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Introduction: Correlated phenotypes may have both shared and unique causal
factors, and jointly modeling these phenotypes can enhance prediction
performance by enabling efficient information transfer.

Methods: We propose an auto-branch multi-task learning model within a deep
learning framework for the simultaneous prediction of multiple correlated
phenotypes. This model dynamically branches from a hard parameter sharing
structure to prevent negative information transfer, ensuring that parameter
sharing among phenotypes is beneficial.

Results: Through simulation studies and analysis of seven Alzheimer’s disease-
related phenotypes, our method consistently outperformed Multi-Lasso model,
single-task learning approaches, and commonly used hard parameter sharing
models with predefine shared layers. These analyses also reveal that while genetic
contributions across phenotypes are similar, the relative influence of each
genetic factor varies substantially among phenotypes.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, with its prevalence
increasing annually (AuthorAnonymous, 2023). Approximately 50 million individuals
worldwide are affected by dementia with approximately 60%–70% being AD cases, and this
figure is projected to rise to 152million by 2050 (Santiago et al., 2019; Zhang et al., 2021). AD is a
multifactorial condition manifested through various traits, such as cognitive decline and
functional changes (Löffler et al., 2014; Jabir et al., 2021). Genetic risk prediction models
have been developed for various AD-related traits, but these models usually only focus on one
trait, ignoring their inter-relationships (Jung et al., 2020; Zhu et al., 2024). Although each AD-
related trait provides valuable information on the genetic risk of AD, none of them alone can
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capture the full complexity of the disease and a comprehensive model
that can jointly model multiple traits is needed.

Cognitive and functional changes commonly observed in AD
patients can be assessed using several tools, including theMini-Mental
State Examination (MMSE),Montreal Cognitive Assessment (MoCA),
Clinical Dementia Rating-Sum of Boxes (CDRSB), Alzheimer’s
Disease Assessment Scale-Cognitive Subscale 13 (ADAS13), and the
Functional Activities Questionnaire (FAQ). MMSE and MoCA assess
general cognitive impairment, with MoCA being more sensitive in
detecting early AD (Pinto et al., 2019; Duc et al., 2020). ADAS13 and
CDRSB are designed for tracking AD progression. However,
ADAS13 measures the severity of cognitive symptoms (Bucholc
et al., 2019), whereas CDRSB assesses both cognitive and functional
domains, offering a more comprehensive view of how AD affects a
patient’s daily life (Cullen et al., 2020). FAQ focuses on assessing
functional ability in daily activities (Petersen et al., 2021).
Neuroimaging is also used in AD diagnosis and monitoring
(Besson et al., 2015; Winer et al., 2018). For example, florbetapir
(AV45) detects the amyloid-beta plaque in the brain (Mattson, 2004;
Johnson et al., 2013). Fluorodeoxyglucose (FDG) measures brain
glucose metabolism and identifies regions of hypometabolism (de
Paula Faria et al., 2022). While AD assessment tools provide valuable
information, none of them alone can be treated as a gold standard for
AD diagnosis, especially for early-stage cases. For example, although
amyloid plaque is a hallmark feature of AD, some individuals with
such manifestations never develop into AD (Reinitz et al., 2022).

PET-imaging, cognitive, and functional changes provide
confirmatory and complementary information regarding AD risk.
Simultaneous modelling of them can leverage information across
traits, which facilitates the detection of new biomarkers and
improves the overall prediction. However, existing prediction models
mainly focus on a single trait. For example, traditional models such as
gBLUP build separate prediction models for each trait (de Los Campos
et al., 2013). This trait-specific focus persists even within the deep
learning domain. For example, Duc et al. (2020) employed a single task
learning (STL) model to automatically diagnose AD (Duc et al., 2020).
Liu et al. (2022) introduced an interpretable STLmodel to assess the risk
of AD based on high-dimensional genomic data, where PET imaging
outcomes were predicted separately (Liu et al., 2022). Notably, some
studies have explored modeling multiple tasks simultaneously. For
example, a classic multi-task model, Multi-Lasso, has shown
promising performance when applied on SNPs data (Wang et al.,
2012; Bee et al., 2024). This method, originally proposed by Obozinski
et al. (2006), applies joint sparse regularization through ℓ2,1-norm
across tasks, enabling feature sharing among related tasks. It has
been applied in several studies (Wang et al., 2012; Bee et al., 2024),
including the recent application on Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset (Cheng et al., 2019). These studies indicate the
potential of multi-task modeling strategies in the context of AD
prediction, although their practical application remains limited.

In recent years, Multi-task learning (MTL) has been widely
applied in the field of deep learning as an effective strategy to
improve model performance. It has been successfully applied to
model multiple correlated outcomes, particularly in typical deep
learning scenarios such as natural language processing (Zhang
et al., 2020; Li et al., 2022) and image classification (Liu et al.,
2021). Current deep MTL approaches can be broadly categorized
into hard and soft parameter sharing models. Hard parameter sharing

models use shared layers across tasks, typically sharing all layers
except the last to learn a common representationwhile capturing task-
specific characteristics (Vandenhende et al., 2022). Recent advances
enable these models to automatically determine which layers to share.
For example, the Fully Adaptive Feature Sharing method dynamically
widens layers based on similarities among tasks (Lu et al., 2017). The
Multilinear Relationship Network discovers inter-task relationships
and alleviates the dilemma of negative transfer by jointly training
transferable features (Long et al., 2017). The Task Affinity Grouping
optimizes layer sharing by branching the network according to inter-
task affinity scores (Fifty et al., 2021). Unlike hard sharing, soft
parameter sharing models allow each task to maintain independent
parameters and control the levels of sharedness using additional
parameters. They offer greater flexibility, but at the cost of
increased computational demands. The cross-stitch network
represents a classic example, where additional parameters are
introduced in the cross-stitch unit to ascertain the optimal degree
of sharedness (Misra et al., 2016). AD-related traits, such as cognitive
scores, functional assessments, and neuroimaging findings are
interconnected. MTL approaches, especially those computationally
efficient hard parameter sharing models, have great potential to
enhance generalization, learning efficiency and overall prediction
accuracy for genetic risk predictions. However, existing MTLs have
been rarely used in such applications, partially due to the low signal-
to-noise ratio and unclear levels of genetic relatedness.

