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Background: The escalating global cancer burden necessitates the development
of biomarkers with enhanced specificity and sensitivity for early diagnosis and
therapeutic efficacy monitoring. The CNIH4 gene, an emerging biomarker, is
increasingly recognized for its role in the malignant progression across
various cancers.

Methods: We conducted a comprehensive multi-omics analysis of CNIH4,
including pan-cancer expression profiles, epigenetic alterations, immune
microenvironment characteristics, and therapeutic response patterns. Our
focus was on clinical features, molecular underpinnings, and drug sensitivity in
breast cancer (BRCA) associated with CNIH4. In vitro studies were also performed
to assess the effects of CNIH4 knockdown on cell proliferation and cell cycle in
the MDA-MB-231 cell line.

Results: CNIH4 upregulation was observed in multiple cancers, significantly
correlating with genomic instability. High CNIH4 expression levels were linked
to poor prognosis across cancers and associated with key cancer-related
pathways, particularly those in cell cycle regulation and DNA repair.
Correlation analyses suggest a role for CNIH4 in the tumor immune
microenvironment, as evidenced by its association with immune subtypes,
immune-related genes, and immune cell infiltration. Single-cell and spatial
transcriptome analyses confirmed that CNIH4 expression in BRCA predicts
tumor malignancy. Drug sensitivity analysis revealed a significant correlation
between CNIH4 and responsiveness to various kinase inhibitors and
chemotherapeutic agents. In vitro experiments demonstrated that
CNIH4 knockdown significantly impacts the proliferation and cell cycle of
MDA-MB-231 cells.

Conclusion: Our study highlights CNIH4 as a promising pan-cancer biomarker
with significant implications for tumor progression and a critical role in cell cycle
regulation in BRCA.
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1 Introduction

The burgeoning global cancer burden is a critical health concern
(Bray et al., 2024). Projections from the American Cancer Society
suggest that in 2024, there will be approximately 2 million new
cancer cases and 610,000 cancer-related deaths in the United States
alone (Siegel et al., 2024). Despite significant advances in therapies
such as inhibitory immune checkpoint inhibitors and Chimeric
Antigen Receptor T-cell therapy, their efficacy is often hindered
by inter-individual variability, tumor heterogeneity, and the
complexity of the tumor microenvironment (Suay et al., 2024;
Barragan-Carrillo et al., 2025; Ai et al., 2024). Moreover, current
diagnostic, prognostic, and therapeutic cancer markers show
considerable limitations, with a lack of specificity and sensitivity
that impedes the precision of early diagnosis and treatment efficacy
monitoring (Zhou et al., 2024). For instance, CA15-3 and CA27-29,
key biomarkers for breast cancer (BRCA), suffer from specificity
limitations (Seale and Tkaczuk, 2022). Similarly, alpha-fetoprotein
(AFP), the most reliable marker for primary liver cancer diagnosis,
also faces challenges in sensitivity and specificity (Hu et al., 2022).
The intricacies of the tumor microenvironment further complicate
the ability of a single marker to accurately reflect the tumor’s
biological characteristics and treatment responses. Consequently,
there is an urgent need for research to identify novel biomarkers that
can enhance the precision and personalization of cancer
management. In this context, pan-cancer research has emerged as
a vital avenue to address these challenges, offering insights into the
intricacies of cancer biology and deepening our understanding of
cancer heterogeneity (Li et al., 2023; Chen et al., 2024).

The CNIH4 gene, also known as Cornichon family AMPA
receptor auxiliary protein 4, is implicated in various
tumorigenesis processes (Fang et al., 2023; Liu and Li, 2022).
This gene, part of the Cornichon protein family, is involved in
the regulation of G protein-coupled receptor (GPCR) trafficking
from the endoplasmic reticulum to the cell surface and in facilitating
GPCR export through the early secretory pathway (Sauvageau et al.,
2014). The expression of CNIH4 is modulated by TMED9, and
research indicates that increased CNIH4 levels are significantly
correlated with the malignant progression of multiple cancer
types, such as liver hepatocellular carcinoma (LIHC) and colon
cancer (Kannangai et al., 2007; Mishra et al., 2019). Within
oncology, CNIH4 is emerging as a biomarker that correlates with
poor prognosis and enhanced cell proliferation (Zhang et al., 2023).
Notably, CNIH4 overexpression is linked to adverse outcomes in
low-grade glioma (LGG) and cervical cancer, and its expression in
cervical cancer is associated with tumor progression and the
inhibition of ferroptosis (Xiao et al., 2023; Wang et al., 2023;
Yang et al., 2023). While CNIH4 has been the subject of
increasing investigation in specific cancers, comprehensive pan-
cancer studies are lacking, which are essential for elucidating the
functional relationship between CNIH4 and a broad spectrum of
cancers. Understanding this relationship is crucial for advancing our
knowledge of tumor heterogeneity and for the development of
innovative therapeutic approaches.

This study aims to further explore the relationship between the
CNIH4 gene and tumor prognosis and immune microenvironment,
to reveal the key role of CNIH4 in tumor development, and to
evaluate its potential application in clinical diagnosis and treatment.

Through a comprehensive analysis of the function and impact of
CNIH4 in various cancers, we aim to provide new strategies for
tumor treatment and improve prognosis assessment methods. In
particular, this study will focus on the association between
CNIH4 and BRCA, aiming to deepen the clinical significance,
prognostic value, and functional mechanism of CNIH4 in BRCA,
thereby providing new perspectives and strategies for precision
medicine and comprehensive management of BRCA.

