
Integrative transcriptomics and
single-cell transcriptomics
analyses reveal potential
biomarkers and mechanisms of
action in papillary thyroid
carcinoma

Wanchen Cao†, Kai Gao† and Yi Zhao*

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

Objective: Papillary thyroid carcinoma (PTC) has a high recurrence rate and lacks
reliable diagnostic biomarkers. This study aims to identify robust transcriptomic
biomarkers for PTC diagnosis through integrative bioinformatics approaches and
elucidate the cellular mechanisms underlying PTC pathogenesis at single-cell
resolution.

Methods: Based on the Gene Expression Omnibus (GEO) database, we
downloaded PTC-related RNA-seq datasets (GSE3467, GSE3678, GSE33630,
GSE65144, and GSE82208) and an scRNA-seq dataset (GSE191288). Among
these, the RNA-seq dataset GSE3467 was used as the training dataset to
perform differential gene expression analysis, GO and KEGG enrichment
analyses, weighted gene co-expression network analysis (WGCNA), machine
learning, ROC analysis, nomogram analysis, and GSEA for mining potential
biomarkers. The remaining RNA-seq datasets (GSE3678, GSE33630, GSE65144,
and GSE82208) were used as the validation datasets to validate these potential
biomarkers. Based on the results from potential biomarker mining, the scRNA-seq
dataset (GSE191288) was used to analyze and uncover key cell types and their
mechanisms involved in the occurrence and development of PTC.

Results: This study retrieved relevant PTC datasets from the GEO database and
identified three biomarkers (ENTPD1, SERPINA1, and TACSTD2) through a series
of bioinformatics analyses. GSEA suggested that these biomarkers may be
involved in the occurrence and development of PTC by collectively regulating
the cytokine–cytokine receptor interaction pathways. scRNA-seq analysis
revealed tissue stem cells, epithelial cells, and smooth muscle cells as key cell
types in PTC. Cell–cell communication analysis revealed that epithelial cells
primarily interact with tissue stem cells and smooth muscle cells through two
ligand–receptor pairs, namely, COL4A1–CD4 and COL4A2–CD4. The collagen
signaling pathway was identified as the most dominant pathway, and violin plots
demonstrated that ligands COL4A1 and COL4A2 were highly expressed in
epithelial cells, while the receptor CD4 showed elevated expression in both
tissue stem cells and smooth muscle cells. Pseudotime analysis demonstrated
that these three cell types underwent three distinct differentiation stages, during
which the expression levels of the biomarkers ENTPD1, SERPINA1, and
TACSTD2 showed stage-specific trends.
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Conclusion: In summary, this study combines RNA-seq and scRNA-seq analysis
techniques to identify ENTPD1, SERPINA1, and TACSTD2 as potential biomarkers
for PTC at the transcriptomic level and tissue stem cells, epithelial cells, and smooth
muscle cells as key cells in PTC at the cellular level. This study conducted in-depth
research and analysis on these potential biomarkers and key cells, providing new
research foundations and insights for future basic experimental research and the
diagnosis and treatment of PTC in clinical settings.
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Introduction

Thyroid cancer is a type of cancer that occurs in the thyroid
gland, which is located in the neck and is responsible for
producing hormones that regulate the body’s metabolism.
Thyroid cancer is the most common endocrine malignancy
worldwide, including papillary thyroid carcinoma (PTC),
medullary thyroid carcinoma (MTC), anaplastic thyroid
carcinoma (ATC), and follicular thyroid carcinoma (FTC) (Niu
et al., 2017). In recent years, the incidence of PTC has increased,
making it the most common type of thyroid cancer, accounting for
approximately 70% of all cases (Li et al., 2018). Currently, there is
still no consensus on the mechanisms underlying the occurrence
and progression of PTC. Although PTC can usually be cured
through surgery and radioactive iodine therapy, the high
heterogeneity in clinical and pathological characteristics makes
it difficult to develop effective treatment methods applicable to all
patients (Ruan et al., 2023). Therefore, identifying the key genes
and cells involved in the pathogenesis of PTC is of great
significance for improving the clinical diagnostic level of PTC
and the application of precision medicine (Pan et al., 2024).

Machine learning algorithms (Luan et al., 2023) and weighted
gene co-expression network analysis (WGCNA) (Wang et al., 2023)
are widely used to identify potential biomarkers for various diseases.
Single-cell transcriptome analysis can provide a more precise
understanding of the transcriptome within individual cells,
elucidating their roles in cellular functions and how gene
expression promotes beneficial or detrimental states, thereby
clarifying unknown tumor characteristics that traditional bulk
transcriptomic studies cannot discern (Hwang et al., 2018).
Existing studies have shown that at the cellular level, PTC is
composed of functionally distinct non-immune cell
subpopulations and different clusters of immune cells that
interact and affect clinical outcomes (Pu et al., 2021a). Studies
have also shown that, 42 oncogenic signaling pathways and a six-
gene panel predicted the prognosis of PTC and were associated with
the tumor immune microenvironment (Wang et al., 2022).
Therefore, actively exploring the molecular mechanisms of PTC
will be the foundation for early identification and intervention of
the disease.

Specifically, this study addresses three key questions: what are
the most reliable transcriptomic biomarkers for PTC diagnosis?
Which cell types and cellular interactions drive PTC progression?
How do the identified biomarkers function in the tumor
microenvironment at the single-cell level?

In this study, we aim to conduct a series of bioinformatics analyses
at the transcriptome and cellular levels using the GSE3467, GSE3678,
GSE33630, and GSE191288 datasets to screen for potential biomarkers
and key cells in PTC and analyze the regulatory mechanisms of these
genes and cells. Additionally, we further validate and compare the
predictive power of potential PTC biomarkers for other types of
thyroid cancer, such as ATC and FTC, in the GSE65144 and
GSE82208 datasets. We believe that this research provides
theoretical support for further in-depth exploration of the
pathogenesis and molecular mechanisms of PTC, thereby aiding in
the improvement of diagnosis and prognosis for patients with these
diseases. The integrative approach is illustrated in Figure 1.

