are various
other potential sources of bias that may affect the final conclusions,
depending on the research question–we list them here for
completeness, but ignore them in subsequent analysis.

When the outcome of interest is not death, but an incident
condition, one should be aware of competing risks, such as death due
to another cause. While treating competing events as censoring,
however, the hazard ratios are still unbiased in general (Therneau
and Grambsch, 2000), but care should be taken in absolute risk
estimation tasks.

The assumption of proportionality of hazards has been
discussed above in the context of omitted covariates, but the risk
factors (including genetic variables) themselves may also have a
time- or age-varying effect on hazard. However, this is again an issue

that becomes important in absolute risk prediction, while for variant
discovery one may accept that an average effect over time is
estimated. Stensrud and Hernán (2020).

Recently it has been pointed out by several authors, that
population-based biobanks are mostly non-random samples and
therefore subject to selection bias (Schoeler et al., 2023; Lee and Han,
2022; Pirastu et al., 2021; van Alten et al., 2024).We agree that it is an
important issue that should be taken into consideration in biobank-
based studies, regardless of the type of variable (time to event or
other) or method of analysis.

3 Ways to increase power and
computational efficiency

3.1 Parent-offspring data

Joshi et al. (2016) have combined parent-offspring data to increase
power of discovery. Biobank cohorts with short average follow-up
time are underpowered for the analysis of participant lifespan data,
due to the low number of outcome events (deaths). However, if family
history at recruitment is collected and parental ages at death are
known, they can be combined with subjects’ genotype information.

If the age span of recruited subjects is sufficiently wide, a large
proportion of them is likely to have parents who are either relatively
old or already deceased. Therefore the use of parental data leads to
lower censoring rates and higher power for genotype effect
detection. As each allele in a SNP is inherited by offspring with

FIGURE 2
Power analysis for censoring rate (CR) 90% and minor allele frequency (MAF) 0.05 across three different timescale choices (TA, TB, TR + A).
Additional power figures for varying censoring rates and MAFs are available in the Supplementary Figure S1.
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the probability of 50%, one can assume that using parental lifespan
along with offspring genotype will result in estimates with
magnitude of about half of the true effect size.

However, we have shown that the proportionality assumption in
this case does not hold.We have derived equations for bias and show
that the bias will increase, if the minor allele frequency and/or the
effect size β increases. The derivation is explained in detail in the
Supplementary Section 1.

3.2 Two-stage modeling via
martingale residuals

To overcome computational challenges and leverage GWAS
tools tailored for continuous phenotypes (Mbatchou et al., 2021;

Zhou et al., 2018; Loh et al., 2015; Jiang et al., 2019), we will
examine performance of a two-step modelling approach
proposed by Joshi et al. (2016) for a biobank setting. The idea
of the method is fairly simple–instead of running a CPH model
for every SNP, a single CPH model encompassing all the non-
genetic and technical covariates is fitted in the first step. For that
model, martingale residuals (MR) are obtained (Supplementary
Section 2.3.2). As pointed out by Therneau et al. (1990), the
association between MR and a covariate omitted from the linear
predictor of the initial model yields estimates that align with the
coefficients in the CPH model. Thus a test of a linear association
between the MR and a genetic variant could potentially be used to
detect an association between the variant and the outcome
phenotype, reducing the association testing to a simple linear
regression task.

FIGURE 3
Bias (a) and coverage (b) of 95% confidence intervals (CIs) formodels using age since birth as the timescale (TB), evaluated across different censoring
rates (CR) and minor allele frequencies (MAF). Three comparison scenarios are shown: (1) MR estimate vs true β, (2) MR estimate vs Cox proportional
hazards (CPH) model estimate, and (3) CPH model estimate vs true β. In each case, the bias is computed as the difference between the two values being
compared. Coverage is assessed by calculating a 95% confidence interval around the first estimate (using its standard error), and checking whether
the second value (either the true β or the comparator estimate) falls within that interval. Results for other timescales are presented in Supplementary
Figures S3, S4.
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4 Results of the simulation study

Building on the sources of bias described in Section 2 and the
strategies to improve power and computational efficiency discussed
in Section 3, we now simulate different scenarios similar to real-life
biobank data in order to determine if and how the above-mentioned
methodological choices in the CPH model affect the results.

We will study the bias and power under various minor allele
frequencies (MAF), effect sizes and censoring rates. Timescales are
the following:

• timescale TB–time since birth;
• timescale TR + A–time since recruitment, age-adjusted;
• timescale TA–age as timescale (accounting for left-
truncation).