We here developed an auto-branch multi-task learning model
for the prediction analyses of multiple correlated traits using genetic
data. Our method can distinguish and integrate commonalities and
unique characteristics across multiple traits, leading to improved
prediction performance, as measured by both Pearson correlation
and root mean squared error (RMSE). In the following sections, we
first provided the technical details of our method and then
conducted extensive simulation studies to evaluate its
performance. Finally, we built genetic risk prediction models for
multiple AD-related traits, including cognitive and functional
assessments and PET imaging outcomes, using data sourced from
the ADNI (Mueller et al., 2005).

2 Methods

Our method is developed using the idea originally proposed by
Fifty et al. (2021) in the analyses of facial image dataset CelebA (Liu
et al., 2015) and computer vision dataset Taskonomy (Zamir et al.,
2018). In hard parameter sharing models, the gradient update of one
task can influence others. If the gradient update of one task reduces
the loss of another, a “synergistic effect” between the two tasks is
observed. Conversely, an “antagonistic effect” occurs when the
update negatively impacts the other task. Jointly training can
enhance model performance for synergistic tasks by leveraging
their positive correlations, but it may reduce performance for
antagonistic tasks. We proposed to quantify the “synergistic
effect” among correlated traits and branch the network where
traits are considered antagonistic. Specifically, we first
constructed a hard parameter sharing model with all layers
except the last shared to predict multiple traits using genetic
data. We then quantified trait similarities and grouped traits
using the inter-trait affinity (Fifty et al., 2021). Finally, we
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branched the hard parameter sharing model for traits that are
deemed antagonistic. Unlike Fifty et al. (2021), who used
separate models for traits in each group, we proposed to use a
hard-parameter sharing strategy and branch the network when

phenotypes are “antagonistic.” This is mainly because correlated
phenotypes are likely to have shared genetic determinants (Badré
and Pan, 2023), and we hypothesized that this can be exploited to
improve predictions. The overview of our workflow is in Figure 1.

FIGURE 1
The overview of the study design.
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2.1 Train all traits together in a hard
parameter sharing model

We proposed to use a hard parameter sharing model, where all
layers except for the last one are shared, to train prediction models
for all traits and evaluate the effect of gradient update from one task
on another. We utilized the shared layers to capture the common
representations among these traits and used the last trait-specific
layer to handle their uniqueness. To consider biological information
and improve model interpretation, we added a customized layer
right after the input layer (Step 1 in Figure 1), where predictors from
the same genes are first grouped together and then fed to the
downstream networks. This customized layer acts similarly to
those set-based analyses (Wang et al., 2016; Chen et al., 2019),
where weak signals within a gene are aggregated, enhancing the
overall performance of the models. Note that although we
aggregated the signals within each gene, a similar layer can be
designed based on other biological information (e.g., pathways). As
opposed to image classification, the signals in genetic data are weak
and can lead to poor prediction models without signal enhancement,
which can have a profound impact on gauging the trait similarities.

2.2 Branch network based on inter-
trait affinity

Within the hard parameter-sharing framework, traits transfer
information to each other through successive gradient updates to the
shared parameters. For traits that are intrinsically similar, the update
in one trait’s gradient on the shared parameters would lead to a
reduction in loss for the others. On the contrary, this update can lead
to a negligible or an increase in loss for independent traits.
Therefore, we used inter-task affinity scores, calculated based on
loss changes during parameter training (Fifty et al., 2021), to
evaluate the pairwise similarity among traits. These scores are
further used to determine whether traits should be trained
together or branched. Specifically, we gathered gradient
information during the training of the model outlined in session
2.1. We calculated the pairwise trait affinity during each parameter
update, where the affinity was defined as the extent to which the
gradient update of shared parameters by trait i impacted the loss of
trait j (Fifty et al., 2021). At step t, following a gradient update of the
shared parameters based on the loss of trait i, the affinity of trait i to
trait j is calculated as shown in Equation 1:

Zt
i → j � 1 − Lt+1

i → j

Lt
i → j

, (1)

where Lti → j and Lt+1i → j respectively denote the loss of trait j before
and after shared parameter updates based on task i at step t. If the
affinity is greater than 0, it signifies that the gradient update of task i
positively influences trait j. We defined the overall affinity between
trait i and trait j as an average over T epochs, as shown in Equation 2:

Ẑi→j � 1
T
∑

T

t�1Z
t
i → j. (2)

To enable efficient information transfer, traits within the same
branch are expected to have high pairwise affinities (Ẑi→j). Let Si be

the set of traits that are in the same branch as trait i and |Si| be the
cardinality of the set. The inter-trait affinity for trait i can determine
the synergistic effects among all traits in the same branch (i.e., set Si)
and is defined in Equation 3:

Ẑ i �
∑j∈SiẐj→i

Si| | . (3)

Obviously, Ẑi is large when all traits in the branch are similar to
trait i (i.e., Ẑj→i is large), and it is small when traits are independent.
We define the total inter-trait affinity for K traits as shown in
Equation 4:

Z � 1
K

∑
i

Ẑ i. (4)

Identifying the best parameter sharing (i.e., branching) strategy
is equivalent to finding the optimal number of branches and the
partition of the traits that maximize the total inter-trait affinity
defined in Equation 4. However, this problem is an NP-hard
problem (Fifty et al., 2021). From the practical perspective, we
treat the optimal number of branches as a prior and find the best
partition of traits that maximize Z.

2.3 Joint prediction of multiple traits

Given a pre-specified number of branches and its corresponding
best partition of traits, we constructed a hard parameter sharing
model with traits in different partitions branched (Step 3 in
Figure 1). As phenotypes are likely to have shared genetic
determinants, we set the top few hidden layers as shared among
all phenotypes. We then branched the networks for phenotypes that
are deemed dissimilar. Our basic rationale for such a design is to use
1) common shared layers to learn the pan-representations across
multiple traits, 2) layers shared by branch to capture common
characteristics among traits that are similar, and 3) task-specific
layers to capture the uniqueness of each trait. This network
architecture enables efficient information transfer among similar
phenotypes while avoiding negative impacts on dissimilar ones.