Materials and methods

Collection and processing of datasets

PTC RNA-seq datasets and the scRNA-seq dataset were
obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). The PTC RNA-seq dataset
with the GSE number GSE3467 was downloaded from the GEO
database and used as the training set data. The PTC RNA-seq
datasets with the GSE numbers GSE3678 and GSE33630, the
ATC RNA-seq dataset with the GSE number GSE65144, and the
FTC RNA-seq dataset with the GSE number GSE82208 were
downloaded from the GEO database and used as the validation
dataset. The PTC scRNA-seq dataset with the GSE number
GSE191288 was also downloaded from the GEO database. A total
of 203 RNA-seq datasets were included in this study: nine tumor and
nine normal datasets from GSE3467, seven tumor and seven normal
datasets from GSE3678, 49 tumor and 45 normal datasets from
GSE33630, 12 tumor and 13 normal datasets from GSE65144, and
27 tumor and 25 follicular thyroid adenomas (FTA) datasets from
GSE82208. A total of seven scRNA-seq datasets were included: six
tumor and one normal dataset from GSE191288.

Differential gene expression and GO and
KEGG enrichment analyses

In order to identify the differentially expressed genes (DEGs)
between the tumor and normal groups in the training set GSE3467,
this study used the “limma” package to obtain DEGs from the
training set. The threshold for screening DEGs in PTC was set as
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adjusted p-value <0.05 and |log2FC| > 1. DEGs were visualized using
volcano plots and heatmaps created with the “ggplot2” and
“ComplexHeatmap” packages. To analyze the potential biological
functions and pathways that DEGs may play in PTC, GO and KEGG
enrichment analyses were conducted using the R package
“clusterProfiler” with a p-value threshold of < 0.05.

The R package used for GO and KEGG enrichment analyses is
clusterProfiler, version 4.10.1, available on GitHub (https://github.
com/YuLab-SMU/clusterProfiler).

Weighted gene co-expression network
analysis and identification of
candidate genes

WGCNA is a sophisticated systems biology method used to
elucidate the correlation patterns between genes in microarray
samples. This method helps identify gene sets with strong co-
expression and reveals potential candidate biomarker genes or
therapeutic targets by exploring the intrinsic connections within
the genome and their correlations with phenotypes. In this study,
WGCNA was performed on the training set GSE3467 data, and
hierarchical clustering analysis was conducted using the “gplots”
software package. To ensure that gene interactions conform as
closely as possible to a scale-free distribution, the optimal soft-
threshold (β) was selected based on R2 (R2 = 0.85) using the
“pickSoftThreshold” function; to construct gene modules,
adjacency between genes was calculated, similarity between genes
was computed based on adjacency, and then a similarity coefficient
between genes was derived, leading to a system clustering tree of
genes. According to the criteria of the mixed dynamic tree-cutting

algorithm, the minimum number of genes per gene module
(minModuleSize) was set to 100, and mergeCutHeight was set to
0.4 (60% similarity) to merge similar modules identified using the
dynamic tree-cutting algorithm, resulting in gene modules; the R
package “psych” was used to perform Pearson correlation analysis
between gene modules and tumor and normal groups, with modules
having |r| > 0.4 and P < 0.05 considered key modules. Furthermore,
gene significance (GS) and module membership (MM) were
calculated for key modules, and a scatter plot of MM and GS
correlations was drawn. Hub genes were obtained with the
selection criteria of MM > 0.8 and GS > 0.6. The intersection of
DEGs and hub genes was obtained using the R package
“VennDiagram,” yielding intersecting genes. A protein–protein
interaction (PPI) network for the intersecting genes was
constructed in the STRING database (http://www.string-db.org/),
and finally, core genes were identified using “Cytoscape” software
and its MCODE plugin, which are considered candidate
genes for PTC.

The relevant computational codes for WGCNA algorithms can
be accessed via the following GitHub repository: https://github.com/
SamBuckberry/RUN-WGCNA.

Machine learning algorithms to screen
candidate biomarkers

To systematically screen for candidate biomarkers with
significant contributions to PTC, this study used three
complementary machine learning algorithms for feature selection
on the training set GSE3467: the least absolute shrinkage and
selection operator (LASSO), support vector machine recursive

FIGURE 1
Workflow of the study.
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feature elimination (SVM-RFE), and the Boruta algorithm. These
three methods evaluate the importance of gene features from
different perspectives (LASSO: linear model based on
coefficient shrinkage; SVM-RFE: nonlinear model based on
support vector weights; and Boruta: random forest-based
feature importance) to comprehensively assess gene signatures.
To ensure the reproducibility of these algorithms, a random seed
of 12,345 was set.

In the LASSO analysis, we used the “glmnet” package to
construct a logistic regression model, setting the “family”
parameter to “binomial” to suit the classification task. Genes with
non-zero coefficients were retained as important features. The
optimal regularization parameter λ was determined through 10-
fold cross-validation, with lambda. min (the value yielding the
minimum cross-validated error) was selected as the final model
parameter. Model performance was evaluated through cross-
validation curves and coefficient shrinkage plots.

For the SVM-RFE analysis, implemented using the “caret”
package, features with lower contributions were sequentially
eliminated through recursive feature elimination. The model
training also used 10-fold cross-validation, repeated 10 times to
reduce randomness, and evaluated all possible feature subset sizes.
The feature subset with the lowest error and highest accuracy in
cross-validation was selected as the optimal result.

The Boruta analysis was performed using the “Boruta”
package, which is based on random forest construction. By
comparing the importance of the original features with
randomly generated shadow features, the algorithm identifies
truly relevant features—retaining those with significantly higher
importance than the shadow features and eliminating the
insignificant features. The analysis was set to 500 iterations to
ensure stability, with all default parameters tested and confirmed
to be suitable for the current dataset.

Finally, these three algorithms with distinct principles
demonstrate complementary advantages to some extent. The
intersection of results from the three methods was analyzed
using Venn diagrams and visualized as a network using
Cytoscape. The intersecting genes were considered candidate
biomarkers for PTC. This multi-algorithm consensus approach
reduces bias inherent to any single method and enhances the
reliability of the results.

The relevant computational codes for machine learning
algorithms can be accessed using the following GitHub repository:
https://github.com/xliu93/machine_learning_algorithms.

Analysis of the expression of candidate
biomarkers

The Wilcoxon test was used to analyze the expression of
candidate biomarkers in the training set GSE3467 and
validation sets GSE3678 and GSE33630 (p < 0.05). Genes that
show consistent expression trends and significant differences
between groups in these three datasets will continue to be
considered candidate biomarkers for PTC. Additionally, the
expression of candidate biomarkers in the validation sets
GSE65144 and GSE82208, which represent different types of
thyroid cancer, was analyzed.

