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Objective: Fibromyalgia (FM) is a complex autoimmune disorder characterized by
widespread pain and fatigue, with significant diagnostic challenges due to the
absence of specific biomarkers. This study aims to identify and validate potential
genetic markers for FM to facilitate earlier diagnosis and intervention.

Methods:We analyzed gene expression data from the Gene Expression Omnibus
(GEO) to identify differentially expressed genes (DEGs) associated with FM.
Comprehensive enrichment analyses, including Gene Ontology (GO), the
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways,
were performed to elucidate the biological functions and disease associations of
the candidate genes. We used the eXtreme Gradient Boosting (XGBoost)
algorithm to develop a diagnostic model, which was validated using
independent datasets.

Results: Three genes, namely, dual-specificity tyrosine phosphorylation-
regulated kinase 3 (DYRK3), regulator of G protein signaling 17 (RGS17), and
Rho guanine nucleotide exchange factor 37 (ARHGEF37), were identified as key
biomarkers for FM. These genes are implicated in critical processes such as ion
homeostasis, cell signaling, and neurobiological functions, which are perturbed in
FM. The diagnostic model demonstrated robust performance, with an area under
the curve (AUC) of 0.8338 in the training set and 0.8178 in the validation set,
indicating its potential utility in clinical settings.

Conclusion: The study successfully identifies three diagnostic biomarkers for FM,
supported by both bioinformatics analysis and machine learning models. These
findings could significantly improve diagnostic accuracy for FM, leading to better
patient management and treatment outcomes.
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1 Introduction

Fibromyalgia (FM) is a pain syndrome characterized by
widespread musculoskeletal pain (Tanwar et al., 2019), affecting
millions of people worldwide and significantly impacting the quality
of life. Research has found a prevalence of 2%–4% in women, which
is higher than that in men (Staud, 2011), with other common
symptoms, including depression, anxiety, stiffness, fatigue, sleep
disturbances, and cognitive impairments (Stensson et al., 2020).
Despite various studies in animals and humans revealing
abnormalities in FM metabolism, biochemistry, genetics, and
immune regulation, its exact causes remain unclear (Jurado-
Priego et al., 2024a). The current hypothesis suggests that FM
originates from interactions between the autonomic central
nervous system (CNS), the hypothalamic–pituitary–adrenal axis,
and the immune system (Clauw et al., 2011; Arnold, 2010; DeLeo
and Yezierski, 2001; Buskila, 2001). FM is identified as a central
sensitization syndrome. Central sensitization refers to a mechanism
that enhances neuronal signals in the CNS, leading to heightened
pain perception. In FM patients, the hallmark of central sensitization
is the increased release of neurotransmitters. Among these,
substance P and glutamate activate N-methyl-D-aspartic acid
(NMDA) receptors that convey pain signals. Substance P,
released from specific sensory nerve endings, interacts with
neurokinin-1 (NK-1) receptors, and this interaction triggers the
release via NMDA receptors in the spinal dorsal horn, reducing the
synaptic threshold of spinal neurons (Jurado-Priego et al., 2024b).
Diagnosing FM also presents several challenges. Although the
diagnostic criteria released by the American College of
Rheumatology (ACR) in 2021 are widely used in clinical practice,
the lack of specific diagnostic biomarkers means that routine clinical
laboratory diagnostics do not show objective abnormalities.
Therefore, diagnosis usually occurs after other diseases are
excluded based on complex clinical presentations. Due to
diagnostic delays, the absence of timely treatment leads to disease
progression and poor prognosis in most FM patients, causing
significant distress and pressure for individuals and their families.