3 Simulation studies

We conducted extensive simulations to assess the performance
of our method. As outlined in the method, we pre-set the number of
branches to be 2, 3, and 4, and then found the trait partition
accordingly. We compared our model with a typical hard
parameter sharing model where all parameters except the last are
shared (denoted as HPS), a single-task model with each trait
modeled independently (denoted as STL), and Multi-lasso that is
a classic method for modeling multiple traits (Cheng et al., 2019). As
we aim to improve prediction for multiple AD-related traits
(i.e., FDG, AV45, FAQ, CDRSB, ADAS13, MMSE, and MoCA),
we make our simulation settings like the ADNI dataset. Specifically,
we directly extracted genomic data from ADNI and simulated seven
phenotypes based on causal variants, which are harbored on six
randomly selected genes and comprised of 10% of the total variants.
We randomly split the samples into training, validation, and testing
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sets with a ratio of 8:1:1. For all models, we set 2 hidden layers with
128 and 32 hidden nodes, respectively (Supplementary Figure S1).

Since all simulated phenotypes are continuous, we used mean
squared error (MSE) as the loss function during the model training
process for all deep learning models. We evaluated the prediction
performance based on the testing set and reported the average
prediction Pearson correlations and root of MSE (RMSE) based
on 100 Monte Carlo simulations under each setting. Pearson
correlation captures the linear consistency between predicted and
true values and is widely used in continuous phenotype prediction.
RMSE complements this by quantifying the average prediction error
in the same unit as the original data, providing a comprehensive
assessment of model performance.

3.1 Scenario 1: the impact of different
numbers of underlying groups among traits

In this scenario, we evaluated the impact of different numbers of
underlying groups among the traits. We started with the case where
all traits shared the same genetic causes (i.e., the underlying group is
1) and gradually split the traits into different groups until no traits
shared any genetic causes (i.e., the underlying number of
groups is 7).

Let Gj denote the set of traits in the j-th group and XGj is a
n × pGj matrix of the corresponding causal variants for the j-th
group, where n is the sample size. Note that in this set of simulations,
there is no overlap between causal variants among different groups.
When the number of underlying groups among the seven traits is
one (i.e., G1 � 1, 2, 3, 4, 5, 6, 7{ }), all traits share identical causes and
are simulated as yi � XG1β + i for ∀ i ∈ G1, where β ~ N (0, IpG1

σ2β)
and i ~ N (0, Inσ2ϵ). When the number of underlying groups is
seven, each trait has its own causes (i.e., Gi � i{ }) and is simulated
using yi � XGiβi + i for ∀ i ∈ Gi with βi ~ N (0, IpGi

σ2β). When the
number of underlying groups is between two and six (i.e., some traits
share identical causes), we simulated each trait as yi � XGjβGj

+ i
for ∀i ∈ Gj with βGj

~ N (0, IpGjσ2β). We split the seven traits given
the specific number of groups and the details of grouping are
summarized in Supplementary Table S1.

We varied effect sizes by ranging σβ/σϵ from 1:3 to 1:6. Table 1
presents the average Pearson correlations across the seven simulated
traits, while the specific values for each trait are provided in
Supplementary Tables S2–S5. When all traits have the same
underlying causal factors, our model, regardless of the number of
pre-specified number of branches, has similar performance to HPS,
and it has much better performance than STL and Multi-Lasso
model. For example, when σβ/σϵ = 1:5, the average Pearson
correlations for Multi-Lasso, HPS, and STL are 0.266, 0.356, and
0.259, respectively. For our proposed method, they are 0.366, 0.368,
and 0.355 when the respective pre-specified numbers of branches are
two, three and four. Table 2 presents the average RMSE values for
the seven simulated traits, with trait-specific results shown in
Supplementary Tables S6–S9. These results indicate that our
model also performs well in terms of RMSE. For example, under
the σβ/σϵ = 1:5 setting, the RMSE of Multi-Lasso reaches 1.192,
which is substantially higher than those of other methods; HPS and
STL yield RMSEs of 0.918 and 0.976, respectively. In contrast, our
model yields lower RMSEs of 0.914, 0.912, and 0.914 for branch

numbers of two, three, and four, respectively, demonstrating lower
prediction errors and confirming the robustness of our model in
controlling estimation error.

When neither all traits share identical causes nor are completely
independent of one another, our branching method tends to
perform better than Multi-Lasso, HPS, and STL models,
regardless of the pre-specified number of branches. For instance,
when σβ/σϵ = 1:5 and the number of underlying groups of traits is
two, the average Pearson correlations for Multi-Lasso, HPS, and STL
models are 0.239, 0.274, and 0.254, respectively. For our auto-branch
model, they are 0.305, 0.301 and 0.304 when the pre-specified
branches are two, three and four, respectively. In terms of RMSE,
our method also demonstrates superior performance. The average
RMSEs for our model are 0.933, 0.935, and 0.933 for two, three, and
four branches, respectively, all of which are lower than those of
Multi-Lasso (1.215), HPS (0.939), and STL (0.986). This
demonstrates that moderate grouping can effectively leverage
shared information between traits, thereby enhancing prediction
performance. It is worth noting that although our proposed method
performs the best when the pre-specified number of branches
matches the underlying disease model, the difference resulting
from this is relatively small, indicating the robustness of our
method in most practical applications.

Although it is highly unlikely that disease-relevant correlated
traits have no shared genetic causes, we still assessed this situation
for completeness. As expected, when each trait has its own causes,
jointly training cannot benefit model performance. The single-task
STL has the best performance, followed by the Multi-Lasso model.
Our method performs similarly to that of HPS, as our model
assumes that traits share some common causes and sets the pre-
specified number of branches smaller than the true underlying
groups. Although we can specify the number of branches to be
exactly the same as the number of traits, we considered this
unnecessary in practice, as only traits that are expected to share
some underlying causes should be dealt with using the
MTL approach.