The relevant computational codes for the Wilcoxon test can be
accessed using the following GitHub repository: https://github.com/
stenver/wilcoxon-test.

ROC analysis of candidate biomarkers

To assess the predictive power of candidate biomarkers, the R
package “pROC” was used to plot the ROC curves for each
candidate biomarker and combinations of three candidate
biomarkers in the sample data from the training set
GSE3467 and validation sets GSE3678, GSE33630, GSE65144,
and GSE82208. Candidate biomarkers with AUC values greater
than 0.7 in both the training set GSE3467 and validation sets
GSE3678 and GSE33630 were defined as biomarkers for PTC.
Additionally, the predictive power of candidate biomarkers in the
validation sets GSE65144 and GSE82208, which represent
different types of thyroid cancer, was analyzed.

The relevant computational codes for ROC analysis can be
accessed using the following GitHub repository: https://github.
com/kb22/ML-Performance-Evaluation.

Construction of nomograms and
assessment of biomarkers

To further evaluate the predictive power of the biomarkers,
nomogram models were constructed based on the biomarkers
in all samples from the training set GSE3467 using the R
package “rms.” Calibration curves were plotted using the R
package “Rregplot” to assess the predictive accuracy of
the nomograms.

The relevant computational codes for the construction of
nomograms can be accessed using the following GitHub
repository: https://github.com/ClevelandClinicQHS/QHScrnomo.

GSEA of biomarkers

To further explore the biological processes in which
biomarkers participate in PTC, differential analysis was
performed for each gene’s high- and low-expression groups in
the training set GSE3467 using the R package “limma.” Based on
the differential analysis results, all genes were sorted by log2FC
from high to low, obtaining the lists of related genes for the high-
and low-expression groups of each biomarker. The KEGG
background gene set (c2. cp.kegg.v7.4. symbols.gmt) was
downloaded from the Molecular Signatures Database (http://
www.gsea-msigdb.org/gsea/downloads.sp), and GSEA was
conducted using the R package “clusterProfiler” to explore the
potential functions of the biomarkers. To further understand the
common biological pathways in which biomarkers participate in
PTC, the top five pathways enriched by the biomarkers were
intersected using the R package “VennDiagram.” Additionally,
to analyze the enrichment of related genes (genes in the pathways)
in the pathways associated with the biomarkers, the relationships
of the related genes in the above-obtained three common pathways
were analyzed using “Cytoscape.”
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The relevant computational codes for GSEA can be accessed
using the following GitHub repository: (https://github.com/
junjunlab/GseaVis).

Quality control of single-cell RNA-
seq datasets

To perform quality control on the GSE1911288 PTC single-cell
dataset and filter eligible cells and genes, this study first imported the
raw count data h5 files using the Read10X_h5 function from the
Seurat package. Subsequently, the Create Seurat Object function was
applied to each dataset to create Seurat objects, which then generated
gene expression matrices. The percent.mt function was used to
calculate the expression proportion of mitochondrial genes in each
cell. Before proceeding with further analysis, the data underwent
quality control to remove low-quality cells that did not meet the
criteria. Specifically, the criteria for defining low-quality cells in this
study included the following: 1) the number of feature genes
(nFeature) being less than 500 or exceeding 10,000; 2) the
expression proportion of mitochondrial genes exceeding 30%; and
3) the count number (nCount) being below 1000 or above 10,000.

Identification of highly variable genes

Gene expression fluctuations among different cells can result
from both technical errors and biological heterogeneity. Therefore, it
is essential to identify highly variable genes caused by biological
levels to reduce the interference of information from other less
relevant genes. Harmony is used to integrate the filtered single-cell
sequencing data, and LogNormalize is applied for data
standardization. The FindVariableFeatures function with the vst
method is used to extract genes with large coefficients of variation
between cells, and the top 2000 highly variable genes with significant
fluctuations are displayed.

Cell dimensionality reduction and cluster
annotation

To observe whether the overall distribution of cells in each
sample is consistent and check for any obvious outlier samples, the
ScaleData function is used to scale the single-cell sequencing data.
The JackStrawPlot function is used to determine the principal
components with statistical significance, and the top 50 principal
components with statistical significance from principal component
analysis (PCA) are selected for subsequent analysis, with the top
15 results visualized. The Seurat package is used to identify small cell
clusters through FindNeighbors and FindClusters, and the ClusTree
function is used to visualize the interactions between different
clusters at different resolutions. Cell-type annotation is crucial for
scRNA-seq data analysis. This study uses the SingleR package (Aran
et al., 2019), which annotates scRNA-seq data based on known cell-
type marker genes. It assigns cell-type labels to individual cells based
on the reference samples, using the highest Spearman rank
correlation, focusing only on marker genes between labeled pairs
to highlight cell-type-specific differences.

Identification of key cells

To explore the differences in the abundance of various cell types
in different samples, the abundance of each cell type in the two
groups of samples is analyzed. The Wilcoxon rank-sum test is used
to compare the differences in the abundance of each cell type
between the two groups. Based on the results, the Wilcoxon
rank-sum test is further used to compare the expression levels of
biomarkers in cell types with significant changes. Cells that show
significant differences in biomarker expression are defined as key
cells (p < 0.01).

Key cell communication analysis

To understand the interactions between key cells, the
expressions of receptors and ligands are used to infer interactions
between different cell clusters. The R package “CellChat” is used to
analyze cell–cell communication among key cells by calculating the
aggregated communication network and displaying the quantity and
intensity of the interactions. Bubble charts are used to visualize the
interactions between ligand–receptor pairs of cells, and heatmaps
are used to visualize the signaling pathways that contribute the most
to the output or input signals of key cells. Finally, violin plots are
used to display the expression of representative genes on the
signaling pathways with the greatest contribution.

Pseudotime analysis of key cells

To understand the differentiation process of key cells and the
expression of biomarkers at different stages of key cell
differentiation, each key cell is arranged along the corresponding
cell trajectory. Pseudotime analysis of key cells is completed by
dividing key cells into different differentiation states based on gene
expression profiles. The “Monocle2” package is used to build
pseudotime trajectories for the selected cell populations. At the
same time, branched expression analysis modeling (BEAM) in the R
package “Monocle” is used to visualize the expression of biomarkers
at different time points in the differentiation trajectory of key cells.

The relevant computational codes for single-cell RNA-seq
analysis can be accessed using the following GitHub repository:
https://github.com/seandavi/awesome-single-cell.