In the last 10 years, there have been unprecedented advances in
technologies for identifying the roles of genetics and epigenetics in the
development of FM, enhancing our understanding of its pathogenesis.
Research indicates a significant genetic component to FM, with family
studies showing that first-degree relatives face an eight times higher
risk of developing FM (Dadabhoy et al., 2008). Nevertheless, it has
been noted that the emergence and progression of FM may be due to
the interplay of genetic, epigenetic, and environmental influences,
without any single gene directly causing the condition. Recently,
bioinformatics analyses and deoxyribonucleic acid (DNA)
microarray gene expression profiles have become extensively
applied in the genomic research of various diseases, aiding in the
identification of differentially expressed genes (DEGs) and functional
pathways integral to disease progression. This research leverages
public data from the Gene Expression Omnibus (GEO) database
to filter and examine specific gene expression microarray datasets to
pinpoint DEGs relevant to FM. By employing Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) for
functional analysis, the study explores their impact on biological
functions and signal pathways. Additionally, using immune
infiltration analysis helps provide a more detailed view of the

immunological state of FM patients, aiming to further clarify the
pathological mechanisms of FM and offering insights into potential
biomarkers and therapeutic targets for the disease.

2 Materials and methods

2.1 Data download and preprocessing

The GEO database (http://www.ncbi.nlm.nih.gov/geo) is an open-
source platform created by the National Center for Biotechnology
Information (NCBI) for retrieving gene expression data. This study
used three public gene expression datasets, namely, GSE221921,
GSE67311, and GSE229750, sourced from the GEO database.
Specifically, GSE221921 comprised 189 gene expression profiles
from 96 FM patients and 93 healthy controls in PBMC;
GSE67311 included 140 profiles from 70 FM patients and
70 healthy controls in peripheral blood samples; and
GSE229750 contained 10 profiles from five FM patients and five
healthy controls in peripheral venous blood neutrophils. Differential
expression analysis was independently performed for each dataset. The
criteria for differential expression in GSE221921 and GSE229750 were
set at a P-value <0.05 and an absolute FC ≥ 1.5; for GSE67311, the
criteria were a P-value <0.05 and an absolute FC ≥ 1. The analysis
identified a set of intersecting differentially expressed genes across the
datasets. The specific process is shown in Figure 1.

2.2 Diagnostic potential analysis

Differential expression analysis was performed on GSE221921,
GSE67311, and GSE229750 to obtain DEGs. The intersecting DEGs
among the three datasets were identified and selected as the feature
genes. Using the dataset GSE221921 as the training set and
GSE67311 as the validation set, we built the model and tuned
parameters on the training set, while the validation set was used
to evaluate the model’s performance. The eXtreme Gradient
Boosting (XGBoost) algorithm was used to construct a diagnostic
model for FM. Initially, feature selection was performed on the
training set, inputting the filtered differentially expressed genes into
the model, and model parameters were optimized through cross-
validation. The area under the receiver operating characteristic
(ROC) curve (AUC) of the model was calculated using the
validation set to assess the diagnostic capability of the model. In
addition, the variable feature importance image was plotted.

2.3 Analysis of the correlation of key genes

To further validate the functional relevance of key genes, we
conducted a correlation analysis on three datasets. The Spearman
correlation coefficient was used to analyze the expression correlation
and significance between the three intersecting genes and other
genes in each dataset. The screening criteria were correlation
coefficient |R| >0.6 and p-value <0.05. Gene sets related to dual-
specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3),
regulator of G protein signaling 17 (RGS17), and Rho guanine
nucleotide exchange factor 37 (ARHGEF37) were extracted from
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FIGURE 1
Data analysis process. This flowchart illustrates the analysis process of data obtained from the Gene Expression Omnibus database (GSE221921,
GSE67311, and GSE229750), focusing on the three genes, namely, DYRK3, RGS17, and ARHGEF37. Initially, relevant datasets are extracted from the GEO
database based on differentially expressed gene (DEG) analysis, and the intersection of their respective DEGs is considered to obtain the three target
genes. Further analysis is conducted on gene sets related to the three genes by calculating the correlation and significance between these genes and
others (R > 0.6 and P < 0.05), leading to the generation of a unified gene set comprising the three genes. A diagnostic model is built using the
GSE221921 dataset with XGBoost, and this model is validated with the GSE67311 dataset to assess the AUC of the three genes. Additionally, immune cell
infiltration analysis is performed using the CIBERSORT tool on each dataset to explore characteristics of the immune microenvironment. Finally,
functional enrichment analyses are conducted for the DYRK3-, RGS17-, and ARHGEF37-related gene sets, using databases.
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each dataset and combined, resulting in the final key gene sets
associated with DYRK3, RGS17, and ARHGEF37, respectively.