2 Materials and methods

2.1 Datasets acquisition

Gene expression profiles of normal human tissues were sourced
from the Genotype-Tissue Expression (GTEx) database. Immune cell
expression profiles and pan-cancer immunohistochemistry data were
procured from the Human Protein Atlas (HPA) database (Jin et al.,
2023). Raw and processed RNA-seq data, along with clinical data, were
retrieved from the legacy archive of the Genomic Data Commons
(GDC) at https://portal.gdc.cancer.gov/legacy-archive/search/f and the
Pancancer Atlas publication page (https://gdc.cancer.gov/about-data/
publications/pancanatlas). Pan-cancer copy number variation (CNV)
and methylation data were accessed via the UCSC XENA website
(https://xenabrowser.net/datapages/). The level 4 Simple Nucleotide
Variation dataset for all The Cancer Genome Atlas (TCGA) samples
was derived from the GDC website (https://portal.gdc.cancer.gov/).
Tumor mutation burden (TMB) for each tumor was calculated
using the tmb function of the R package maftools (Mayakonda et al.,
2018). Pan-cancer Microsatellite instability (MSI) scores, loss of
heterozygosity (LOH) scores, homologous recombination deficiency
(HRD) scores, and immune subtype data were extracted from prior
studies (Bonneville et al., 2017; Thorsson et al., 2018). The BRCA
Genome-wide association study (GWAS) dataset was sourced from the
Open GWAS website (https://gwas.mrcieu.ac.uk/). The functional
states of 14 tumor cells were downloaded from the CancerSEA
database (http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) (Yuan
et al., 2019). Protein expression data were obtained from The
Cancer Proteome Atlas (TCPA, http://www.tcpaportal.org). Pan-
cancer immune cell infiltration data were sourced from the Tumor
Immune Estimation Resource 2.0 (TIMER2.0, http://timer.cistrome.
org/). Pan-cancer cancer immune cycle data were retrieved from
Tracking Tumor Immunophenotype (TIP, http://biocc.hrbmu.edu.
cn/TIP/) (Xu et al., 2018). Single-cell transcriptome data were
derived from the Tumor Immune Single-cell Hub 2 database
(TISCH2, http://tisch.comp-genomics.org/). Spatial transcriptome
datasets were obtained from the 10x Genomics server (https://www.
10xgenomics.com/) and previous studies (Barkley et al., 2022; Bassiouni
et al., 2023). Supplementary Tables S1, S2 provide details of the spatial
transcriptome dataset and detailed abbreviations for the 33 tumors.

2.2 Evaluation of CNIH4 expression patterns,
genomic changes and their prognostic
impact in pan-cancer

Gene expression data were derived from the corrected
TCGA dataset, with RNA-seq data obtained from the
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EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv
file provided by PanCanAtlas. To expand the sample size, we paired
the normal sample TPMexpression fromGTExwith the TCGA tumor
TPM expression (from the tcga_RSEM_gene_tpm and gtex_RSEM_
gene_tpm datasets in the UCSC Xena database). To ensure accuracy
and account for anatomical factors, only TCGA primary tumor tissues
were retained for pairing with GTEx data. The data were converted
into unitless Z-score scores by tumor using (x-μ)/σ to standardize the
data. Wilcoxon Rank Sum Tests were employed to compare the
statistical differences in expression between tumor and normal
tissues. The gganatogram package was employed to create organ
maps for visualizing the differential expression of CNIH4 between
tumor and normal groups in each organ. The pan-cancer expression of
CNIH4 was verified using the Gene Expression database of Normal
and Tumor tissues 2 (GENT2, http://gent2.appex.kr/gent2/) and the
TIMER2.0 database (Park et al., 2019).

A pan-cancer analysis of genomic mutations, amplifications,
and deep deletions was conducted using the cBioPortal online server
(http://www.cbioportal.org/). Additionally, the CNV and
methylation levels of CNIH4, along with their correlation with
mRNA expression, were assessed based on pan-cancer CNV and
methylation data. To identify clinically relevant alternative splicing
(AS) events, the ClinicalAS module of the OncoSplicing website
(http://www.oncosplicing.com/) was used (Zhang et al., 2022). All
AS events from the SplAdder and SpliceSeq projects were included,
and the percent spliced-in (PSI) differences of AS events between
normal and tumor tissues, as well as their associations with clinical
outcomes, were compared. Co-localization analysis of Expression
Quantitative Trait Loci-Genome-Wide Association Study (eQTL-
GWAS) was performed using a Bayesian co-localization approach.
The co-localization evidence cutoff was set at PP.H4.abf >80%, and
results were visualized using stack_assoc_plot from the
gassocplot2 package (Zhou et al., 2023).

Receiver operating characteristic (ROC) analysis was conducted
using the pROC package, calculating the 95% confidence interval,
total area under the curve, and smooth ROC curve to evaluate the
diagnostic performance of CNIH4 gene expression for tumor and
normal groups. Univariate Cox survival analysis and Kaplan-Meier
(KM) survival analysis were performed using the survival package in
R to assess CNIH4 expression as a predictor of overall survival (OS),
disease-specific survival (DSS), progression-free interval (PFI), and
disease-free interval (DFI). Optimal cutoff values for high-
expression and low-expression groups were determined using the
survminer package, and the log-rank test was performed using the
survfit function to evaluate the significance between groups. The
restricted cubic spline (RCS) method was employed to explore non-
linear effects of CNIH4 on survival risk. Patients were stratified into
four groups (Q1, Q2, Q3, Q4) based on CNIH4 expression, with
Q1 representing the top 25% of samples with the highest expression
and Q4 the bottom 25% with the lowest. The chi-square test was
used to detect significant differences in patient composition across
groups. Univariate and multivariate Cox proportional hazard
regression analyses were conducted to identify potential
independent prognostic factors, and the “forestplot” package was
used to create forest plots. Based on the multivariate Cox
proportional hazard model results, the “rms” package was
utilized to construct a nomogram predicting 1-year, 2-year, and
3-year OS rates for clinical patients (Li et al., 2023).

2.3 Gene set enrichment analysis (GSEA)

Based on the functional states of 14 tumor cell types cataloged by
the CancerSEA database, we employed the z-score parameter in the
R package GSVA to calculate the z-scores for these 14 functional
state gene sets, thereby deriving a composite z-score for each
(Hänzelmann et al., 2013; Lee et al., 2008). The scale function
was subsequently applied to standardize these scores into gene
set scores. We then computed the Pearson correlation coefficients
between the CNIH4 gene and each gene set score. Tumor samples
were stratified into high and low CNIH4 expression groups based on
the median expression value of CNIH4. The limma package was
utilized for differential expression analysis, yielding log2 fold change
(log2FC) values for each gene. Thereafter, the GSEA function within
the clusterProfiler package was employed to conduct gene set
enrichment analysis with both the hallmark gene set and the
KEGG metabolic gene set (Yu et al., 2012). This analysis
generated normalized enrichment scores (NES) for each gene set,
performed significance testing and multiple hypothesis testing on
the NES values, and visualized the results using a bubble chart.
Protein expression data were sourced from the TCPA database.
Pathway activity scores for 10 cancer-related pathways—including
TSC/mTOR, RTK, RAS-MAPK, PI3K-AKT, hormone ER, hormone
AR, EMT, DNA damage response, cell cycle, and apoptosis—were
ascertained based on published studies (Liu et al., 2023). The
wilcox.test function was applied to assess the differences in
pathway activity scores between the high and low
CNIH4 expression groups. Additionally, we conducted a
differential expression analysis to further elucidate the potential
pathways and molecular mechanisms associated with CNIH4 in
BRCA. Tumor samples were collected from breast cancer patients
and categorized into high and low-expression groups based on
the median expression level of CNIH4. Differential analysis
was executed utilizing the limma package, with genes exhibiting
|logFC| > 0.585 and a corrected p-value of less than 0.05 classified
as significantly different. Volcano plots were generated for
visualization. Furthermore, functional enrichment analysis was
performed using the Metascape online platform (https://
metascape.org/gp/index.html#/main/step1).