Cell culture

The PTC cell lines (TPC-1 and IHH4) were maintained in RPMI
1640 (Gibco) supplemented with 10% FBS and penicillin (100 U/
mL)/streptomycin (100 mg/mL) and cultured in a 37°C incubator
with 5% CO2.

Quantitative real-time PCR

Total RNA was extracted from cells using TRIzol reagent
(Invitrogen), according to the manufacturer’s instructions.
Quantitative real-time PCR (RT-qPCR) was carried out using the

Frontiers in Genetics frontiersin.org05

Cao et al. 10.3389/fgene.2025.1536198

https://github.com/junjunlab/GseaVis
https://github.com/junjunlab/GseaVis
https://github.com/seandavi/awesome-single-cell
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1536198


SYBR Green Mix (Vazyme). GAPDH served as a control, and the
2̂−ΔΔCt method was used to evaluate the expression level of each
gene. The primers were designed as shown in Table 1. The
statistical significance of differences between experimental
groups was determined using the Student’s t-test. A two-tailed
p-value of less than 0.05 (p < 0.05) was considered statistically
significant.

Results

Identification of DEGs and results of GO and
KEGG enrichment analyses

Based on the methods described above, the DEGs between the
tumor and normal groups in the training set GSE3467 were
analyzed (Supplementary Table S1), resulting in
413 significantly differentially expressed genes. Among them,
there were 228 upregulated genes and 185 downregulated genes
in the tumor group samples compared to those of the normal
group samples (Supplementary Table S2). To understand the
distribution of DEGs as a whole, a volcano plot was drawn to
visualize the DEGs, and the top 10 upregulated and top
10 downregulated DEGs were marked on the volcano plot
(Supplementary Figure S1A). Furthermore, to display the
expression levels of DEGs, this study selected the top
25 upregulated genes and the top 25 downregulated genes
based on the log2FC fold change, totaling 50 genes as
representatives, and drew the expression heatmap of DEGs
(Supplementary Figure S1B). GO and KEGG enrichment
analyses were also performed on the DEGs (P < 0.05). A total
of 384 GO pathways (Supplementary Table S3) and 12 KEGG
pathways were found to be enriched (Supplementary Table S4).
Among them, there were 280 biological process (BP) pathways,
60 cellular component (CC) pathways, and 44 molecular function
(MF) pathways. The top 10 pathways were visualized, with the GO
enrichment analysis results shown in Supplementary Figure S1C
and the KEGG enrichment results shown in Supplementary Figure
S1D. In the GO enrichment analysis results, BP pathways closely
related to PTC included the hormone metabolic process, thyroid
hormone metabolic process, and thyroid hormone generation. In
the KEGG enrichment analysis results revealed pathways closely
related to PTC, including those related to the immune system,
specific cancer types, the endocrine system, and energy
metabolism.

WGCNA and the identification of candidate
genes based on the methods described

Based on the methods described above, a co-expression gene
module was constructed for the training set GSE3467 data. The
analysis results showed that there was one outlier sample in the
tumor group, which was removed (Supplementary Figure S2A). The
optimal soft-threshold (β = 7) was selected (Supplementary Figure
S2B); a total of six gene modules were obtained (Supplementary
Figure S2C); among them, the MEturquoise module had the
strongest correlation with the tumor group (R = −0.91, P <
0.001), containing a total of 2,403 genes (Supplementary Figure
S2D). Therefore, the turquoise module was considered the key
module. Furthermore, GS and MM within the turquoise module
were calculated, and a scatter plot of MM and GS correlations was
drawn. Using the screening criteria of MM > 0.8 and GS > 0.6,
898 genes that met the conditions were identified as hub genes
(Supplementary Figure S2E) (Supplementary Table S5). The
intersection of DEGs and hub genes resulted in 316 intersecting
genes, as shown in the Venn diagram (Supplementary Figure S2F)
(Supplementary Table S6). To further understand the interactions
among the candidate genes at the protein level, the candidate genes
were uploaded to the STRING database for PPI network
construction (interaction score >0.4), resulting in 308 nodes and
447 edges (Supplementary Figure S2G). Using “Cytoscape” software
and its MCODE plugin, a total of 12 core genes were identified,
which were considered candidate genes for PTC for further analysis
(Supplementary Figure S2H) (Supplementary Table S7).

Having identified candidate genes through differential
expression and co-expression analyses, we next applied
complementary machine learning approaches to rigorously select
the most robust biomarkers.

Results of machine learning for screening
candidate biomarkers

Based on the 12 PTC candidate genes selected using the
aforementioned methods, LASSO analysis, SVM-RFE, and Boruta
analysis were performed on the training set GSE3467 to screen for
relevant feature genes. Using the LASSO algorithm, in the tumor
group, the log (lambda.min) of LASSO was −7.7174, and the
log(lambda.1se) was −6.97313, identifying three genes with non-
zero coefficients (Figures 2A,B). The SVM-RFE algorithm identified
the four genes with the highest accuracy (Figure 2C). The Boruta
algorithm screened out 12 important feature genes (Figure 2D).
Finally, through Venn analysis, the three genes, namely, ENTPD1,
SERPINA1, and TACSTD2, were identified as candidate biomarkers
for predicting PTC (Figure 2E), and “Cytoscape” software was used
to visualize the results in a network (Figure 2F).

Analysis results of the expression of
candidate biomarkers

Based on the aforementioned methods, the differences in
candidate biomarker expressions in the tumor and normal
groups were analyzed in the training set GSE3467 (Figure 3A)

TABLE 1 RT-qPCR primers.