In summary, models assuming either identical causes for all
traits or complete independence perform poorly when these
assumptions are violated. HPS performs well when all traits share
the same causes, but its performance drops sharply as the degrees of
sharedness among traits decreases. For STL that assumes traits are
independent of each other, it has outperformed the models where
grouping is not needed, but it suffers greatly when indeed some
phenotypes share identical causes. Multi-Lasso allows for
independent feature selection for each trait, which enables
competitive performance when traits are largely unrelated.
However, in scenarios where traits share underlying causal
factors, the model may not fully exploit such shared structures
due to the lack of an explicit trait grouping mechanism. For our
proposed method, it can have robust and better performance,
provided the traits are not completely independent of each other.
We consider this property important for the prediction of multiple
disease-related traits. For example, within the AD prediction
domain, it is highly unlikely that AD-related traits are completely
independent and thus STL that fails to account for their relatedness
can have sub-optimal performance. Similarly, as the amount of
sharedness among these AD-related traits is unknown in advance,
HPS is also unlikely to achieve the best performance. A method that
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can flexibly account for different degrees of sharedness can be of
great use for these studies.

3.2 Scenario 2: the impact of the relative
contributions of shared causal variants

In practice, correlated traits can not only have shared causes, but
also their own unique risk factors. In this set of simulations, we
evaluated the relative contributions of shared causal factors on the
model performance. We used Xi and Xs to respectively denote
n × pi and n × ps matrices, representing causal factors specific to
trait i and shared across traits. Similar to scenario 1, we considered
seven traits, and simulated the outcome under the additive model as
yi � Xiβi + Xsβs + i, where βi ~ N (0, Ipiσ2β), βs ~ N (0, Ipsσ2βs ),
and i ~ N (0, Inσ2ϵ). We gradually varied the relative importance

of the unique risk factors to the shared ones and set σ2β/σ
2
βs
at 1:9, 3:7,

5:5, 7:3, and 9:1, indicating a gradual increase in the influence of the
shared causal variants. We also varied the effect sizes of all causal
variants, where the signal-to-noise ratio (i.e., (σ2β + σ2βs )/σ2ϵ) is set at
1:9, 1:16, 1:25, and 1:36.

Table 3 presents the average Pearson correlations across the
seven simulated traits as the amount of shared causal factors varies
and the specific values for each trait are provided in Supplementary
Tables S10–S13. Table 4 shows the corresponding average RMSE
values, with detailed results listed in Supplementary Tables S14–S17.
When shared causal variants significantly contribute to the
outcomes, our method substantially enhances the prediction. For
example, when σ2β/σ

2
βs

= 1:9 and signal-to-noise ratio is 1:25, the
average Pearson correlation achieved through the auto-branch
method are 0.285, 0.293, and 0.286 when the pre-specified
number of branches are 2, 3, and 4, respectively. The

TABLE 1 Average Pearson correlations for seven traits under different numbers of underlying groups among traits.

Sharing situations Multi-lasso HPSa 2 Groupsb 3 Groupsc 4 Groupsd STLe

σβ/σϵ = 1:3

Complete Sharing 0.463 0.531 0.543 0.538 0.539 0.433

Two-group Sharing 0.425 0.478 0.495 0.491 0.494 0.377

Three-group Sharing 0.404 0.420 0.448 0.451 0.447 0.416

Four-group Sharing 0.402 0.402 0.417 0.417 0.422 0.398

No Sharing 0.393 0.322 0.332 0.331 0.328 0.395

σβ/σϵ = 1:4

Complete Sharing 0.349 0.438 0.445 0.443 0.444 0.343

Two-group Sharing 0.313 0.377 0.394 0.394 0.392 0.319

Three-group Sharing 0.291 0.320 0.338 0.340 0.337 0.290

Four-group Sharing 0.293 0.294 0.310 0.312 0.313 0.300

No Sharing 0.289 0.220 0.234 0.235 0.226 0.291

σβ/σϵ = 1:5

Complete Sharing 0.266 0.356 0.366 0.368 0.355 0.259

Two-group Sharing 0.239 0.274 0.305 0.301 0.304 0.254

Three-group Sharing 0.215 0.218 0.251 0.262 0.253 0.229

Four-group Sharing 0.220 0.199 0.228 0.237 0.235 0.230

No Sharing 0.218 0.140 0.147 0.138 0.155 0.219

σβ/σϵ = 1:6

Complete Sharing 0.207 0.290 0.295 0.295 0.308 0.210

Two-group Sharing 0.183 0.218 0.239 0.242 0.235 0.186

Three-group Sharing 0.163 0.153 0.192 0.198 0.190 0.174

Four-group Sharing 0.169 0.129 0.159 0.172 0.174 0.173

No Sharing 0.171 0.078 0.098 0.088 0.096 0.169

aHard parameter sharing across all layers except the last one.
bThe pre-specified number of branches for the auto-branch method is two.
cThe pre-specified number of branches for the auto-branch method is three.
dThe pre-specified number of branches for the auto-branch method is four.
eEach trait is modeled independently without accounting for trait correlations.
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corresponding RMSEs are all 0.933. In contrast, Multi-Lasso, STL,
and HPS obtain lower correlations (0.215, 0.232, and 0.271) and
higher RMSEs (1.239, 0.967, and 0.935). When σ2β/σ

2
βs
= 3:7, a similar

trend remains. This indicates that, when shared causal factors
explain most of the variabilities in the traits, allowing for
grouping to enable information sharing can enhance model
performance. HPS generally performs worse than our proposed
method, indicating allowing uniqueness for traits when they are not
caused by the same factors is important for the improved prediction.