2.4 Immune correlation analysis

Utilizing pan-cancer immune expression profile data, we
assessed the distribution of various immune subtypes between
high and low-expression groups of CNIH4. Pearson correlation
analysis was conducted on each immune gene with CNIH4 using the
cor.test function, and the resulting data were visualized as a heatmap
with the ComplexHeatmap package in R. The R package
ESTIMATE was employed to determine the stromal and immune
scores, as well as the ESTIMATE scores, for each patient’s tumor
based on CNIH4 gene expression levels (Yoshihara et al., 2013). The
XCELL algorithm assessed the correlation between CNIH4 gene
expression and immune cell infiltration (Aran et al., 2017).
Furthermore, the TIP database provided quantification of the
scores for the seven steps of the cancer immune cycle across
various cancers. Spearman correlation analysis was applied to
calculate the correlations between individual genes and TIP scores.
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2.5 Single-cell and spatial
transcriptome analysis

Pan-cancer single-cell resolution expression data for genes in BRCA
were sourced from the TISCH2 database. We employed the pheatmap
package to construct heatmaps visualizing the pan-cancer single-cell
expression landscape of these genes. UniformManifold Approximation
and Projection (UMAP) technology was utilized to delineate distinct
cell populations, with a focus on visualizing and analyzing the
expression data of the CNIH4 gene. Cells were categorized into
CNIH4 expression-positive and -negative groups, and the
proportion of each cell type within these groups was calculated. The
AUCell package was applied to assess the scores of various biological
pathways, including immune, metabolic, signaling, proliferation, cell
death, and mitochondrial-related processes. The limma package was
used to compare the pathway scores between the CNIH4 expression-
positive and -negative groups.

Drawing on previous studies, the Cottrazm package was used for
deconvolution analysis of cell composition in spatial transcriptome
sections, identifying the predominant cell type in each microregion
(Shi et al., 2024; Xun et al., 2023). The SpatialPlot function from the
Seurat package was employed for visualization purposes. Data were
normalized using the scale function for Z-score standardization,
with pheatmap used for subsequent visualization. We examined the
average expression of the CNIH4 gene across cell types in each
section. The SpatialFeaturePlot function in the Seurat package
visualized the expression landscape of the CNIH4 gene within
each microregion. Spearman correlation analysis was conducted
to determine the correlations between cell content across all spots, as
well as between cell content and gene expression. The linkET
package was utilized for visualizing these correlations.

2.6 Drug sensitivity analysis

We employed Spearman correlation analysis to determine the
correlation between gene expression and dose-response curve (area
under the curve - AUC) values within the Cancer Therapeutics
Response Portal (CTRP) and Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM) databases (Rees et al., 2016;
Corsello et al., 2020). A negative correlation indicates increased drug
sensitivity with higher gene expression levels, while a positive
correlation suggests greater drug resistance. Additionally, we
assessed the correlation between CNIH4 expression and the half-
inhibitory concentration (IC50) of various drugs in cancer cell lines,
utilizing expression data and drug information from the CellMiner
database (Reinhold et al., 2012).

2.7 Cell culture

The human BRCA cell lines HBL-100 and MDA-MB-231 were
procured from Pricella Biotechnology inWuhan, China. MDA-MB-
231 cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, HyClone, USA) supplemented with 10% fetal bovine
serum (FBS, Vazyme, China), 100 mg/mL streptomycin, and
100 U/mL penicillin. HBL-100 cells were maintained in Roswell
Park Memorial Institute 1,640 Medium (RPMI-1640, Gibico, USA)

with the same supplements. Both cell lines were incubated in a
humidified atmosphere containing 5% CO2 at a temperature
of 37°C.

2.8 Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen, USA)
according to the manufacturer’s protocol. One microgram of RNA was
reverse transcribed into cDNA using the HiScript III 1st Strand cDNA
Synthesis Kit (Vazyme, China). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was amplified from each sample to verify
equal cDNA input. Each PCR reaction comprised 1 μL of cDNA, 0.6 μL
of each forward and reverse primer (10 μM), 7.5 μL of ChamQ
Universal SYBR qPCR Master Mix (Vazyme, China), and 6.3 μL of
ddH2O. The PCR cycling conditions were as follows: initial
denaturation at 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 15 s, annealing at 62°C for 1 min, and
extension at 72°C for 15 s. A final extension step was conducted at
60°C for 1 min and 95°C for 15 s. The primer sequences for GAPDH
were forward: 5′-GGAGCGAGATCCCTCCAAAAT-3′ and reverse:
5′-GGCTGTTGTCATACTTCTCATGG-3’. The primer sequences for
CNIH4 were forward: 5′-TCAACTTACCTGTTGCCACTTG-3′ and
reverse: 5′-TCTGTTGGATCAAACACTCCCA-3’.

2.9 Western blotting

Following siRNA treatment, cells were harvested and collected via
centrifugation after triple washing with phosphate-buffered saline
(PBS). Total protein extracts were prepared by supplementing RIPA
buffer with protease inhibitors (Solarbio, China). Western blot analysis
was conducted using primary antibodies against CNIH4 (Santa Cruz,
USA) and GAPDH (Proteintech, China), according to the
manufacturer’s protocols. Goat Anti-Mouse IgG-HRP (Proteintech,
China) and Goat Anti-Rabbit IgG-HRP (Proteintech, China) served
as secondary antibodies. GAPDH was employed as a protein loading
control. Signal detection was achieved using an enhanced
chemiluminescence (ECL) reagent (4A Biotech, China).

2.10 Flow cytometric analysis of cell cycle

The cell cycle distribution of MDA-MB-231 cells was assessed
using the Cell Cycle Detection Kit (KeyGen Biotech, China). Briefly,
cells were collected and fixed in 70% cold ethanol at 4°C overnight.
Following two washes with PBS, the cells were incubated with a PI/
RNase staining buffer for 30 min. The stained cells were then
analyzed using a Beckman flow cytometer and CytExpert Software.