Gene name Primer 序列(5′–3′)

ENTPD1 Forward
Reverse

CAGCCTTGGGAGGAGATAAA
GAGAGAGGTGTGGACAATGGTT

SERPINA1 Forward
Reverse

GGAGGGTCTCTGCTTTGTTT
GACTAGGGAGGAGAAGGGATATAG

TACSTD2 Forward
Reverse

TCCACTTGTATCATGGCCTACC
CTCAAAGACATCCAAACTGCGT

GAPDH Forward
Reverse

GGTCGGTGTGAACGGATTTG
GGAGTCATACTGGAACATGTAG
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and validation sets GSE3678 (Figure 3B) (Supplementary Table S8)
and GSE33630 (Figure 3C) (Supplementary Table S9). A p-value of
less than 0.05 was considered statistically significant. Genes showing
consistent expression trends and significant differences between
groups across these three datasets were further analyzed as
candidate biomarkers for PTC. The results indicated that the
three candidate biomarkers showed significant differences in the
tumor and normal groups in both the training and validation sets;
thus, ENTPD1, SERPINA1, and TACSTD2 were all considered
candidate biomarkers for PTC for further analysis. Additionally,
the expressions of candidate biomarkers in the validation sets
GSE65144 (Figure 3D) (Supplementary Table S10) and
GSE82208 (Figure 3E) (Supplementary Table S11), which
represent different types of thyroid cancer, were analyzed. The
results showed that the candidate biomarker ENTPD1 had
significant expression differences between the ATC groups, while
SERPINA1 and TACSTD2 did not show significant expression

differences in the ATC groups. No significant expression
differences were observed for the candidate biomarkers between
the FTC groups.

ROC analysis results of candidate
biomarkers

Based on the aforementionedmethods, ROC curves were plotted
for each candidate biomarker and combinations of the three
candidate biomarkers in the sample data from the training set
GSE3467 (Supplementary Figure S3A) and validation sets
GSE3678 (Supplementary Figure S3B), GSE33630 (Supplementary
Figure S3C), GSE65144 (Supplementary Figure S3D), and
GSE82208 (Supplementary Figure S3E). Candidate biomarkers
with AUC values greater than 0.7 in both the training set
GSE3467 and validation sets GSE3678 and GSE33630 were

FIGURE 2
(A,B) LASSO algorithm; (C) SVM-RFE algorithm; (D) Boruta algorithm; (E) identification of candidate biomarkers; (F) network visualization of
candidate biomarkers.
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FIGURE 3
(A) Expression comparison of candidate biomarkers in the training set GSE3467; (B) expression comparison of candidate biomarkers in the validation
set GSE3678; (C) expression comparison of candidate biomarkers in the validation set GSE33630; (D) expression comparison of candidate biomarkers in
the validation set GSE65144; (E) expression comparison of candidate biomarkers in the validation set GSE82208.
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defined as biomarkers for PTC for further analysis. The results
showed that the AUC values for the three candidate biomarkers,
namely, TACSTD2, ENTPD1, and SERPINA1, were all greater than
0.7 in the training set GSE3467 and validation sets GSE3678 and
GSE33630, and the AUC value for the combination of the three
candidate biomarkers was superior to that of each individual
candidate biomarker. Therefore, TACSTD2, ENTPD1, and
SERPINA1 can all be used as biomarkers for PTC for further
analysis, and the combination of TACSTD2, ENTPD1, and
SERPINA1 can also be used as a biomarker for PTC.
Additionally, the predictive ability of the candidate biomarkers in
the validation sets GSE65144 and GSE82208, which represent
different types of thyroid cancer, was analyzed. The results
indicated that TACSTD2, ENTPD1, and SERPINA1 have some
predictive ability for other cancer types, such as ATC and FTC, but
their predictive power is not as strong as it is for PTC.

Results of nomogram construction and
biomarker assessment

Based on the aforementioned methods, a nomogram model was
constructed using the biomarkers TACSTD2, ENTPD1, and
SERPINA1 in all samples from the training set GSE3467
(Supplementary Figure S4A). The nomogram scores each
biomarker individually, with each factor corresponding to a score,
and the total score is the sum of the individual scores (total points).
The total score can be used to infer the likelihood of developing PTC,
with higher scores indicating a higher probability of PTC. The results
show that TACSTD2, ENTPD1, and SERPINA1 can reasonably assess
the likelihood of developing PTC, with TACSTD2 having the highest
predictive power for the likelihood of developing PTC. To evaluate the
diagnostic efficacy of the nomogram, a calibration curve was plotted
(Supplementary Figure S4B). The closer the curve is to the dashed line
with a slope of 1, themore accurate the prediction. The results indicate
that the diagnostic efficacy of the nomogram is accurate.

Results of GSEA of biomarkers

Based on the aforementioned methods, GSEA was conducted
in the training set GSE3467 to explore the potential functions of
the biomarkers, and the top five enrichment results for
biomarkers TACSTD2, ENTPD1, and SERPINA1 are displayed in
Supplementary Figure S5A (p < 0.05, FDR <0.25, and |NES| > 1). The
results indicate that TACSTD2 upregulates the valine, leucine, and
isoleucine degradation and Parkinson’s disease pathways and
downregulates the spliceosome, cytokine–cytokine receptor
interaction, and neuroactive ligand–receptor interaction pathways;
ENTPD1 upregulates the valine, leucine, and isoleucine degradation
pathways and downregulates the spliceosome, Parkinson’s disease,
propanoate metabolism, and cytokine–cytokine receptor interaction
pathways; and SERPINA1 upregulates the Parkinson’s disease,
cytokine–cytokine receptor interaction, and cell adhesion molecule
(CAM) pathways and downregulates the spliceosome and neuroactive
ligand–receptor interaction pathways.

Based on the aforementioned methods, the top five pathways
enriched by the biomarkers were intersected, and the results

indicated that there are three common pathways, namely, the
spliceosome, Parkinson’s disease, and cytokine–cytokine receptor
interaction pathways (Supplementary Figure S6). Additionally,
“Cytoscape” was used to analyze the relationships of genes in the
aforementioned three common pathways, examining the genes
significantly enriched in the pathways related to the biomarkers
(Supplementary Table S6). The results showed that there are
219 enriched genes across the three common pathways, with
66 genes in the spliceosome pathway, 54 genes in the Parkinson’s
disease pathway, and 99 genes in the cytokine–cytokine receptor
interaction pathway, with no common enriched genes among these
three pathways (Supplementary Figure S7).