2.4 Analysis of immune infiltration

In order to delve into the differences in immune cell composition
between FMpatients and healthy control groups, we performedmultiple
immune infiltration analyses on immune cell expression data derived
from three datasets, includingGSE221291. The cell-type identification by
estimating relative subsets of RNA transcript (CIBERSORT) algorithm
was used to estimate the relative abundance of different immune cell
subgroups based on ribonucleic acid (RNA) sequencing data.

2.5 Analysis of functional enrichment

To investigate the potential functions of key genes in FM, we
conducted various functional enrichment analyses on the extracted
key gene sets. GO enrichment analysis was performed using the
ClusterProfiler package to explore the enrichment of key genes in
biological processes (BPs), cellular components (CCs), and
molecular functions (MFs). KEGG pathway enrichment analysis
was conducted using the ClusterProfiler package to explore the
signaling pathways associated with key genes. Enrichment analyses
using WikiPathways, Reactome, Disease Ontology, and the Disease
Gene Network (DisGeNET) were carried out to delve deeper into the
potential functions and related diseases of key genes in FM.

2.6 Statistical analysis

This study used R (version 4.3.0) for statistical analysis. Data
processing and differential analysis were performed using stringr
(1.5.1) (Wickham, 2023), data.table (1.16.0) (Barrett et al., 2024),
GEOquery (2.72.0) (Davis and Meltzer, 2007), and edgeR (4.2.1)
(Chen Y. et al., 2024). Principal component analysis (PCA) and
plotting were conducted using ggsci (3.2.0) (Xiao, 2024),
FactoMineR (2.11) (Le et al., 2008), factoextra (1.0.7)
(Kassambara and Mundt, 2020), and corrplot (0.94) (Taiyun
et al., 2024). ROC analysis was performed using shapviz (0.9.5)
(Mayer, 2024), XGBoost (Chen T. et al., 2024), ROCit (Khan and
Brandenburger, 2024), tibble (Müller and Wickham, 2023), caret
(Kuhn, 2008), and pROC (Robin et al., 2011). Immune infiltration
analysis was conducted using IOBR (0.99.9) (Zeng et al., 2021),
reshape (0.8.9) (Wickham, 2007), ggplot2 (3.5.1) (Wickham, 2016),
and tidyverse (2.0.0) (Wickham et al., 2019). Functional enrichment
analysis was performed using clusterProfiler (4.12.6) (Xu et al., 2024;
Wu et al., 2021; Yu et al., 2012), org.Hs.eg.db (3.19.1) (Carlson,
2024), and GSEABase (1.66.0) (Morgan et al., 2024).

3 Results

3.1 Differential genes for FM

PCA revealed a distinct separation in the principal component
space between the control and FM groups (Figures 2A–C). Volcano

plots displayed significant expression changes in hundreds of genes,
with 863 genes upregulated and 867 downregulated in the
GSE67311 dataset; 3,100 upregulated and 114 downregulated in
the GSE221921 dataset; and 529 upregulated and 396 downregulated
in the GSE229750 dataset (Figures 2D–F). The intersection of
differentially expressed genes from the three datasets yielded
three intersecting genes, namely, DYRK3, RGS17, and
ARHGEF37. The genes RGS17, ARHGEF37, and DYRK3
exhibited significant trends of upregulation or downregulation.
Further box plot analyses in various GEO datasets confirmed
significant differences in these genes between the two groups,
underscoring their potential biological roles in FM (P<0.05)
(Figures 2G–I). The observations offer significant insights into
the molecular mechanisms underlying FM.