2.11 EdU cell proliferation assay

The proliferation of MDA-MB-231 cells was assessed using the
EdU (5-ethynyl-2′-deoxyuridine) cell proliferation assay, following
the manufacturer’s protocol. Approximately 1 × 10̂5 cells were
seeded in 12-well plates and cultured for 24 h before the assay. A
total of 500 μL of EdU reagent (10 μM, Beyotime, C0071S) was
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added to each well and incubated for 2 h to label the proliferating
cells. After three washes with PBS, cells were fixed in a 4%
paraformaldehyde solution (Dingguo Biotechnology, AR-0211)
for 15 min, permeabilized with 0.3% Triton X-100 (GenStar,
VA11410) for an additional 15 min, and then incubated with the

click-reaction reagent for 30 min at room temperature in the dark. A
1× Hoechst 33,342 reagent was used to counterstain the nucleus.
Staining results were observed using a Nikon ECLIPSE Ti-S
fluorescence microscope system, and data were collected with
NIS-Elements F v4.0 software.

FIGURE 1
(A) Evaluation of the differential expression of CNIH4 in pan-cancer using TCGA tumor and normal samples. The upper and lower ends of the box
represent the interquartile range of the values. The line in the box represents the median. Wilcoxon Rank Sum Tests were used to compare the statistical
differences in expression between the two groups; (B) Assessment of the pan-cancer differential expression of CNIH4 based on paired TCGA tumor and
normal samples. Paired samples were connected by lines. Wilcoxon signed-rank test was used to compare expression levels between two groups;
(C) Pan-cancer organ map illustrating the differential expression of CNIH4 derived from TCGA and GTEx. Blue means Z score is less than 0, red means Z
score is greater than 0, and the darker the color, the larger the absolute value of Z score; (D) Box plot demonstrating the pan-cancer differential
expression of CNIH4 based on TCGA and GTEx The upper and lower ends of the box represent the interquartile range of the values. The line in the box
represents the median. Wilcoxon Rank Sum Tests were used to compare the statistical differences in expression between the two groups; (E) Analysis of
the differential protein expression of CNIH4 in pan-cancer utilizing the HPA database. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not
significant.
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FIGURE 2
(A) Assessment of the pan-cancer mutational landscape of CNIH4 using the cBioPortal database; (B) Mutation frequency of CNIH4 across various
cancer types. The mutation frequency is represented by the height of the bar graph. Different bar colors indicate different mutation types (green:
Mutation; purple: Structural Variant; red: Amplification; blue: Deep Deletion; gray: Multiple Alterations).; (C) Levels of copy number variation for CNIH4 in
pan-cancer; (D) Correlation between copy number variation and mRNA levels of CNIH4 in pan-cancer; (E) Differential methylation levels of
CNIH4 in pan-cancer; (F)Correlation betweenmethylation levels andmRNA expression of CNIH4 in pan-cancer; (G) Alternative splicing events involving
CNIH4 in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001; (H–K) percent spliced-in (PSI) differences when comparing tumors with corresponding healthy
or adjacent tissues and the association between CNIH4 exon_skip_18408 events and prognosis.
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FIGURE 3
(A) Summarize the results of two tests for four types of survival in the TCGA database. For each survival period, the Unicox and km methods were
used to calculate respectively. Red represents at risk, green represents protection, grey represents no calculation, and white represents no significance;
(B) Univariate Cox survival analysis between CNIH4 and overall survival in Pan-Cancer. A risk ratio greater than 1 indicates an increased risk, while a risk
ratio less than 1 indicates a decreased risk. Error bars represent 95% confidence intervals; (C) Kaplan-Meier survival analysis between CNIH4 and
overall survival in Pan-Cancer. Red represents the high expression group, blue represents the low expression group, and the Log-rank test examines the
difference in the survival curves of the two groups. P less than 0.05 is considered significant.
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2.12 Statistical analysis

Statistical analyses were conducted using R version 4.2.1 in
conjunction with relevant online databases. The unpaired
Wilcoxon Rank Sum Test and Signed Rank Test were applied
to assess the significance of differences between paired groups,
while the Kruskal–Wallis test (kruskal.test) was utilized to
evaluate differences among multiple sample groups. Survival
analyses were performed using KM curves, with log-rank tests
or Cox proportional hazards regression models serving as
supplementary statistical measures. Pearson or Spearman
correlation coefficients were calculated to determine the
strength and direction of relationships between variables. All
cellular experiments were conducted in triplicate. Data from
cellular experiments were analyzed using GraphPad Prism for
Windows (version 9.0.0). Statistical significance was set at p <
0.05, with p < 0.05 indicated by one asterisk (*), p < 0.01 by two
asterisks (**), p < 0.001 by three asterisks (***), and ‘ns’ denoting
not significant.

3 Results

3.1 CNIH4 is significantly upregulated in
multiple cancers

Analysis based on the GTEx database revealed that
CNIH4 expression was elevated in normal human tissues, including
skeletal muscle, esophagus, and adipose tissue (Supplementary
Figure 1A). Examination of immune cell expression profiles
indicated that CNIH4 was markedly overexpressed in various
monocyte subtypes (Supplementary Figure 1B). Differential
expression analysis using TCGA data showed that CNIH4 was
significantly upregulated in bladder urothelial carcinoma (BLCA),
BRCA, and esophageal carcinoma (ESCA) cancers (Figures 1A, B).
To augment the sample size, we integrated data from the GTEx
database. An organ map depicted that CNIH4 was dysregulated and
generally overexpressed in tumors of the liver, stomach, breast,
intestine, and brain (Figure 1C). Furthermore, box plots revealed
significantly high CNIH4 expression across 26 cancer types,

FIGURE 4
(A) Pearson correlation analysis between pan-cancer malignant feature score and CNIH4. The ordinate is the zscore standardized score of the
combined z-score value of each functional state, the abscissa is the zscore of gene expression, different colors represent different functional state types,
and R is the coefficient of Pearson correlation analysis; (B) Pearson correlation analysis between pan-cancer malignant cell cycle score and CNIH4; (C)
Gene set enrichment analysis was performed on the Hallmark gene set and the KEGGmetabolic gene set in Pan-Cancer using the GSEA function in
the clusterProfiler package. Negative NES indicates that the target pathway is significantly enriched in the low expression group, and vice versa. Darker
colors represent higher absolute values of enrichment scores. The bubble size reflects the adjusted p-value.; (D) Differences in TCPA pathway activity. In
the analysis, red indicates that pathway activity is elevated in the high expression group, green signifies that pathway activity is diminished in the high
expression group, and white denotes no significant difference.
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including BRCA (Figure 1D). Verification using the GENT2 and
TIMER2.0 databases confirmed the significant overexpression of
CNIH4 in multiple tumors (Supplementary Figures 1C, D).
Additionally, immunohistochemical analysis from the HPA database
showed that CNIH4 protein was markedly overexpressed in various
tumor types, including BLCA, BRCA, and lung adenocarcinoma
(LUAD) (Figure 1E; Supplementary Figure 1E).