When shared and non-shared causal factors contribute equally,
a well-considered branching strategy can still help the model better
capture the distinctions between traits, thereby improving
predictions as compared to both STL and HPS. In this scenario,
although Multi-Lasso shows comparable performance to our
method in terms of Pearson correlation, it exhibits higher RMSE
values, indicating its relative limitation in error control. However,

when trait-specific factors make major contributions to the outcome
variability, while the prediction performance after branching
increases as compared to HPS, it does not surpass those in the
STL or Multi-Lasso models. This suggests that, in such cases, the
independence between traits renders group training less effective
and negative information transfer may occur. In contrast, methods
like STL or joint models with independent feature selection
pathways, such as Multi-Lasso, are more appropriate in scenarios
with minimal shared information. Therefore, when traits are
expected to be largely independent, STL or similar strategies
should be considered as the first choice and multi-task learning
is not expected to benefit model performance.

Overall, joint modeling benefits more when the shared factors
substantially contributed to correlated traits, whereas separate
modeling and Multi-Lasso would be preferred if trait-specific
factors explain most of the variability. In practical MTL

TABLE 2 Average RMSEs for seven traits under different numbers of underlying groups among traits.

Sharing situations Multi-lasso HPSa 2 Groupsb 3 Groupsc 4 Groupsd STLe

σβ/σϵ = 1:3

Complete Sharing 1.001 0.832 0.829 0.829 0.831 0.893

Two-group Sharing 1.036 0.857 0.851 0.853 0.850 0.910

Three-group Sharing 1.054 0.890 0.878 0.880 0.879 0.908

Four-group Sharing 1.056 0.892 0.886 0.885 0.887 0.913

No Sharing 1.061 0.941 0.932 0.936 0.934 0.917

σβ/σϵ = 1:4

Complete Sharing 1.115 0.882 0.879 0.879 0.876 0.937

Two-group Sharing 1.145 0.908 0.900 0.902 0.900 0.947

Three-group Sharing 1.162 0.936 0.930 0.927 0.927 0.960

Four-group Sharing 1.161 0.935 0.930 0.931 0.929 0.963

No Sharing 1.163 0.979 0.973 0.973 0.969 0.958

σβ/σϵ = 1:5

Complete Sharing 1.192 0.918 0.914 0.912 0.914 0.976

Two-group Sharing 1.215 0.939 0.933 0.935 0.933 0.986

Three-group Sharing 1.232 0.967 0.958 0.958 0.961 0.974

Four-group Sharing 1.230 0.963 0.957 0.957 0.958 0.990

No Sharing 1.229 0.995 0.992 0.995 0.992 0.985

σβ/σϵ = 1:6

Complete Sharing 1.246 0.942 0.936 0.937 0.939 0.993

Two-group Sharing 1.266 0.961 0.958 0.957 0.957 0.998

Three-group Sharing 1.278 0.983 0.979 0.976 0.977 1.000

Four-group Sharing 1.276 0.975 0.973 0.974 0.974 0.997

No Sharing 1.274 1.001 1.000 1.001 1.001 1.004

aHard parameter sharing across all layers except the last one.
bThe pre-specified number of branches for the auto-branch method is two.
cThe pre-specified number of branches for the auto-branch method is three.
dThe pre-specified number of branches for the auto-branch method is four.
eEach trait is modeled independently without accounting for trait correlations.
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applications, traits often share a moderate amount of common
causes. Under these circumstances, our method has a notable
advantage over HPS and STL by effectively utilizing shared
information while preserving trait-specific focus, and it also
outperforms Multi-Lasso, which fails to fully exploit the shared
structure, enhancing its practical utility.

4 The prediction analyses for multiple
AD-related traits

We are interested in predicting multiple AD-related traits,
including cognitive scores (i.e., MMSE, MoCA, ADAS13),
functional assessments (i.e., FAQ, CDRSB), and neuroimaging
findings (i.e., AV45 and FDG), using genetic data obtained from
ADNI. ADNI is a comprehensive longitudinal study aimed at

identifying biomarkers associated with AD and enhancing its
clinical diagnosis and early intervention. As all seven phenotypes
are quantitatively measured continuous traits, they were modeled as
regression tasks in our study.

Data were downloaded from the ADNI website (https://www.
adni.loni.usc.edu/). We excluded individuals without genomic data
or have missing phenotypes. Only autosome SNPs were considered
in our analysis. We adopted a candidate gene approach, where
57 AD susceptibility genes identified based on existing literature
were included (Supplementary Table S18). For quality control, we
excluded SNPs if they met any of the subsequent criteria: 1) missing
rate >1%; 2) minor allele frequency (MAF) < 5%; 3) Hardy-
Weinberg equilibrium test with p-value <1 × 10−6; 4) linkage
disequilibrium (LD) analysis with an LD threshold of R2 > 0.9.
Additionally, individuals with missing rate of SNPs larger than 1%
were excluded. All selected SNPs were directly genotyped in the

TABLE 3 Average Pearson correlations for seven traits as the relative contributions between unique causal factors and shared causal factors increases.