3.2 The expression of the genes RGS17,
ARHGEF37, and DYRK3 can be used as
diagnostic biomarkers for FM

We selected the three intersecting genes as feature genes and
used them as input for the XGBoost model (Figure 3A). During
model construction, hyperparameter tuning was performed using
grid search. The GSE221921 dataset was used as the training set,
while GSE67311 served as the validation set to develop an FM
diagnostic model based on the XGBoost algorithm. The model’s
diagnostic capability was evaluated by calculating the area under the
ROC curve (AUC = 0.8338) using the training set (Figures 3B,C),
while the AUC of 0.8178 for the validation set demonstrated the
model’s strong diagnostic performance. Among the three genes,
RGS17 contributed the most to the model, indicating that its
expression changes play a dominant role in FM classification
decisions. DYRK3 and ARHGEF37 provided complementary
information, potentially enhancing model performance through
interactive effects. Future experimental validation should
prioritize RGS17 to assess its potential as a biomarker (Figure 3D).

3.3 Various differences in immune cell
populations present in FM

The GSE229750 dataset shows a lower abundance of most
immune cell types, with only plasma cells exhibiting differences
between the two groups (P < 0.05). The immune infiltration results
from the GSE67311 dataset reveal significant differences in the
expression of inactive mast cells and M2 macrophages, with the
healthy control group showing higher levels than the FM group (P <
0.05). In the GSE221291 dataset, there are numerous significant
differences spanning various cell types, particularly evident in
M2 macrophages, monocytes, and helper T cells (P < 0.05).
(Figures 3E,F).

3.4 Functional enrichment analysis

ARHGEF37 is a multifunctional gene involved in key biological
processes such as hematopoiesis, intracellular material transport,
cell signaling, and disease progression. WikiPathways analysis links
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this gene to multiple signaling pathways, especially those related to
inflammation, immune responses, and cancer. SimpleGO and GO
analyses indicate significant enrichment in the hemoglobin
metabolic process, myeloid cell homeostasis, and erythrocyte
differentiation. Reactome analysis shows a higher proportion of
genes involved in hemostasis and extracellular matrix degradation,
along with a notable enrichment of the pathway “protein kinase B
(AKT) phosphorylates targets in the nucleus” pathway. KEGG
pathway analysis highlights the involvement of cytoskeletal
components in muscle cell-related pathways. Disease Ontology
points to its association with hematopoietic system disease,
anemia, and myeloid leukemia. DisGeNET analysis reveals
significant gene proportions in red cell distribution width
determination and reticulocyte count and identifies hereditary
disorders like hereditary spherocytosis and hereditary
elliptocytosis as well-characterized conditions associated with this
gene (Figure 4).

The DYRK3 gene significantly impacts cell biology and disease
progression. In WikiPathways analysis, it prominently features in
vascular endothelial growth factor A (VEGFA)–vascular endothelial
growth factor receptor 2 (VEGFR2) signaling, phosphoinositide 3-
kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR)
signaling in focal adhesion, and small-cell lung cancer pathways.
SimpleGO analysis highlights substantial enrichment in the

hemoglobin metabolic process, monoatomic ion homeostasis, and
erythrocyte differentiation. GO analysis indicates notable
involvement in monoatomic ion homeostasis, channel activity,
extracellular matrix-related functions, including collagen
content—all showing high gene counts and statistical significance.
Reactome analysis underscores its role in signaling by receptor
tyrosine kinases and extracellular matrix organization, supported
by high gene proportions and significance. KEGG pathway analysis
identifies extensive involvement in cytoskeletal organization within
muscle cell-related pathways. Disease Ontology points to strong
associations with hematopoietic system diseases, including
hemolytic anemia and hereditary spherocytosis. In DisGeNET,
red cell distribution width determination, diabetic retinopathy,
and reticulocyte count (procedure) show high gene proportions
and pronounced color enrichment (Figure 5).