3.2 Genomic variations, epigenetic
alterations, and AS events of CNIH4 in
pan-cancer

Analysis utilizing the cBioPortal server revealed that
CNIH4 mutations were present in 259 of 10,953 patients, with
the highest mutation rate observed in BRCA, predominantly

FIGURE 5
(A, B) Differential expression of CNIH4 among different immune subtypes in pan-cancer. The top bar graph shows the proportion of each subtype
across all samples. The second row illustrates the proportions of high-expression (red) and low-expression (green) gene groups for each subtype. The
bottom section displays the number and proportion of each subtype within each group; (C) Pearson correlation analysis between pan-cancer immune
genes and CNIH4. The intensity of red indicates a stronger positive correlation, while a deeper blue signifies a stronger negative correlation; (D)
ESTIMATE algorithm evaluates the correlation between CNIH4 and immune and stromal scores in pan-cancer; (E) Correlation analysis between pan-
cancer immune checkpoint genes and CNIH4; (F) XCELL algorithm evaluates the correlation between CNIH4 and immune cell infiltration in pan-cancer;
(G) Spearman correlation between TIP score and CNIH4 gene expression. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6
(A, B) Validation of high expression of CNIH4 in BRCA based on data from GEO dataset. The distribution of gene expression levels in tumor and
normal groups is shown above the figure. The box plot’s edges represent the interquartile range, and the line inside the box indicates the median; (C)
Compared with normal cells HBL-100, CNIH4 is significantly overexpressed in the BRCA cell line MDA-MB-231; (D) Expression of CNIH4 in BRCA
subtypes. The upper and lower boundaries of the box represent the interquartile range of the values, while the line within the box indicates the
median; (E) CNIH4 is significantly overexpressed in TNBC; (F, G) CNIH4 is more highly expressed in BRCA high clinical stage; (H) CNIH4 expression is
higher in malignant cells at the single cell level; (I) UMAP of main cell lineage in BRCA_GSE176078; (J) UMAP of CNIH4 in BRCA_GSE176078. The color
scale on the right side of the graph represents the expression level of the gene. Each dot in the graph represents a cell; (K) Differential expression of
CNIH4 gene among cells in BRCA_GSE176078. The horizontal axis represents various cell types, each identified by a distinct color. The vertical axis

(Continued )
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consisting of amplification mutations (Figures 2A, B). CNV analysis
indicated a prevalence of amplification mutations in CNIH4 across
multiple cancers, including BRCA, colon adenocarcinoma (COAD),
and LGG. In contrast, deletion mutations were more frequent in
kidney chromophobe (KICH) and sarcoma (SARC) (Figure 2C).

Further analysis of the TCGA-BRCA dataset highlighted CNV
across multiple chromosomes, with specific regions such as
‘chr1′, ‘chr8′, and ‘chr17′exhibiting higher GISTIC scores,
suggesting a potential role in BRCA (Supplementary Figure 2A).
CNIH4 expression in BRCA showed an upward trend with

FIGURE 6 (Continued)

denotes the gene expression values. Each scattered point corresponds to an individual cell; (L) The proportion of each cell type in the CNIH4 gene
expression positive group and negative group in BRCA_GSE176078. Red and blue indicate the positive and negative groups of CNIH4 gene expression,
respectively. The y-axis represents cell types, while the x-axis shows the proportion of each cell within the group, with bar length corresponding to this
proportion; (M) Differences in pathways of various cell types in the positive/negative groups of CNIH4 gene expression in BRCA_GSE176078. The
y-axis denotes various cell types, and the x-axis indicates different pathways. Red signifies an increase in pathway score (activation) in the
CNIH4 expression positive group, while blue denotes a decrease (inhibition). Bubble size reflects result significance.

FIGURE 7
(A) Expression of CNIH4 gene in each microdomain in BRCA spatial transcriptome sections; (B–E) The cell type with the largest proportion in each
microdomain at BRCA idle resolution and the spatial transcriptome localization of the CNIH4 gene. Each dot is a spot for spatial transcriptome
sequencing, and different colors represent different cell types. The darker the color (red) in the same spot, the higher the expression of the CNIH4 gene in
the spot; (F–I) Spearman correlation of CNIH4 gene expression with each cell type in microdomains at idle resolution. The red line indicates a
positive correlation, the green line denotes a negative correlation, the gray line signifies no statistical significance, and the thickness of the line reflects the
absolute value of the correlation coefficient.
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FIGURE 8
(A) Enrichment analysis of the Hallmark gene set and the KEGGmetabolic gene set. NES values indicate significant enrichment of the target pathway
in the CNIH4 low expression group, while positive NES values indicate enrichment in the high expression group. A p-value less than 0.05 and an adjusted
p-value less than 0.25 are considered statistically significant; (B–E)CNIH4 is significantly enriched in multiple cell cycle-related pathways. The gene set is
enriched at the upper end, indicating significant activation of the target pathway in the CNIH4 high expression group; (F) GSEA enrichment analysis
of multiple gene sets validates the correlation between CNIH4 and cell cycle pathways. Different colors represent distinct gene sets. A downward
direction in the bar graph indicates significant enrichment in the low-expression group, while an upward direction signifies enrichment in the high-
expression group; (G)Correlation analysis betweenCNIH4 gene expression and TCPA-RPPA sequencing functional protein CYCLINB1. Each scatter point
represents a sample, categorized into four groups based on median gene and protein values: high expression for both, high gene and low protein, low

(Continued )
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increasing copy number, ranging from homozygous deletion to high
copy number amplification (Supplementary Figure 2B). Samples
with the highest 25% CNIH4 expression in BRCA exhibited a higher
fraction of genomic alterations, indicating increased proliferation
activity, genomic instability, and heterogeneity (Supplementary
Figure 3C). Correlation analysis demonstrated a significant
positive correlation between CNIH4 mRNA expression and CNV
in multiple cancers, including BRCA (Figure 2D; Supplementary
Figure 2D). Epigenetic alteration analysis revealed dysregulation of
CNIH4 methylation in multiple tumors compared to normal tissues
(Figure 2E). A significant negative correlation was observed between
CNIH4 mRNA expression and methylation levels in various
methylation probes in pan-cancer (Figure 2F; Supplementary
Figures 3A–C). Survival analysis associated
CNIH4 hypomethylation with poor prognosis in cancers such as
adrenocortical carcinoma (ACC), LIHC, and glioblastoma
multiforme (GBM) (Supplementary Figure 3D).