σ2β/σ
2
βs

Multi-lasso HPSa 2 Groupsb 3 Groupsc 4 Groupsd STLe

(σ2β + σ2βs )/σ2ϵ = 1:9

1:9 0.444 0.495 0.501 0.502 0.504 0.416

3:7 0.440 0.428 0.444 0.450 0.444 0.411

5:5 0.429 0.404 0.418 0.420 0.414 0.400

7:3 0.350 0.390 0.402 0.403 0.407 0.395

9:1 0.357 0.329 0.349 0.353 0.348 0.369

(σ2β + σ2βs )/σ2ϵ = 1:16

1:9 0.324 0.397 0.405 0.418 0.416 0.326

3:7 0.306 0.335 0.345 0.345 0.343 0.297

5:5 0.314 0.294 0.319 0.314 0.313 0.295

7:3 0.299 0.245 0.266 0.264 0.271 0.280

9:1 0.299 0.234 0.247 0.250 0.245 0.273

(σ2β + σ2βs )/σ2ϵ = 1:25

1:9 0.215 0.271 0.285 0.293 0.286 0.232

3:7 0.228 0.268 0.284 0.281 0.282 0.222

5:5 0.217 0.223 0.243 0.238 0.234 0.224

7:3 0.214 0.151 0.177 0.192 0.188 0.203

9:1 0.216 0.134 0.155 0.161 0.158 0.215

(σ2β + σ2βs )/σ2ϵ = 1:36

1:9 0.201 0.259 0.269 0.273 0.269 0.200

3:7 0.187 0.212 0.223 0.227 0.225 0.177

5:5 0.176 0.152 0.177 0.179 0.179 0.170

7:3 0.187 0.131 0.152 0.152 0.154 0.177

9:1 0.168 0.086 0.107 0.110 0.111 0.155

aHard parameter sharing across all layers except the last one.
bThe pre-specified number of branches for the auto-branch method is two.
cThe pre-specified number of branches for the auto-branch method is three.
dThe pre-specified number of branches for auto-branch method is four.
eEach trait is modeled independently without accounting for trait correlations.
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ADNI dataset. For individuals who passed the quality control, we
utilized the plink2R package to impute the missing for the included
SNPs. A total of 463 participants and 3,797 SNPs harbored on the
57 AD susceptibility genes were included in the final analyses. The
distributions of seven phenotypes are shown in
Supplementary Figure S2.

We randomly split the data into an 8:1:1 ratio for training,
validation and testing to mitigate overfitting, and repeated the
random sampling 100 times for robustness. Given that all seven
traits are AD-related and some even focus on similar aspect of AD
(e.g., cognitive changes), it is unlikely they are fully independent.
Likewise, while these traits provide complementary insights into
AD, they are unlikely to share identical genetic causes. Therefore, for
our method, we set the pre-specified number of branches to be 2, 3,
and 4, excluding cases where all traits are independent or share
identical causes. For comparison, we included the Multi-Lasso

model, the hard sharing model HPS, where all layers are shared
except for the last, and the STL model, where each trait is trained
separately. We kept the network architecture consistent with that
used in the simulations. We reported Pearson correlation and RMSE
for all methods and further used Wilcoxon signed-rank test to
compare our method to the others.

The prediction performance, measured by Pearson correlation
and RMSE, is illustrated in Figures 2, 3, respectively. Our auto-
branch method performs the best when the pre-specified number of
branches is set to three, though the performance differences across
various branch numbers are minimal. This method demonstrates
superior prediction across multiple traits, not only in terms of higher
average Pearson correlations but also by maintaining lower average
RMSEs. Among all compared methods, Multi-Lasso demonstrates
weaker performance in several key traits (Table 5). Specifically, when
the number of branches is set to three, the average Pearson

TABLE 4 Average RMSEs for seven traits as the relative contributions between unique causal factors and shared causal factors increases.

σ2β/σ
2
βs

Multi-lasso HPSa 2 Groupsb 3 Groupsc 4 Groupsd STLe

(σ2β + σ2βs )/σ2ϵ = 1:9

1:9 1.019 0.852 0.851 0.851 0.849 0.897

3:7 1.028 0.886 0.882 0.882 0.882 0.899

5:5 1.040 0.905 0.900 0.903 0.899 0.906

7:3 1.038 0.918 0.912 0.912 0.913 0.904

9:1 1.054 0.933 0.926 0.928 0.926 0.921

(σ2β + σ2βs )/σ2ϵ = 1:16

1:9 1.141 0.899 0.899 0.894 0.898 0.937

3:7 1.149 0.930 0.925 0.923 0.924 0.944

5:5 1.146 0.950 0.944 0.944 0.948 0.951

7:3 1.155 0.965 0.961 0.961 0.960 0.945

9:1 1.156 0.971 0.966 0.961 0.967 0.960

(σ2β + σ2βs )/σ2ϵ = 1:25

1:9 1.239 0.935 0.933 0.933 0.933 0.967

3:7 1.222 0.953 0.948 0.948 0.951 0.971

5:5 1.216 0.961 0.959 0.959 0.959 0.976

7:3 1.230 0.978 0.975 0.975 0.977 0.978

9:1 1.231 0.990 0.989 0.988 0.992 0.987

(σ2β + σ2βs )/σ2ϵ = 1:36

1:9 1.254 0.952 0.951 0.948 0.947 0.991

3:7 1.263 0.960 0.957 0.957 0.957 0.995

5:5 1.271 0.975 0.975 0.973 0.973 0.999

7:3 1.257 0.982 0.979 0.981 0.978 0.994

9:1 1.272 0.995 0.994 0.993 0.994 1.009

aHard parameter sharing across all layers except the last one.
bThe pre-specified number of branches for the auto-branch method is two.
cThe pre-specified number of branches for the auto-branch method is three.
dThe pre-specified number of branches for auto-branch method is four.
eEach trait is modeled independently without accounting for trait correlations.
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FIGURE 2
Comparison of prediction performance of multiple AD-related traits using Pearson correlation. The red dots in the figure represent the average
Pearson correlations. HPS: Hard parameter sharing across all layers except the last one. 2 Groups: The pre-specified number of branches for auto-branch
method is two. 3 Groups: The pre-specified number of branches for auto-branch method is three. 4 Groups: The pre-specified number of branches for
auto-branch method is four. STL: Each trait is modeled independently without accounting for trait correlations. Phenotypes include
fluorodeoxyglucose (FDG) and florbetapir (AV45) PET imaging, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating-Sum of Boxes
(CDRSB) Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS13), Mini-Mental State Examination (MMSE), and Montreal Cognitive
Assessment (MoCA).

FIGURE 3
Comparison of prediction performance of multiple AD-related traits using RMSE. The red dots in the figure represent the average RMSEs. HPS: Hard
parameter sharing across all layers except the last one. 2 Groups: The pre-specified number of branches for auto-branch method is two. 3 Groups: The
pre-specified number of branches for auto-branch method is three. 4 Groups: The pre-specified number of branches for auto-branch method is four.
STL: Each trait is modeled independently without accounting for trait correlations. Phenotypes include fluorodeoxyglucose (FDG) and florbetapir
(AV45) PET imaging, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating-Sum of Boxes (CDRSB) Alzheimer’s Disease Assessment Scale-
Cognitive Subscale 13 (ADAS13), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA).