The enrichment analysis of the RGS17 gene reveals its potential
role in various biological processes. WikiPathways analysis
highlights its role in miRNA regulation of the DNA damage
response and the DNA damage response itself, showing relatively
high gene proportions and statistical significance. SimpleGO and
GO analysis indicate notable involvement in viral responses, defense
against viruses, the endosomal membrane, and the nuclear envelope,
with substantial gene counts and significance. In Reactome,
interferon signaling and interferon gamma signaling are marked

FIGURE 2
Differential gene and principal component analysis. (A–C) Principal component analysis of the fibromyalgia and control groups, from left to right:
GSE221921, GSE67311, and GSE229750. (D–F) Gene expression profiles of three datasets (volcano plots), from left to right: GSE221921, GSE67311, and
GSE229750. (G–I) Differences in gene expression between the two groups in three datasets (box plots), from left to right: GSE221921, GSE67311,
and GSE229750.
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FIGURE 3
XGBoost and immune infiltration analysis. (A) Relevant datasets are extracted from the GEO database based on DEG analysis, and the intersection of
their respective DEGs is considered to obtain the three target genes, namely, DYRK3, RGS17, and ARHGEF37. (B, C) ROC curves for the training and
validation sets; (D) variable feature importance gain, the information gain brought by the gene when splitting nodes in the model (key metric); cover, the
sample coverage when the gene is used for splitting; frequency, the number of times the gene appears in the trees. (E, F) Results of immune
infiltration analysis for three gene sets (box plots).

FIGURE 4
Functional enrichment analysis of the ARHGEF37 gene set. (A) DisGeNET enrichment results; (B) Disease Ontology enrichment results; (C)
Reactome enrichment results; (D) KEGG enrichment results; (E) GO enrichment results; (F) SimpleGO enrichment results; (G) WikiPathways
enrichment results.
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by relatively high gene proportions and significance. KEGG
pathways such as pathways of neurodegeneration–multiple
diseases and amyotrophic lateral sclerosis also show high gene

proportions and significance. Disease Ontology identifies
significant associations with muscular diseases, myopathies, and
neurological conditions such as neuropathy and mononeuropathy.

FIGURE 5
Functional enrichment analysis of theDYRK3 gene set. (A)WikiPathways enrichment results; (B)DiseaseOntology enrichment results; (C) Reactome
enrichment results; (D) KEGG enrichment results; (E) GO enrichment results; (F) SimpleGO enrichment results; (G) DisGeNET enrichment results.

FIGURE 6
Functional enrichment analysis of the RGS17 gene set. (A)WikiPathways enrichment results; (B)DiseaseOntology enrichment results; (C) Reactome
enrichment results; (D) KEGG enrichment results; (E) GO enrichment results; (F) SimpleGO enrichment results; (G) DisGeNET enrichment results.
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DisGeNET indicates notable gene proportions in generalized
hypotonia and respiratory syncytial virus (RSV) infection, as well
as in drug-related disorders like drug dependence and substance
abuse (Figure 6).

4 Discussion

FM is a complex and heterogeneous condition. The variety of
symptoms and the absence of early diagnostic indicators mean that
FM is often diagnosed only after excluding other conditions,
resulting in delayed treatment. The diagnosis of FM remains a
controversial topic, with continuously evolving standards and
assessment methods reflecting the complexity of the condition.
Throughout the literature, it is clear that there is ongoing debate
and exploration regarding various aspects of FM, including its
etiology, diagnosis, and management (Jurado-Priego et al., 2024a).