Using OncoSplicing, we identified 36 clinically relevant AS
events of the CNIH4 gene, detailed in Supplementary Tables S3.
These include the CNIH4_AA-9954 event from the SpliceAdderSeq
project and the CNIH4_exon_skip_18408 event from the SpliceSeq
project. Figure 2G illustrates the pan-cancer analysis of the CNIH4_
exon_skip_18408 event’s PSI values. Notably, reduced PSI scores
were observed in tumor tissues from BRCA, COAD, LUAD, lung
squamous cell carcinoma (LUSC), and thyroid carcinoma (THCA)
compared to normal samples, while elevated PSI scores were noted
in tumor tissues from KICH (Figures 2G–I). Furthermore,
significant associations between PSI scores of CNIH4 and clinical
prognosis across various cancers were identified (Figures 2J, K).
Detailed information regarding the CNIH4_AA-9954 event can be
found in Supplementary Figures S4A–D. These findings suggest that
AS events of CNIH4 significantly influence the progression of
numerous cancers. Moreover, we discovered that the mRNA
expression of CNIH4 in pan-cancer was significantly correlated
with TMB, MSI, LOH, and HRD scores (Supplementary Figures
4E–H). Collectively, these data underscore an important association
between CNIH4 and genomic instability.

3.3 Evaluation of the diagnostic and
prognostic value of CNIH4 in pan-cancer

The ROC curve showed that CNIH4 has the potential to become
a diagnostic biomarker for multiple tumors including BRCA
(Supplementary Figure 5). Figure 3A summarizes the results of
survival analysis based on Univariate Cox regression analysis and
KM curve. The results of univariate Cox survival analysis showed
that CNIH4 was a risk factor for multiple tumors including head and
neck squamous cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),

LGG, and uveal Melanoma (UVM), that is, patients with tumors in
the CNIH4 high expression group had a shorter OS, DSS, and PFI. In
addition, there were different degrees of correlation with multiple
tumors including cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), stomach adenocarcinoma
(STAD), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), and LGG. For DFI, we observed that
CNIH4 was a risk factor for UCEC, but a protective factor for
pheochromocytoma and paraganglioma (PCPG). In addition, the
KM survival curve also showed that high expression of CNIH4 was
significantly associated with poor prognosis in multiple tumors
(Figures 3B, C; Supplementary Figures 6A–S; Supplementary
Figures 7A–N; Supplementary Figures 8A–R).

Notably, significant associations between CNIH4 and various
survival durations in UVMwere observed and further analyzed. RCS
analysis confirmed a linear effect of CNIH4 on UVM OS
(Supplementary Figure 9A). A chi-square test also validated that
the highest number of deaths occurred among the 25% of UVM
patients with the highest CNIH4 expression (Supplementary
Figure 9B). Time-dependent ROC analysis revealed that the
AUCs for CNIH4 in predicting 1-year, 2-year, and 3-year
survival in UVM patients were 0.82, 0.79, and 0.80, respectively
(Supplementary Figure 9C). A risk factor heatmap further suggested
a higher number of deaths in patients with elevated
CNIH4 expression (Supplementary Figure 9D). This finding was
corroborated in additional datasets (Supplementary Figure 9E).
Univariate and multivariate Cox analyses established CNIH4 as
an independent prognostic factor for UVM (Supplementary Figures
9F, G). Based on the multivariate Cox analysis, a nomogram was
constructed to predict the 1-year, 2-year, and 3-year survival rates of
UVM patients. Calibration curve analysis demonstrated the
prediction model’s high accuracy in forecasting the survival rates
of UVM patients at 1-year, 2-year, and 3-year intervals
(Supplementary Figures 9H, I).

3.4 CNIH4 is significantly associated with
multiple cancer-related pathways

We analyzed to evaluate the correlation between CNIH4 and
14 tumor-related pathways obtained from the CancerSEA database.
The findings indicated that in pan-cancer, CNIH4 exhibited a
positive correlation with cell cycle and DNA repair pathways to a
moderate extent, and a negative correlation with angiogenesis and
differentiation pathways to a similar extent (Figure 4A). Further
analysis of the relationship between CNIH4 and cell cycle pathways
revealed significant positive correlations in multiple cancers,
including ACC, BRCA, and ESCA (Figure 4B). GSEA
demonstrated that CNIH4 was significantly and positively
correlated with cell cycle pathways such as Myc Targets V1 and

FIGURE 8 (Continued)

gene and high protein, and low expression for both; (H) Correlation of CNIH4 gene expression with pathway-level functional protein quantification
by TCPA-RPPA sequencing. Darker red indicates a stronger positive correlation, while darker green signifies a stronger negative correlation. The width of
the calculated line corresponds to the Spearman correlation coefficient.
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FIGURE 9
(A) PCR test for knockdown efficiency of CNIH4 gene inMDA-MB-231 cell line; (B)Western blotting to verify the knockdown of CNIH4 gene inMDA-
MB-231 cell line; (C) Statistical analysis of the effects of CNIH4 knockdown on the cell cycle; (D) Flow cytometry analysis of the effect of
CNIH4 knockdown on cell cycle; (E) EdU staining assay to evaluate the effect of CNIH4 knockdown on cell proliferation. *p < 0.05, **p < 0.01, ***p <
0.001. The results of EdU staining experiments are images generated at ×10 magnification, and the scale bar is 100 μm.
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E2F Targets across various cancers. Additionally, CNIH4 showed
varying degrees of correlation with pathways like Oxidative
Phosphorylation, Epithelial Mesenchymal Transition, and
Inflammatory Response in multiple tumors (Figure 4C).
Proteomic functional enrichment analysis was also performed,
revealing that the high CNIH4 expression group displayed
increased activity in the cell cycle pathway in several cancers,
including BRCA. Furthermore, the high CNIH4 expression group
in LIHC, pancreatic adenocarcinoma (PAAD), and THYM
exhibited decreased activity in the RAS-MAPK and Receptor
Tyrosine Kinase (RTK) pathways (Figure 4D).

3.5 Immune signature of CNIH4 in
pan-cancer

Pan-cancer immune subtype analysis revealed that the C2 subtype,
characterized by IFN-γ dominance, was predominant in the group with
high CNIH4 expression, while the C3 subtype, associated with
inflammation, was the main immune subtype in the low expression
group (Figures 5A, B). Correlation analysis indicated that CNIH4 was
significantly positively correlated with immune-related genes in LGG,
THCA, and UVM, and significantly negatively correlated with immune-
related genes in COAD, skin cutaneous melanoma (SKCM), and HNSC
(Figure 5C). Furthermore, CNIH4 showed a significant negative
correlation with ImmuneScore and StromalScore in multiple cancers,

including COAD and LIHC, while it was significantly positively
correlated with LGG, KIRC, and acute myeloid leukemia (LAML)
(Figure 5D). CNIH4 was also observed to be significantly positively
correlated with multiple immune checkpoints, including CD276, CD86,
and PDCD1, in cancers such as KIRC, KIRP, and LGG (Figure 5E).
Immune cell infiltration analysis using the XCELL algorithm
demonstrated that CNIH4 was significantly positively correlated with
T cell CD4+ Th2 and common lymphoid progenitor cell infiltration and
negatively correlated with microenvironment score, endothelial cells,
hematopoietic stem cells, T cell CD4+ centralmemory, T cell CD4+ naïve,
T cell CD8+, and cancer-associated fibroblasts to varying degrees
(Figure 5F; Supplementary Figures 10A–I). The anti-cancer immune
status, as reflected in the cancer-immune cycle, showed that CNIH4 was
significantly negatively correlated with priming and activation (Step 3),
trafficking of immune cells to tumors (Step 4), and infiltration of immune
cells into tumors (Step 5) in most cancers, and significantly positively
correlated with the release of cancer cell antigens (Step 1) in cancers
including LAML, diffuse large B-cell lymphoma (DLBC), and
LGG (Figure 5G).