Frontiers in Genetics frontiersin.org10

Liang et al. 10.3389/fgene.2025.1538544

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1538544


correlations for FDG, AV45, FAQ, CDRSB, and ADAS13 show
relative improvements of 29.45%, 33.96%, 98.60%, 17.48%, and
7.51% over Multi-Lasso, with corresponding absolute increases of
0.045, 0.059, 0.061, 0.022, and 0.011, respectively. In addition, Multi-
Lasso yields consistently higher RMSEs, particularly for FAQ and
ADAS13, reflecting its limited capacity to model complex inter-trait
relationships. The Wilcoxon signed-rank test indicated that the
increase is statistically significant for FDG, AV45, and FAQ
(Supplementary Table S19).

Regardless of branch number, our method consistently performs
similarly to or better than HPS (i.e., similar or higher Pearson
correlations, and similar or lower RMSE). Specifically, the
improvements in average Pearson correlations for FDG, AV45,
FAQ, CDRSB, ADAS13, and MMSE with a three-branch setup
are 18.56%, 31.64%, 32.61%, 32.43%, 36.21%, and 24.79%, with
corresponding absolute increases of 0.031, 0.056, 0.030, 0.036, 0.042,
and 0.030, respectively. The Wilcoxon signed-rank test indicated
that the increase is statistically significant for AV45, CDRSB, and
ADAS13 (Supplementary Table S19).

Compared to the STLmodels, our method consistently performs
similarly to or better than STL (i.e., similar or higher Pearson
correlations and consistently lower RMSE). The improvements in
average Pearson correlations for FDG, AV45, FAQ, CDRSB,
ADAS13, MMSE, and MoCA are 76.18%, 29.07%, 35.78%,
20.36%, 21.62%, 19.03%, and 3.22%, respectively, with
corresponding absolute increases of 0.086, 0.052, 0.032, 0.025,

0.028, 0.024, and 0.004. The Wilcoxon signed-rank test indicated
a statistically significant increase for FDG, AV45, FAQ, and MMSE
(Supplementary Table S19).

Our analyses suggest that the seven AD-related traits neither
share identical genetic causes nor are completely independent. PET-
imaging traits FDG and AV45 benefit substantially from joint
modeling, indicating cognitive and function tests provide
auxiliary information. Information transfer between PET-imaging
outcomes and cognitive as well as function tests help learn a better
representation, leading to the improvement of prediction. In
summary, our method improves prediction performance for most
of the traits regardless of the pre-specified number of branches,
highlighting its robustness and potential for broad practical
applications, especially for phenotypes where identifying latent
patterns is essential.

To further investigate our model, we calculated the predictive
feature importance score for each gene using a permutation-based
approach proposed by Liu et al. (2022). The basic rationale is that if
a gene is predictive, then the model accuracies with and without it
would differ significantly. Following the procedure proposed by
Liu et al. (2022), we assessed the importance of each gene by
quantifying the difference in accuracies while accounting for
variability. Specifically, we first calculated the Pearson
correlation between predicted and observed outcomes using the
original data with the already trained auto-branch model. We then
recalculated the Pearson correlations after randomly shuffling the

TABLE 5 Predictive performance (average Pearson correlations and RMSEs) for seven Alzheimer’s-related phenotypes on real-world data.

Different strategies Seven Alzheimer’s related phenotypesa

FDG AV45 FAQ CDRSB ADAS13 MMSE MOCA

Pearson correlation

Multi-Lasso 0.153 0.174 0.061 0.125 0.147 0.152 0.118

HPSb 0.167 0.177 0.092 0.111 0.116 0.121 0.117

2 Groupsc 0.181 0.226 0.134 0.152 0.143 0.165 0.113

3 Groupsd 0.198 0.233 0.122 0.147 0.158 0.151 0.116

4 Groupse 0.200 0.226 0.134 0.142 0.156 0.153 0.108

STLf 0.112 0.181 0.090 0.122 0.130 0.127 0.112

RMSE

Multi-Lasso 0.926 0.285 6.563 1.892 10.563 2.906 4.906

HPS 0.694 0.225 4.613 1.399 8.169 2.184 3.617

2 Groups 0.692 0.222 4.575 1.381 8.084 2.170 3.573

3 Groups 0.692 0.221 4.581 1.374 8.109 2.179 3.558

4 Groups 0.694 0.222 4.566 1.378 8.140 2.181 3.589

STL 0.710 0.231 4.693 1.414 8.262 2.263 3.695

aPhenotypes include fluorodeoxyglucose (FDG) and florbetapir (AV45) PET, imaging, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating-Sum of Boxes (CDRSB)

Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS13), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA).
bHard parameter sharing across all layers except the last one.
cThe pre-specified number of branches for the auto-branch method is two.
dThe pre-specified number of branches for the auto-branch method is three.
eThe pre-specified number of branches for auto-branch method is four.
fEach trait is modeled independently without accounting for trait correlations.
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SNPs located within the gene of interest, while preserving the
genetic structure (e.g., linkage disequilibrium), to generate a null
distribution. To empirically estimate the variance, we repeated the
permutation process 100 times. The standardized difference in
Pearson correlations between the original and shuffled data (also
called the predictive feature importance score by Liu et al.) reflects
the gene’s contribution to predictive performance, with a larger
difference indicating greater predictive importance. We then
calculated the predictive feature importance score, which
follows an asymptotic normal distribution under the null as
shown by Liu et al. (2022), to evaluate the predictive
importance of each gene. Genes were ranked based on their
predictive importance scores, and we focused on those with
scores greater than 1.645, corresponding to a 5% significance
threshold under the asymptotic normal distribution. It is
important to note that we did not intend to perform hypothesis
testing, rather we chose a cut-off value (i.e., 1.645) and focused on
genes with predictive feature importance score larger than this cut-
off. Therefore, no multiple testing correction was applied. Table 6
presents the genes identified as having a probability greater than
75% of being significantly predictive at the 5% level for at least one
trait, and the details for each gene are provided in Supplementary
Tables S20–S22, which correspond to models with 2, 3, and 4 pre-
specified numbers of branches, respectively. APOC1, APOE, and
TOMM40 demonstrate stable and significant predictive power.
Even though the most significant genes are similar among
phenotypes, their predictive power varies considerably
(Figure 4), which explains the superior performance of our
branching method over HPS. In our model with three branches,
APOE plays a crucial role in predicting FDG and AV45, with its
removal leading to average Pearson correlations decreases
of 0.10 and 0.14, respectively. For FAQ, CDRSB, ADAS13,
MMSE and MoCA, the impact is small-to-moderate, with
Pearson correlations reduced by 0.06, 0.08, 0.08, 0.08, and
0.04 respectively.