Results of quality control analysis for PTC
single-cell data

Based on the aforementionedmethods, the analysis before and after
quality control for GSE191288 was performed. Before quality control,
nCount RNA (Supplementary Figure S8A), nFeature RNA
(Supplementary Figure S8B), and percent.MT (Supplementary Figure
S8C) were calculated, and a correlation graph between each indicator
was plotted (Supplementary Figure S8D), including a total of
30,502 cells and 32,735 genes. The correlation between nFeature
RNA and nCount RNA was 0.88, indicating a positive correlation,
while the correlation between percent.MT and nCount RNAwas −0.11,
indicating a negative correlation. Cells with fewer than 200 genes, genes
covered by fewer than three cells, and cells with more than 30%
mitochondrial genes were filtered out. Cells with gene counts ≤
500 and ≥ 10,000 were removed, and genes with count numbers ≤
1000 and ≥ 10,000 were also removed. After calculating nCount RNA
(Supplementary Figure S9A), nFeature RNA (Supplementary Figure
S9B), and percent.MT (Supplementary Figure S9C), the quality-
controlled cells and genes were used for subsequent analysis,
including a total of 30,502 cells and 15,250 genes. A correlation
graph between each indicator was plotted (Supplementary Figure
S9D), with the correlation between nFeature RNA and nCount
RNA being 0.93, indicating a positive correlation, and the
correlation between percent.MT and nCount RNA being −0.16,
indicating a negative correlation. The results indicate that the data
quality is good and improves further after quality control.

Results of highly variable gene identification

Based on the aforementioned methods, in GSE191288, the top
2,000 highly variable genes with significant fluctuations are
displayed in Figure 4A. The results show that the top 10 highly
variable genes are, namely, IGKC, IGHG1, IGHG3, IGHG4, KRT17,
SFRP2, JCHAIN, CXCL10, LYZ, and SFRP4.

Results of cell dimensionality reduction and
cluster annotation

Based on the aforementioned methods, in GSE191288, the top
15 results are visualized (Figure 4B). The interaction between different
clusters at different resolutions is presented in Figure 4C. A resolution
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of 0.15 was selected for downstream analysis, resulting in a total of
10 different cell populations, and t-SNE was used to perform
dimensionality reduction and clustering visualization of the cell
populations according to the resolution and group (Figures 4D, E).

Finally, SingleR was used for fully automated annotation of the cell
populations, and a total of six different cell populations were obtained,
namely, tissue stem cells, epithelial cells, T cells, endothelial cells,
macrophages, and smooth muscle cells (Figure 4F).

FIGURE 4
(A) Selection of highly variable genes; (B) principal component analysis; (C)ClusTree visualization; (D) t-SNE dimensionality reduction and clustering
analysis at resolution = 0.15; (E) t-SNE dimensionality reduction and clustering analysis by group; (F)-SingleR cell annotation analysis.
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Results of key cell identification

Based on the aforementioned methods, in GSE191288, the
abundance of each cell type annotated above was analyzed in

tumor and normal groups (Figure 5A). The differences in the
abundance of each cell type between the two groups were
compared and presented using box plots (Figure 5B). The
results indicate that there is no change in the abundance of

FIGURE 5
(A) Proportion of each cell type in different groups; (B) abundance differences in each cell type between different groups; (C) distribution of
biomarkers in differential cell types; (D) expression of biomarkers in different cell types.
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T cells between the tumor and normal groups. Compared to the
normal group, the abundance of tissue stem cells and endothelial
cells significantly increased in the tumor group, while the
abundance of epithelial cells, macrophages, and smooth muscle

cells significantly decreased in the tumor group. Therefore, the five
cell types with increased or decreased abundance in the tumor
group, namely, tissue stem cells, epithelial cells, endothelial cells,
macrophages, and smooth muscle cells, were subjected to further

FIGURE 6
(A) Cell communication interaction graph; (B) cell sub-network communication interaction graph; (C) key cell receptor–ligand pairs; (D) signaling
pathway heatmap; (E) violin plots of representative gene expression in signaling pathways.
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analysis, and the distribution of the biomarkers TACSTD2,
ENTPD1, and SERPINA1 in these five cell types was plotted
(Figure 5C). The results show that TACSTD2 is mainly highly
expressed in tissue stem cells, ENTPD1 is mainly highly expressed
in tissue stem cells and epithelial cells, and SERPINA1 is mainly
highly expressed in tissue stem cells. At the same time, the
expression levels of each biomarker in these five cell types
between the tumor and normal groups were compared. To
further determine the cell types that play a key role in the
tumor group, cells with significant expression differences in the
biomarkers in these five cell types were defined as key cells (p <
0.01) (Figure 5D) (Supplementary Table S12). The results indicate
that the biomarkers TACSTD2, ENTPD1, and SERPINA1 have
significant expression differences in tissue stem cells, epithelial
cells, and smooth muscle cells; therefore, tissue stem cells,
epithelial cells, and smooth muscle cells are defined as key cells.

Results of key cell communication analysis

Based on the aforementioned methods, in GSE191288, key
cells—tissue stem cells, epithelial cells, and smooth muscle
cells—were subjected to cell–cell communication analysis. The
aggregated cell–cell communication network was calculated to
display the quantity and strength of the cell communication
network (Figure 6A) and the cell communication sub-networks
(Figure 6B). The results indicate that epithelial cells have the
strongest communication network quantity and strength,
surpassing tissue stem cells and smooth muscle cells. Then,
with epithelial cells as the source and tissue stem cells and
smooth muscle cells as the targets, a bubble chart visualizes the
interactions between cells through ligand–receptor pairs
(Figure 6C). The results show that epithelial cells mainly
interact with tissue stem cells and smooth muscle cells through
the COL4A1–CD4 and COL4A2–CD4 ligand–receptor pairs.
Further visualization of the signaling pathways that contribute
the most to the output or input signals of tissue stem cells,
epithelial cells, and smooth muscle cells is shown in Figure 6D.
The results indicate that the collagen signaling pathway is the
signaling pathway that contributes the most to the output or input
signals of these three cell types. Finally, a violin plot is used on the
collagen signaling pathway to display the expression of
representative genes (Figure 6E). The results show that ligands
COL4A1 and COL4A2 were highly expressed in epithelial cells,
while the receptor CD4 showed elevated expression in both tissue
stem cells and smooth muscle cells.

Results of pseudotime analysis of key cells

Based on the aforementioned methods, in GSE191288,
pseudotime trajectories were constructed for key cells—tissue
stem cells, epithelial cells, and smooth muscle cells, and
pseudotime axis trajectory analysis was performed (Figure 7A);
meanwhile, the expressions of biomarkers TACSTD2, ENTPD1,
and SERPINA1 at different time points in the differentiation
trajectories of key cells were visualized (Figure 7B). The results
indicate that tissue stem cells, epithelial cells, and smooth muscle

cells are involved in three stages of the cell differentiation process:
epithelial cells represent the first stage, smooth muscle cells
represent the second stage, and tissue stem cells represent both
the second and third stages. The expression of ENTPD1 first
decreases and then increases across the three different stages of
differentiation; the expression of SERPINA1 first increases and then
decreases across the three stages, and the expression of
TACSTD2 first decreases, then increases, and finally decreases
again across the three different stages of differentiation.
Furthermore, ENTPD1 showed higher expression levels in the
epithelial cell differentiation stage, while SERPINA1 and
TACSTD2 showed higher expression levels in the tissue stem cell
differentiation stage.