To simulate time-to-event data, we generated one genotype, one
additional covariate and survival times from a Weibull distribution.
Survival time distribution was calibrated to match overall survival in
the Estonian Biobank. We also assigned random birth and

recruitment years to each individual. Individuals who would have
died before recruitment were excluded to mimic left truncation.
Right-censoring was imposed at different study cut-offs to vary
censoring rates. Simulations were repeated 500 times on samples
initially sized at 100,000, with final sizes varying due to exclusions.
Full methodological details are provided in the
Supplementary Section 2.1.

Our main aim is to compare effect size and significance of a SNP
using the conventional CPHmodel and two-step MR approach. The
impact on the working range of the approach is examined. The study
aims to determine the effects of censoring and MAF on the
performance of the two-step MR approach.

We will compare the models performances by:

• bias - difference between real effect size and the estimated
effect size;

• power - probability of detecting a significant effect, when it
is present;

• coverage - probability that the true effect size lies in the
confidence interval of the estimated effect size.

FIGURE 4
Bias and power of various models across three timescales (TB, TR + A, TA), different censoring rates (CR), and MAFs fitted on a cohort with related
individuals. The models include full covariate models with all subjects (CPHF ) and only independent subjects (CPHF,NR), models omitting the frailty term
for all subjects (CPH) and only independent subjects (CPHNR), and a CPH frailty model for all subjects (Frailty).
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4.1 Effect of timescale choice on bias and
power in CPH model

CPH with TA (Figure 1) is the only one that results in unbiased
estimates for β1. In addition, this model exhibits the best coverage of
the 95% confidence interval for true effect size.

CPH with TB results in the greatest bias, whereas the bias for TR
+ A case is very small. The bias for both TB and TR + A increases as
effect sizes and censoring rates grow. Coverage of the true effect size
for TB drops to zero for common variants (MAF � 0.4) already at
β1 � 0.2. The coverage for TR + A is not as good as for TA, although
the differences are minor. Coverage can be seen to be better
consistently when MAF is low.

For power we only present the plot, whereMAF = 0.05 and CR =
90 (Figure 2) as the differences in the results are greatest here, other
plots can be found in the Supplementary Figure S1.

CPH with TB results in the highest power to detect a significant
association, whereas the power for TA is lowest no matter what the
effect size. The differences in power for TB and TR + A can be up to
25%. CPHwith TR +A and TA have very similar power regardless of
the effect size.

As a conclusion we see that although the TB approach leads to
potentially biased estimates of the true effect, it may be the preferred
approach if the aim is to maximize power in a discovery study.

4.2 Utility of martingale residuals based
approach in approximating CPH
model estimates

As shown before, CPH with TB could be preferable in GWAS
settings due to highest power to detect relatively small effect sizes.

FIGURE 5
Bias, coverage of 95%CI and power, resulting from fitted models that use age since birth as a timescale, across different censoring rates (CR), and
MAFs in a cohort including related individuals. Four different scenarios are compared: CPH model and MR-based model fitted on the complete dataset
(CPH vs. β, MR vs. β), and respective models fitted on the subset with independent subjects (CPHNR vs. β, MRNR vs. β).
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Therefore, the simulation results on the performance of the MR
approach are here presented only for TB (Figure 3), whereas the
results for CPH with TR + A and TA are presented in the
Supplementary Figures S3, S4.

A comparison of MR estimates with those from the standard
CPH model-fitting algorithm and the actual effect sizes reveals that
the two-step approach approximates CPH estimates quite well
within typical GWAS working range. Compared to CPH
estimates, the effect size estimates based on MR approach
demonstrate less bias and higher relative accuracy in capturing
the true parameter estimates. However,the relationship between
bias and the true effect size exhibits a non-linear pattern, and the
same nonlinearity holds for the coverage of the 95% CI. The
observed nonlinearity requires further theoretical investigation.
Similarly to the effect sizes, p-values obtained from the MR
approach were more conservative than the ones obtained from
the CPH model within typical GWAS setting. We observed in
our simulation that when censoring rates were low, MR p-values
approximated CPH p-values better, compared to settings with high
censoring rates. Nevertheless, the power is rather similar to the CPH
across different censoring rates and MAF for effect sizes within
GWAS working range (see Supplementary Figure S2). Type I error is
well controlled across all approaches, with no inflation of false

positives observed under any scenario. Detailed estimates with
95% confidence intervals are provided in the
Supplementary Table S3.