In recent years, bioinformatics and the GEO datasets have
played an increasingly important role in the diagnosis and
treatment of diseases. Bioinformatics provides powerful tools for
understanding the molecular mechanisms of diseases, identifying
new biomarkers, and developing targeted treatment strategies by
integrating and analyzing large amounts of data. The GEO dataset,
as a public repository of gene expression data, contains various
experimental data from around the world, which also accelerates
scientific discoveries. A search revealed that there are only three
datasets related to FM, reflecting the complexity of diagnosing and
treating the condition. Therefore, further in-depth exploration of
FM using bioinformatics and the GEO datasets is beneficial for
advancing research in its diagnosis and treatment.

From the initial screening of differentially expressed genes
across three datasets, the intersecting genes DYRK3, RGS17, and
ARHGEF37 were identified, which may act as biomarkers for
diagnosing FM. Additionally, to further validate the functional
relevance of these three genes, we conducted correlation analyses
on the three datasets and obtained the final key gene sets related to
DYRK3, RGS17, andARHGEF37, followed by functional enrichment
analysis of these key gene sets.

Wash-free infiltration analysis indicated significant differences
in the abundance of various cell types compared to those in the
control group, particularly in monocytes, mast cells, and
M2 macrophages. These differences suggest a significant
divergence in immune cell composition between FM patients and
healthy individuals, possibly reflecting abnormal immune regulation
in the disease state. Studies have shown that inflammation,
particularly neuroinflammation and autoimmunity, plays a role
in the pathogenesis of FM (Theoharides et al., 2019). Mast cells
are a part of the immune system, primarily involved in allergic
reactions, and can release inflammatory mediators such as histamine
and prostaglandins. An animal study showed that mast cells mediate
pain and fatigue behaviors, representing potential therapeutic
targets for treating FM syndrome (Brum et al., 2024).
M2 macrophages are expressed significantly less in the FM group
than in the control group; these cells are usually associated with anti-
inflammatory responses and tissue repair and can inhibit
inflammation by releasing anti-inflammatory cytokines such as
interleukin 10 (IL-10) and transforming growth factor beta
(TGF-β). There is ample evidence that anti-inflammatory

cytokines have analgesic effects in animal models (Sommer et al.,
2018), suggesting that the dysfunction of M2 macrophages may be
associated with FM. Additionally, monocytes are activated in the
inflammatory environment within the body, producing various
cytokines, including anti-inflammatory and pro-inflammatory
factors, which may affect the symptoms of FM patients. The
relationship between monocytes and the development of FM
requires further research. It is undeniable that the immune
infiltration analysis of the three datasets did not yield consistent
results, which may be related to different disease states, time points,
or intervention factors. Additionally, the limited number of datasets
may also have influenced the results to some extent. Despite
observing different immune infiltration characteristics across the
datasets, these findings still provide valuable insights.

DYRK3 is part of the dual-specificity tyrosine phosphorylation-
regulated kinase family, and its cellular functions are not yet fully
understood. Studies have found that DYRK3 phosphorylates SNAP-
associated protein (SNAPIN), which positively regulates dynamin-
mediated mitochondrial retrograde transport and soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complex-mediated exocytosis of neuronal synaptic
vesicles, indicating that DYRK3 affects cell vitality and provides a
novel neuroprotective mechanism (Kim et al., 2021). FM is a chronic
pain syndrome characterized by neuroinflammation and impaired
oxidative balance in the central nervous system. Studies have
confirmed that mitochondrial dysfunction plays a key role in the
pathogenesis of FM (Marino et al., 2024). Functional enrichment
analysis reveals that the expression and regulation of the DYRK3
gene play crucial roles in intracellular signal transmission, cellular
structure maintenance, and the development of specific diseases. In
terms of cellular signaling, DYRK3 is highly enriched in several
critical cellular pathways, particularly those involved in erythrocyte
development and hemoglobin metabolism. Regarding cell structure
and tissue integrity, DYRK3 shows enrichment in the extracellular
matrix and structures associated with the cell membrane, involving
the regulation of the cytoskeleton and the function of the nuclear
membrane. In terms of disease association, DYRK3 is closely related
to various blood diseases, such as hereditary spherocytosis, and
some neurological conditions. These conditions often involve
abnormalities in erythrocytes or degenerative changes in
neuronal cells, suggesting that DYRK3 might serve as a
biomarker for diagnosing FM.