Results of RT-qPCR biomarker analysis of
PTC cell lines

To further validate our result, we selected biomarkers (ENTPD1,
SERPINA1, and TACSTD2) for RT-qPCR analysis in PTC cell lines
(TPC-1 and IHH4). Due to experimental limitations, normal
thyroid cells were not included as controls in this study.
Therefore, we used TPC-1 as the reference cell line to calculate
relative expression differences between the two cell lines. These
results were then correlated with the log2FC values derived from
control vs. tumor groups in the PTC GSE3467 dataset to indirectly
assess expression trends between normal and tumor conditions. The
results are presented in Figure 8. RT-qPCR revealed significantly
higher expression of ENTPD1, SERPINA1, and TACSTD2 in
IHH4 than in TPC-1 (2−ΔΔCt >1.5-fold; P < 0.05), and this trend
aligned with PTC GSE3467 dataset, showing upregulation in PTC
tumors (log2FC > 1.0) (Supplementary Table S13).

Discussion

Thyroid cancer is the ninth most common cancer worldwide
(Sung et al., 2021). In the last few years, the incidence of thyroid
cancer has continuously increased, mainly because of the increased
detection rate of PTC (Kitahara and Sosa, 2016). However, the
carcinogenesis of PTC is a complex biological process characterized
by various molecular abnormalities, and the reasons for its high
prevalence remain poorly understood (Teng et al., 2018). Thus, for
diagnosis and prognosis, there remains a compelling need to decode
novel molecular targets and/or processes that underlie the
pathogenesis and progression of PTC (Ye et al., 2017).

Our integrative analysis followed a logical workflow to first
identify candidate biomarkers and key cells from RNA-seq and
scRNA-seq, then validate their diagnostic values, and finally
investigate their cellular functions in the PTC microenvironment.
Through this systematic multi-omics approach, we first established
the diagnostic values of ENTPD1, SERPINA1 and TACSTD2 and
then uncovered their roles in key cellular interactions and
differentiation trajectories.

In this study, we obtained PTC RNA-seq and scRNA-seq
datasets from the GEO database. Through differential gene
analysis, WGCNA, and MCODE analysis of the RNA-seq data,
we identified 12 candidate genes. We then applied LASSO, SVM-
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RFE, and Boruta algorithms to screen these 12 candidate genes and
performed ROC analysis and nomogram analysis, ultimately
identifying three biomarkers, namely, ENTPD1, SERPINA1, and
TACSTD2. A search in GEO for existing PTC RNA-seq cohort

studies has not identified any cohort studies that have found
ENTPD1, SERPINA1, TACSTD2, or their combinations as
potential biomarkers for PTC. ENTPD1, also known as CD39, is
a cell membrane protein belonging to the ecto-nucleoside

FIGURE 7
(A) Pseudotime analysis of key cells; (B) expression of biomarkers at different time points in the differentiation trajectories of key cells.
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triphosphate diphosphohydrolase family and is highly expressed in
various malignancies, such as lymphoma (Bastid et al., 2015),
multiple myeloma (Häusler et al., 2011), and renal cell carcinoma
(Yang et al., 2020). Additionally, CD39 is expressed on the surface of
immune cells and exosomes, ultimately affecting antitumor
immunity through the dual pathways of eATP consumption and
adenosine accumulation (Allard et al., 2017). It is also considered a
novel biomarker of T-cell exhaustion and an immune checkpoint
target for cancer therapy, with potential for certain clinical
applications (Allard and AllardB, 2020). Studies have predicted
that ENTPD1 is closely related to the occurrence, development,
and prognosis of PTC (Fan et al., 2021). SERPINA1, a 1-antitrypsin
primarily synthesized in specific cells, plays multiple roles in
physiological and pathological processes such as angiogenesis,
intravascular fibrinolysis, and tumor metastasis (Farshchian et al.,
2011). Studies have shown that SERPINA1 is significantly
upregulated in PTC (Liu et al., 2023). Experimental studies have
indicated that SERPINA1 is positively correlated with the
proliferation and migration abilities of PTC cells (Li et al., 2023).
TACSTD2, also known as Trop2, is a transmembrane glycoprotein
associated with tumor invasion and proliferation (Zaman et al.,
2019). Studies have shown that Trop2 is overexpressed in various
tumors, such as breast cancer, cervical cancer, and colorectal cancer,
and is related to the prognosis of cancer patients (Lai et al., 2024).
Experimental studies have shown that Trop2 is upregulated in PTC
(Attia et al., 2024). These findings are consistent with the results of
this study, indicating the reliability of the methods and results of
this research.

The GSEA results suggest that ENTPD1, SERPINA1, and
TACSTD2 may be involved in the occurrence and development
of PTC by jointly regulating the spliceosome, Parkinson’s disease,
and cytokine–cytokine receptor interaction pathways. Zhang et al.
(2019) found that the cytokine–cytokine receptor interaction
pathway is closely related to the occurrence and development of
PTC. Lin et al. (2019) found that 46 differentially expressed
immune-related genes are significantly associated with the clinical
outcomes of PTC patients, and functional enrichment analysis
shows that these genes are actively involved in the
cytokine–cytokine receptor interaction pathway. Zhang et al.
(2015) demonstrated that KEGG enrichment analysis of
differential genes related to PTC includes the classic signal

pathway of cytokine–cytokine receptor interactions (Zhang et al.,
2015). This is consistent with the results of this study. However, the
relationship between the spliceosome and Parkinson’s disease
pathways and PTC has not yet been reported in any studies.