4.3 Relatedness and model misspecifation

To investigate issues regarding relatedness and model
misspecification, we simulate datasets of siblings with three
covariates to mimic realistic genotype, phenotype, and a shared
family frailty, which is often unmeasured. The simulation details are
provided in the Supplementary Section 2.2. We run analyses using
three different timescales (TB, TR + A, TA), both ignoring
relatedness (i.e., including relatives) and using only unrelated
individuals. For each scenario, we compare models including all
covariates to those omitting the frailty term. Additionally, we
evaluate a CPH model with a frailty term for data including
relatives, but ignoring frailty term as it would be in a realistic
setting (Figure 4). Results indicate that ignoring relatedness does
not significantly increase bias in effect size compared to the choice of
timescale, regardless of censoring rate or MAF. However, omitting a
covariate creates substantial bias and, in our setting, even changes
the direction of the bias. The frailty CPH model shows the smallest

FIGURE 6
Comparison of hazard ratios for survival-associated SNPs and lifespanGRS using CPHwith different timescales and related vs. unrelated participants
in the Estonian Biobank data. The figure shows HR estimates with 95% confidence intervals on the x-axis, and the timescale choice or eLife article
reference on the y-axis. Gene names, rather than SNP names, are indicated by color and relatedness by shape. TB, TR +A and TA correspond toCPH using
time since birth as timescale, time since recruitment + age adjustment as timescale and age as timescalewith all EstBB participants. The estimates for
Timmers et al. can be found here: https://doi.org/10.7554/eLife.39856.015.
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bias when using an age-adjusted timescale, with sensitivity to
censoring rate and MAF—the smaller these two, the smaller the
bias. Power analyses reveals that highest power for large censoring
and small MAF occur with a birth-based timescale. Power is
sensitive to censoring rate, MAF, ignoring relatedness, and
omitting covariates, with the greatest decrease observed when
both relatedness were ignored and covariates omitted. Notably,
the coverage of the 95% CI decreases sharply when a covariate is
omitted and relatives are included in the analysis, particularly when
left-truncation is accounted for. This effect is more pronounced if
the censoring rate decreases and MAF increases, due to the
underestimation of variance (see Supplementary Figure S5).

4.3.1 Martingale residuals in relatedness andmodel
misspecification

We investigate how the two-step martingale residual approach
would work in a realistic setting by using a simulation in which we
intentionally omit a covariate representing frailty. We are interested
in whether the two-step martingale residual approach could
approximate CPH estimates, specifically using age since birth as
the timescale and under high censoring conditions. This
investigation is conducted for both related and unrelated subjects.
For this setup, the martingale residual approach leads to the smallest
bias and highest coverage, although it has slightly less power than the
standard CPH models (Figure 5). Therefore, for explanatory GWAS
using age since birth as the timescale, the martingale residual-based
approach appears to be a robust method for estimating hazard
ratios, effectively handling related subjects and being
computationally efficient.

5 Application to the Estonian
Biobank data

The Estonian Biobank maintains a volunteer-based cohort of the
Estonian adult population (aged ≥ 18 years) (Leitsalu et al., 2015;
Milani et al., 2025). The sample size used in this analysis is 51 463,
which represents approximately 5% of the Estonian adult population
(participants recruited during the first period of recruitment in
2002–2011). In this sample, 65.6% of participants were female and
the median age at recruitment was 43 (min � 18, max � 103) years.
Median follow-up time with IQR was 13.1 (11.7; 13.9) years. The
lifespan data of the participants is obtained via record linkages with
the Estonian Causes of Death Register (latest linkage for the data used
here was in the beginning of 2022). The mortality rate in the analysed
sample was 13.2%.

Testing the top 11 SNPs and the polygenic risk score (GRS) for
lifespan based on Timmers et al. (Timmers et al., 2019), we fit models
with three choices for timescale: time since birth (TB), time since
recruitment with age-adjustment (TR + A) and age as timescale (TA,
accounting for left-truncation). For each timescale choice, we fit the
model for the entire sample (ignoring the relatedness) and also for the
sample where relatives with identity by descent greater than 20% were
excluded (the remaining sample size: n � 38 223). In addition to age,
all the models are also adjusted for sex. Thus as a result, 6 different
models are fitted in total. Due to differences in sample size, the
estimates from Timmers et al. have narrower confidence intervals
than those from the Estonian Biobank.