RGS17, a compelling drug target, belongs to the RGS Z (RZ)
subfamily and is predominantly expressed in the central nervous
system (Hayes et al., 2021). Research has found that five RGS
members are abundantly expressed in the brain, with RGS17
notably expressed in the striatum and significantly enriched in
the cerebellum. This research reveals the roles of individual RGS
members in various human functions and supports the involvement
of several RGS members in regulating central nervous system
functions through G-protein-coupled receptor (GPCR)-mediated
signal transduction (Larminie et al., 2004). Functional enrichment
analysis has shown its potential roles in various biological processes,
with changes in RGS17 gene expression associated with multiple
disease states under pathological conditions, particularly in diseases
affecting the respiratory, nervous, and cardiovascular systems and in
conditions related to drug dependency. Currently, further research is
lacking on the relationship between FM and RGS17. Martins et al.
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(2017) indicated that physical exercise can activate multiple
intracellular pathways via GPCRs, mitigating FM pain symptoms
by inhibiting elevated phosphorylation of protein kinase A (PKA).
This could be an important direction for future research into the
relationship between RGS17 and the pathogenesis of FM.

ARHGEF37 is a guanine nucleotide exchange factor (GEF) that
regulates the Rho family of small guanosine triphosphatases
(GTPases). Functional enrichment analysis has highlighted its
potential roles across various biological processes, disease states,
and cellular functions. In terms of biological processes and signaling
pathways, this gene is significantly enriched in red blood cell
differentiation, hematopoiesis, and hemoglobin biosynthesis,
suggesting that it may play a crucial role in the development of
blood diseases. In cellular functions, it may play a regulatory role in
organelle function and cell signaling. In terms of disease association,
ARHGEF37 is linked with various disease states, including muscular
diseases, neurodegenerative disorders, and certain infectious
diseases. Current research on ARHGEF37 is limited, mainly
focusing on its role in promoting adhesion and transendothelial
migration of tumor cells in hepatocellular carcinoma and enhancing
the infiltration and metastatic capabilities of hepatocellular
carcinoma (HCC) cells (Zhang et al., 2022); there is a lack of
research on other diseases, such as FM. Enrichment analysis
shows that this gene is involved in several key biological
processes, such as hematopoiesis, intracellular material transport,
cell signaling, and disease progression, which require further
exploration.

Our data indicate that the XGBoost-predictive model
constructed using DYRK3, RGS17, and ARHGEF37 performs well
in distinguishing between FM and healthy individuals. During the
modeling process, we used a grid search strategy for hyperparameter
tuning.We carefully selected a set of key hyperparameters, including
learning rate (eta), tree depth (max_depth), subsample rate
(subsample), colsample_bytree, and gamma, which play a critical
role in controlling the model’s complexity and generalization ability.
Specifically, the learning rate determines the contribution of each
individual tree to the final prediction. A higher learning rate may
lead to faster convergence but increases the risk of overfitting, while
a lower learning rate generally ensures more gradual learning but
requires more rounds for convergence. The maximum depth of the
trees influences the model’s ability to capture complex relationships
between features; deeper trees can capture more intricate patterns
but are also more prone to overfitting. The subsample rate controls
the proportion of training data used for each tree, with lower values
introducing randomness and helping prevent overfitting. Gamma,
as a regularization parameter, penalizes splits with minimal gain,
thereby reducing the complexity of the trees and improving
generalization. The minimum child weight (min_child_weight)
parameter ensures that splits only occur when there is a
sufficient amount of data in the child node, thereby preventing
overly complex splits. Through grid search and cross-validation, we
fine-tuned these hyperparameters to achieve strong performance on
the training set while ensuring the model generalized well on the test
set. It is important to note that slight changes in these
hyperparameters could significantly alter the model’s
performance, and we aimed to select settings that strike a balance
between accuracy and overfitting prevention. The size of the training
dataset is another crucial factor affecting the performance of the