3.6 CNIH4 and BRCA are significantly
associated with malignant cells

Analysis of the GEO database dataset confirmed the significantly
elevated expression of CNIH4 in BRCA (Figures 6A, B).

FIGURE 10
(A, B) Spearman correlation between CNIH4 gene and AUC values of drugs in CTRP and PRISM databases. The horizontal axis represents the
Spearman correlation coefficient between the drug AUC value and gene expression, while the y-axis displays the top 30 drugs with the most significant
p-values, each represented by a different color. A higher correlation coefficient corresponds to a longer stick in the lollipop chart; (C) Evaluation of the
correlation between CNIH4 and drug sensitivity using the CellMiner database.

Frontiers in Genetics frontiersin.org15

Xu et al. 10.3389/fgene.2025.1536620

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1536620


Comparative expression analysis of CNIH4 in normal and BRCA
cells revealed that, in contrast to the normal cell line HBL-100, the
MDA-MB-231 cell line exhibited significantly higher
CNIH4 expression at both the mRNA and protein levels
(Figure 6C). Subtype analysis indicated that CNIH4 was
predominantly and significantly overexpressed in the LumB
subtype of BRCA (Figure 6D). Additionally, we observed
significantly higher CNIH4 expression in triple-negative breast
cancer (TNBC), which is associated with a higher degree of
malignancy (Figure 6E). Elevated CNIH4 expression was also
noted in advanced-stage BRCA (Figures 6F, G). Co-localization
analysis of eQTL-GWAS data identified a common genetic causal
variant at the single nucleotide polymorphism (SNP) site
rs4654036 shared between BRCA and CNIH4 gene expression
(Supplementary Figures 11A–C).

Single-cell analysis demonstrated that CNIH4 was
predominantly highly expressed in malignant cells of BRCA,
followed by monocytes and macrophages (Figure 6H). UMAP
mapping and expression analysis of the BRCA_
GSE176078 dataset further validated the significantly elevated
CNIH4 expression in malignant cells (Figures 6I–K). Cell ratio
analysis of the BRCA_GSE176078 dataset revealed that the
proportion of malignant cells in the CNIH4-positive expression
group was substantially higher than that in the CNIH4-negative
expression group (Figure 6L). Pathway analysis in malignant cells
showed that the Metabolism, Proliferation, and Mitochondria-
related biological pathways were more active in the CNIH4-
positive group (Figure 6M). Spatial transcriptome resolution
analysis in multiple BRCA spatial transcriptome sections
indicated that CNIH4 expression was more pronounced in
malignant cell microregions (Figure 7A). Single gene localization
analysis revealed that CNIH4 expression was similarly localized to
tumor cells, suggesting that in BRCA, CNIH4 may be primarily
expressed by tumor cells (Figures 7B–E). Correlation analysis was
highly consistent with the localization results, showing that
CNIH4 expression levels were significantly and positively
correlated with the tumor cell content in the spot (Figures 7F–I).

3.7 Knockdown of CNIH4 in BRCA
significantly inhibits cell cycle and cell
proliferation

The pan-cancer analysis revealed a robust association between
CNIH4 and cell cycle regulation. Building on this finding, we
conducted a more detailed investigation into the relationship
between CNIH4 and the cell cycle in BRCA. Initially, gene set
enrichment analysis (GSEA) of multiple BRCA datasets
demonstrated a significant positive correlation between
CNIH4 and cell cycle-related pathways (Figures 8A–E).
Furthermore, GSEA, which included Gene Ontology (GO)
biological processes (BP), molecular functions (MF), cellular
components (CC), Reactome, and WikiPathways gene sets,
underscored the substantial positive correlation between
CNIH4 and cell cycle activity (Figure 8F). Additionally,
differential expression analysis of the high and low expression
groups of CNIH4 in BRCA identified a total of 267 significantly
upregulated genes (Supplementary Figures 12A). Functional

enrichment analysis further revealed that these genes were
significantly enriched in several cell cycle pathways
(Supplementary Figures 12B). Correlation analysis indicated that
CNIH4 in BRCA was significantly and positively correlated with
various cell cycle-related genes, including CCNB2, CDC20, and
CDC25C (Supplementary Figures 12C–N). At the protein level, a
significant positive correlation was observed between CNIH4 and
the cell cycle-related protein CYCLINB1 in BRCA (Figure 8G).
Furthermore, pathway analysis based on proteomic data confirmed
a significant positive correlation between CNIH4 and cell cycle
progression (Figure 8H).

To experimentally validate the association between CNIH4 and
the cell cycle in BRCA, we employed the BRCA cell line MDA-MB-
231 for functional assays. Cells were transfected with two distinct
siRNAs, followed by qRT-PCR and Western blotting to assess the
effects on CNIH4 expression. Our findings indicated that both
mRNA and protein levels of CNIH4 were reduced in the
transfected groups relative to the control groups (Figures 9A, B).
Cellular function experiments revealed that CNIH4 knockdown
resulted in a significant accumulation of cells in the G0/
G1 phase, suggesting inhibition of cell cycle progression and
proliferation (Figures 9C, D). Moreover, the number of EdU-
positive cells was markedly decreased after CNIH4 knockdown,
indicating that CNIH4 deficiency could suppress cell
proliferation (Figure 9E).

3.8 CNIH4 is significantly associated with
drug sensitivity

Analysis of drug sensitivity based on the CTRP and PRISM
databases revealed a significant positive correlation between
CNIH4 expression and the sensitivity to multiple kinase
inhibitors, including selumetinib, ML258, and JQ-1. Additionally,
there was a significant positive correlation with certain cell division
inhibitors (e.g., epothilone-a), chemotherapeutic agents (e.g.,
fluorouracil), and some antifungal drugs (e.g., brefeldin A)
(Figures 10A, B). Analysis using the CellMiner database indicated
a significant positive correlation between CNIH4 and kinase
inhibitors (e.g., Midostaurin and Staurosporine), and a significant
negative correlation with drugs such as Eribulin mesilate, Tegafur,
and Fluorouracil (Figure 10C).