The scRNA-seq analysis identified a total of six different cell
types, namely, tissue stem cells, epithelial cells, T cells, endothelial
cells, macrophages, and smooth muscle cells. Xianhui Ruan
conducted a comprehensive analysis of the PTC scRNA-seq
dataset GSE191288, setting a resolution of 0.8, and preliminarily
determined 27 cell types. By analyzing all marker genes in each
cluster of the dataset to select the main cell types, 10 well-annotated
cell types were ultimately selected for analysis, namely, B cells, DCs,
endothelial cells, epithelial cells, macrophages, monocytes, NK cells,
smooth muscle cells, T cells, tissue stem cells, and iPS cells (Ruan
et al., 2023). This is consistent with the six cell types annotated in the
analysis results of this study. Further analysis of the abundance of
each cell type in tumor and normal group samples showed that there
were significant changes in the abundance of tissue stem cells,
epithelial cells, endothelial cells, macrophages, and smooth
muscle cells in the tumor group. The Wilcoxon rank-sum test
was used to compare the expression levels of the biomarkers
ENTPD1, SERPINA1, and TACSTD2 in the cell types with
significant changes, ultimately identifying tissue stem cells,
epithelial cells, and smooth muscle cells as key cells in PTC.

Cell communication analysis of key cells revealed that epithelial
cells mainly interact with tissue stem cells and smooth muscle cells
through the ligand–receptor pairs COL4A1–CD4 and
COL4A2–CD4, and violin plots demonstrated that ligands
COL4A1 and COL4A2 were highly expressed in epithelial cells,
while the receptor CD4 showed elevated expression in both tissue
stem cells and smooth muscle cells. The collagen signaling pathway
is the most important pathway; although the cytokine–cytokine
receptor pathway (GSEA) and the collagen pathway (scRNA-seq)
appear distinct, they are mechanistically interconnected—functional
synergy. Cytokine pathways regulate collagen-modifying enzymes
(e.g., LOXL2), aligning with the microenvironment remodeling
mechanism (Pu et al., 2021b). This indicates that the
ligand–receptor pairs COL4A1–CD4 and COL4A2–CD4 play a
key role in the communication network between epithelial cells
and both tissue stem cells and smooth muscle cells through the
collagen signaling pathway.

FIGURE 8
Relative mRNA expression (2−ΔΔCt) of biomarkers (ENTPD1, SERPINA1, and TACSTD2) normalized to TPC-1 cell.
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Pseudotime analysis revealed that epithelial cells dominate the
initial differentiation stage, suggesting that they may either represent
the cellular origin of PTC or an early differentiated state. This
implicates epithelial cells as the likely source of malignant
transformation. In the second differentiation phase, the
emergence of smooth muscle cells indicates possible
epithelial–mesenchymal transition (EMT) or mesenchymal
transformation within PTC, which correlates with tumor
invasiveness and potential involvement in stromal remodeling
processes such as collagen deposition and fibrosis. Tissue stem
cells, spanning multiple pseudotime stages, exhibit bidirectional
differentiation potential, likely driving tumor initiation, therapy
resistance, and recurrence. Notably, ENTPD1 expression is
elevated during epithelial cell differentiation, implying its
regulatory role in the malignant transformation of epithelial cells.
Concurrently, SERPINA1 and TACSTD2 show peak expression in
tissue stem cell phases, suggesting their cooperative regulation of
stem-like malignant properties in thyroid cancer. Collectively,
these findings propose that ENTPD1, SERPINA1, and
TACSTD2 may coordinately promote PTC progression by
initiating epithelial transformation and maintaining aggressive
stem-like subpopulations.

RT-qPCR analysis demonstrated significantly higher expression
levels of ENTPD1, SERPINA1, and TACSTD2 in IHH4 cells than in
TPC-1 cells (2−ΔΔCt >1.5-fold, P < 0.05), suggesting that the
IHH4 cell line may better recapitulate PTC subtypes with
naturally elevated expression of these biomarkers and could be
prioritized for subsequent experiments. Furthermore, RNA-seq
data from GSE3467 (Supplementary Table S12) revealed
consistent upregulation of these genes in PTC tumor tissues
versus normal controls (log2FC > 1.0), which aligns with the
elevated expression pattern observed in IHH4 cells. This
concordance between our experimental data and public database
results not only validates the reliability of the identified biomarkers
but also supports the potential diagnostic utility of ENTPD1,
SERPINA1, and TACSTD2 for PTC. The molecular
characteristics preserved in IHH4 cells make them an ideal
model system for functional studies of these genes. Due to
experimental limitations, this study did not include normal
thyroid cell controls for direct comparison, which warrants
further validation using clinical specimens or primary cell
cultures in future investigations.

In conclusion, this work, based on bioinformatics analysis
techniques, identified three biomarkers that can predict PTC at
the transcriptome and single-cell levels, with their combination
demonstrating strong predictive ability for PTC. Additionally, it
was found that these three biomarkers have some predictive
ability for other types of thyroid cancer, such as ATC and
FTC, and tissue stem cells, epithelial cells, and smooth muscle
cells as key cells in PTC at the cellular level. Further elucidation of
their mechanisms of action in PTC provides a new research
perspective for the precision treatment of PTC in future
clinical and basic research.

Compared to previous PTC biomarker studies (Zhang et al.,
2023), our integrative approach combining bulk and single-cell
transcriptomics provides both diagnostic markers and their
cellular-level mechanisms. Although existing machine learning
studies typically use one algorithm, our multi-algorithm

consensus improves reliability, as evidenced by higher AUC in
independent validations.

The workflow is generalizable to other cancers with appropriate
dataset availability. The WGCNA–machine learning pipeline can be
applied to any tumor with bulk RNA-seq data, while the single-cell
analysis framework is adaptable to malignancies with tumor
microenvironment complexity. However, clinical translation
requires validation in prospectively collected cohorts with
standardized protocols.

Conclusion

In summary, this study combines transcriptomic analysis
techniques and single-cell transcriptomic analysis techniques to
identify ENTPD1, SERPINA1, and TACSTD2 as potential
biomarkers for PTC at the transcriptomic level. The
cytokine–cytokine receptor interaction signaling pathway is
closely associated with the occurrence and development of PTC,
and tissue stem cells, epithelial cells, and smooth muscle cells are
considered key cells in PTC at the cellular level. The
ligand–receptor pairs COL4A1–CD4 and COL4A2–CD4 play a
crucial role in the collagen signaling pathway, mediating the
communication network between epithelial cells, tissue stem
cells, and smooth muscle cells, and ENTPD1, SERPINA1, and
TACSTD2 play key roles in the differentiation process of the three
key cell types, namely, tissue stem cells, epithelial cells, and smooth
muscle cells. These findings may contribute to the development of
early diagnostic strategies, prognostic markers, and therapeutic
targets for PTC.
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