XGBoost model. In our study, we used a relatively small dataset
consisting of three genes (ARHGEF37, DYRK3, and RGS17), and the
model performed well despite the limited size. However, small
datasets pose challenges such as overfitting, particularly when the
number of features is large compared to the number of samples. In
our case, the number of features (genes) was much smaller than the
number of samples, which mitigated the risk of overfitting.
Nevertheless, we used cross-validation to assess the model’s
generalizability and obtain more robust performance estimates.
The size of the training data affects how well the model can
capture underlying patterns in the data. Larger datasets generally
provide more diverse information, which can help the model
generalize better. Although our dataset was small, we were able
to achieve good performance through regularization techniques and
cross-validation. Increasing the dataset size in future studies could
potentially improve model robustness and prediction accuracy. In
summary, the performance of the XGBoost model in this study was
influenced by the careful tuning of hyperparameters such as the
learning rate, tree depth, and subsample rate. Moreover, the small
size of the training dataset posed challenges such as the potential for
overfitting, but the model still performed well due to the use of
regularization techniques and cross-validation. We acknowledge
that both hyperparameters and training data size are important
factors in the model’s performance, and future studies could explore
the impact of increasing the dataset size and further optimizing
hyperparameters to refine model performance.

In summary, this study identified three intersecting genes, namely,
DYRK3, RGS17, andARHGEF37, as potential diagnostic biomarkers for
FM by screening and analyzing differentially expressed genes from the
FM GEO database. By conducting correlation analysis to obtain the
corresponding gene sets and performing functional enrichment
analysis, the study further explored the potential relevance of the
three intersecting genes in the pathogenesis of FM and their
potential as diagnostic markers. However, due to the lack of in-
depth research on the pathogenesis of FM and the functions of
these three genes, further exploration is required. Additionally, as
this study lacks validation with clinical data, future research will
focus on verifying these findings using larger-scale clinical datasets
to further assess their diagnostic value and potential clinical
applications. This will be a crucial direction for future studies.
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Glossary

FM Fibromyalgia

GEO Gene Expression Omnibus

GO Gene Ontology

DYRK3 Dual-specificity tyrosine phosphorylation-regulated kinase 3

RGS17 Regulator of G protein signaling 17

ARHGEF37 Rho guanine nucleotide exchange factor 37

XGBoost eXtreme Gradient Boosting

NMDA N-methyl-D-aspartic acid receptor

NK-1 Neurokinin-1

DNA Deoxyribonucleic acid

CNS Central nervous system

KEGG Kyoto Encyclopedia of Genes and Genomes

NCBI National Center for Biotechnology Information

FC Fold change

ROC Receiver operating characteristic

AUC Area under the curve

CIBERSORT Cell-type identification by estimating relative subsets of RNA
transcripts

RNA Ribonucleic acid

BPs Biological processes

CCs Cellular components

MFs Molecular functions

DisGeNET Disease Gene Network

PCA Principal component analysis

AKT Protein kinase B

VEGFA Vascular endothelial growth factor A

VEGFR2 Vascular endothelial growth factor receptor 2

mTOR Mammalian target of rapamycin

RSV Respiratory syncytial virus

IL-10 Interleukin 10

TGF-β Transforming growth factor Beta

SNAPIN SNAP-associated protein

SNARE Soluble N-ethylmaleimide-sensitive factor attachment
protein receptor

GPCRs G-protein-coupled receptors

RZ Regulator of G-protein signaling Z

PKA Protein kinase A

GEF Guanine nucleotide exchange factor

GTPases Guanosine triphosphatases

HCC Hepatocellular carcinoma.
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