Out of the 3 top SNPs presented in Figure 6, tested, only one
(APOE) shows significant result in the Estonian Biobank. The
results for all 11 SNPs can be found in Supplementary Table S4.
As expected the GRS shows the greatest effect on mortality, whereas
its effect size is almost identical regardless of whether the relatives
are included or excluded. Largest effect size estimate is obtained
when TB was used as the timescale–as pointed out before, the bias
due to left-truncation is a likely cause for this difference. The other
two timescale choices do not lead to visible differences in the effect
sizes. The estimates of the effects of the LPA, APOE and CHRNA3/
5 variants do not differ much, but excluding relatives has generally
reduced the estimated effect sizes for APOE and CHRNA3/5,
whereas the timescale choice does not really have any clear impact.

6 Discussion

For accurate estimation of population parameters, unbiasedness
is the essential requirement for any statistical estimators. However,
the task of estimation should be distinguished from the task of
hypothesis testing. The present work has highlighted that in the
context of GWAS for time to event outcomes, the estimators leading
to the smallest bias are not necessarily the ones corresponding to
most powerful tests for the hypothesis of no genotype-phenotype
association.

Time-to-event phenotypes are challenging for GWAS, as the
commonly used analysis tools, such as CPH modeling, require
considerably more computational resources for implementation
than algorithms for linear and logistic regression analysis. In
addition, as the power depends not on the total sample size, but
on the number of (disease or mortality) events observed, even a large
biobank cohort may not be sufficiently powered for the discovery of
biologically meaningful outcome-associated variants. Thus
approaches that maximize power are especially welcome for
time-to-event GWAS analyses, even if they come at the cost of
some bias in parameter estimates.

The first finding of the present study is, that although careful
adjustment for left-truncation is needed to achieve unbiasedness, it
would considerably reduce power in a discovery GWAS compared
to the approach that ignores it. For instance, a true hazard ratio of
1.05 (typical effect size of a common variant in GWAS) is likely to be
overestimated by 2%–3%, whereas the power to detect an association
may be increased by more than 1.5 times, when time since birth is
used as timescale and left-truncation is ignored.

As under the null hypothesis of zero effect size the bias could not
occur, ignoring left-truncation would not increase type I error
probability. There is, however, one exception–the case where a
genetic variant has been under selection. By “enriching” the risk
sets with individuals recruited at later time points, one may in these
cases create a situation where the allele frequencies in subjects with
outcome events differ systematically from the allele frequencies in
the risk sets. We recommend that this issue should be examined for
variants identified as significant in a GWAS.

To simplify the computational algorithm of model-fitting, the use
of a two-step procedure involving martingale residuals has been
explored in the GWAS context. Martingale residuals were initially
proposed as a diagnostic tool for a CPH model (mainly to identify
appropriate covariate transformations), and to our knowledge, their
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use in the actual effect estimation has not been explored in detail. We
have shown that the two-step procedure provides valid estimates with
no (or negligible) bias for the estimation of the relatively small effect
sizes that are typical for GWAS findings. In addition, we have also
shown that using the MR approach the power of the association
discovery is not decreased compared to the corresponding CPHmodel.

Based on our simulations, ignoring relatedness does not
significantly increase bias in effect size, whereas omitting key
covariates introduces substantial bias. Additionally, the two-step
martingale residual approach proved to be robust for estimating
hazard ratios, efficiently handling related subjects with high coverage
and slightly reduced power compared to standard CPH models.

In summary, our results support that for a time-to-event
phenotype, a procedure where: 1) age is used as a time-scale and
left-truncation is ignored and 2) a two-step procedure that obtains
martingale residuals at the first step and runs a linear regression-
based GWAS as the second step is implemented, leads to better
computational efficiency and better power for variant discovery than
the procedure that fits a CPH model separately for each variant,
whereas adjusting for other covariates.

Once the set of potentially associated variants is identified, we
still recommend to validate the findings in both the discovery
cohort(s) and also in a large independent cohort, using the CPH
modeling approach that leads to unbiased estimates (thus, properly
accounting for left-truncation). The latter is especially true, when the
effects of polygenic risk scores (GRS) are estimated, as biases in these
estimates are not acceptable when personalized risk prediction
algorithms are derived. Also, to compute a GRS based on
estimated regression coefficients from GWAS, one needs
unbiased estimates for those coefficients.
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