4 Discussion

CNIH4 was initially identified as significantly overexpressed in
Fibrolamellar carcinomas, suggesting its potential as an oncogene
(Kannangai et al., 2007). Subsequent research revealed that
CNIH4 interacts with newly synthesized GPCRs, regulating their
export from the endoplasmic reticulum (Sauvageau et al., 2014).
Moreover, CNIH4 has been shown to be significantly overexpressed
in LIHC tissues and is significantly associated with gastric cancer cell
proliferation, proposing it as a novel biomarker for ovarian cancer
(Zhang et al., 2023; Wang et al., 2021; Kasavi, 2022). Additionally,
CNIH4 is significantly associated with CESC and LGG (Xiao et al.,
2023; Wang et al., 2023). While the tumor-promoting role of
CNIH4 has been established in certain individual cancers, tumor
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heterogeneity necessitates a pan-cancer analysis to assess the
prognostic variations and immune characteristics of
CNIH4 across different cancer types.

This study elucidates the multifaceted role of CNIH4 in
oncogenesis by conducting a comprehensive analysis of its
expression patterns, genomic alterations, epigenetic
modifications, prognostic implications, and interactions with
the immune microenvironment across various cancers. Our
findings indicate that CNIH4 is upregulated in multiple
cancers, corroborating previous research that has established a
link between elevated CNIH4 expression and tumor malignancy
(Xiao et al., 2023). Through pan-cancer level expression pattern
analysis, our study further substantiates CNIH4 as a universally
associated oncogene. Genomic alterations are a common feature
of tumors (Chang et al., 2023). Our analysis results showed a high
mutation rate of CNIH4, especially in BRCA, suggesting that
these variants may affect the expression and function of CNIH4,
leading to tumorigenesis. CNV analysis showed that CNIH4 has
common amplification mutations in various cancers, which may
be related to its elevated expression in tumors. Notably, an
increase in CNIH4 copy number was positively correlated with
its mRNA expression level, which may drive further
overexpression of CNIH4 in tumors and consequently impact
tumor biology. DNA methylation plays an important role in the
occurrence and development of tumors, and its abnormal
changes are closely related to the early detection, diagnosis,
treatment, and prognosis of cancer (Papanicolau-Sengos and
Aldape, 2022). Our results reveal dysregulation of
CNIH4 methylation levels in multiple tumors, which may
affect its transcriptional activity and protein expression,
emphasizing the importance of genomic and epigenetic
regulation in CNIH4 expression. Additionally, high
CNIH4 expression was associated with poor prognosis in
various cancers, reinforcing the critical role of CNIH4 in
oncogenesis and suggesting its potential as an independent
prognostic marker. Functional enrichment analysis
demonstrated significant associations between CNIH4 and
multiple cancer-related pathways, notably those involved in
cell cycle regulation and DNA repair, which are pivotal in
tumor cell proliferation and survival. High CNIH4 expression
may enhance the activity of these pathways, thereby promoting
tumor development. Previous studies have emphasized the
interaction between CNIH4 and TGFα (Mishra et al., 2019).
TGFα, a well-established driver of EMT and cancer stem cell
properties, plays a crucial role in cancer metastasis and
therapeutic resistance. CNIH4 may amplify the oncogenic
effects of TGFα signaling, thereby advancing tumor
progression and metastasis. This finding underscores the
potential role of CNIH4 in regulating the tumor
microenvironment and influencing cancer development at the
molecular level. Our study also unveiled the immune signature of
CNIH4 in pan-cancer, highlighting its correlation with immune
subtypes, immune-related genes, and immune cell infiltration.
These findings resonate with the complex interplay between
immune suppression and activation observed in the tumor
microenvironment (Marzagalli et al., 2019). The association of
high CNIH4 expression with IFN-γ-dominated immune
subtypes suggests a role for CNIH4 in modulating immune

responses within the tumor microenvironment. Furthermore,
the positive correlation of CNIH4 with multiple immune
checkpoints may influence tumor responsiveness to
immunotherapy, offering novel insights into the role of
CNIH4 in the tumor immune microenvironment and its
potential as a target for immunotherapeutic strategies.

Our study specifically investigated the association between
CNIH4 and BRCA. Our findings revealed that CNIH4 expression
in BRCAwas significantly higher than in normal cells, particularly in
the MDA-MB-231 cell line, suggesting a pivotal role for CNIH4 in
the malignant transformation and tumor progression of BRCA.
Clinical feature analysis indicated that CNIH4 expression in BRCA
correlated with tumor malignancy and stage. Our study contributes
novel evidence for the significant role of CNIH4 in BRCA
development by examining CNIH4 expression patterns at the
single-cell and spatial transcriptome levels. GSEA analysis results
highlighted a robust association between CNIH4 and the cell cycle.
In BRCA, CNIH4 was significantly and positively correlated with
multiple cell cycle-related genes and proteins, suggesting a
regulatory role for CNIH4 in cell cycle control and tumor cell
proliferation. Functional experimental outcomes demonstrated
that CNIH4 knockdown led to an accumulation of cells in the
G0/G1 phase, indicating that CNIH4may promote breast cancer cell
proliferation by modulating the cell cycle. Given the elevated
CNIH4 expression in breast cancer and its impact on the cell
cycle and proliferation, CNIH4 could emerge as a potential
therapeutic target. Drug sensitivity analysis revealed a significant
correlation between CNIH4 expression and the sensitivity to various
drugs. Entinostat, a histone deacetylase inhibitor used to treat
various breast cancers, including HER2-positive and triple-
negative breast cancer (Sidiropoulos et al., 2022; Trapani et al.,
2017), was identified as a potential drug targeting CNIH4 using the
Cmap database. However, further studies are needed to verify its
effectiveness. Future research could focus on developing CNIH4-
targeted therapeutic strategies to inhibit breast cancer cell
proliferation and tumor progression.

This study presents a comprehensive analysis of CNIH4,
examining its expression patterns, genomic alterations, epigenetic
modifications, prognostic significance, and interactions with the
immune microenvironment across a spectrum of cancers. Our
results underscore the multifaceted role of CNIH4 in oncogenesis
and posit that CNIH4 could emerge as a promising biomarker and
therapeutic target. Further research is warranted to elucidate the
molecular mechanisms underlying CNIH4’s role in tumorigenesis
and to translate these insights into effective clinical interventions.
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