5 Discussion

In this study, we proposed an efficient and robust auto-branch
multi-task learning method for simultaneously predicting multiple
correlated traits. Using total inter-task affinity, which quantifies the
impact of gradient updates from one trait on the others, our method
automatically determines the best partition of traits to enable
efficient information transfer among similar traits, thereby
enhancing prediction performance.

Through simulations, we found that our method has similar or
better performance than that of the hard parameter sharing model
where shared layers are pre-specified (Zhao et al., 2020). Our auto-
branch model identifies the optimal phenotype partitioning that
maximizes overall inter-trait affinity. Phenotypes grouped together
share layers, while those in separate groups are assigned distinct
branches. This data-driven approach to sharing layers enables
efficient information transfer among inherently similar
phenotypes and significantly reduces the risk of negative transfer.
Therefore, our method can facilitate the capture of complex patterns
in the data, which includes not only the shared representations but
also the uniqueness of each phenotype. Our auto-branch method
can also outperform the single-task models, when phenotypes
shared moderate levels of common causes. This is mainly
because single-task models fail to utilize information from
auxiliary tasks and the efficient sample sizes are much less than
those in the multi-task settings. Note that we designed our
prediction model using a branch network architecture as opposed
to training separate HPSs for each group of phenotypes. The
rationale for such a design lies in the fact that most disease-
related traits have shared genetic architecture (Badré and Pan,
2023), and by allowing all disease-related phenotypes to have
some shared layers to enable the efficient modeling of these
common patterns. In the unlikely event that the underlying
genetic architectures differ significantly among traits in different
groups, our proposed inter-trait affinity measure can still guide trait

TABLE 6 Probability of the gene being significantly predictive at 5% level with probably for at least one trait greater than 75%.

Different strategies Gene Seven Alzheimer’s related phenotypesa

FDG AV45 FAQ CDRSB ADAS13 MMSE MoCA

2 Groupsb APOC1 0.92 0.98 0.87 0.87 0.85 0.85 0.74

APOE 0.94 0.97 0.86 0.87 0.90 0.85 0.77

TOMM40 0.85 0.93 0.79 0.82 0.77 0.83 0.73

3 Groupsc APOC1 0.93 0.98 0.77 0.86 0.88 0.84 0.68

APOE 0.95 0.96 0.81 0.89 0.90 0.87 0.72

TOMM40 0.91 0.93 0.77 0.78 0.76 0.80 0.71

4 Groupsd APOC1 0.89 0.96 0.75 0.87 0.87 0.84 0.70

APOE 0.90 0.95 0.83 0.84 0.89 0.90 0.77

TOMM40 0.86 0.93 0.73 0.78 0.78 0.78 0.70

aPhenotypes include fluorodeoxyglucose (FDG) and florbetapir (AV45) PET, imaging, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating-Sum of Boxes (CDRSB)

Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS13), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA).
bThe pre-specified number of branches for the auto-branch method is two.
cThe pre-specified number of branches for the auto-branch method is three.
dThe pre-specified number of branches for the auto-branch method is four.
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groupings. Separate HPS models can then be applied to each trait
group for predictions (Supplementary Figure S3). This network
structure facilitates capturing the unique characteristics of each
group, making it particularly powerful for analyzing phenotypes
that are largely distinct (Supplementary Tables S23, S24).
Nevertheless, we recommend using branch network structure as
illustrated in Figure 1 for genetic risk prediction of multiple
correlated traits in most practical applications.

Our proposedmethod offers significant advantages in predicting
seven AD-related phenotypes, including neuroimaging findings,
cognitive scores, and functional assessments. For example, in the

prediction of FDG, our method with 3 pre-determined branches
increases the average Pearson correlations by 29.45%, 18.56%
and 76.18% for Multi-Lasso, HPS, and STL, with corresponding
absolute increase of 0.059, 0.031 and 0.086, respectively. Similarly,
in the prediction of AV45, we have observed an increase of
33.96%, 31.64% and 29.07% for Multi-Lasso, HPS, and STL, with
corresponding absolute increase of 0.061, 0.056 and 0.052,
respectively. Notably, MoCA did not show significant
improvement across the models, which may suggest weaker
correlations with other traits or higher noise in its measurements
that impacted model performance.

FIGURE 4
Distribution of predictive feature importance scores for the top significant genes. The red dots in the figure represent the average Pearson
correlations. (A): The pre-specified number of branches for the auto-branch method is two. (B): The pre-specified number of branches for the auto-
branch method is three. (C): The pre-specified number of branches for the auto-branch method is four. Phenotypes include fluorodeoxyglucose (FDG)
and florbetapir (AV45) PET imaging, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating-Sum of Boxes (CDRSB) Alzheimer’s Disease
Assessment Scale-Cognitive Subscale 13 (ADAS13), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA).
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To verify the reliability and effectiveness of our proposed model,
we conducted a comparative analysis with several related studies. For
instance, Zhu et al. (2016) incorporated SNPs from the top 10 APOE-
related genes into their MMSE prediction model and achieved a
Pearson correlation of 0.150. In contrast, ourmethod attained a higher
correlation of 0.165 on the same task, demonstrating improved
predictive performance. Hongmyeong-eup (2015) selected
39 SNPs, identified from approximately 1.5 million candidates as
being closely associated with Alzheimer’s disease (AD) progression,
and achieved a Pearson correlation of 0.400 in MMSE prediction. To
ensure a fair comparison, we also constructed a model using SNPs
from three well-established AD-associated genes—APOC1, APOE,
and TOMM40—and obtained a correlation of 0.390, indicating that
our approach performs comparably when using similarly strong
genetic signals. In addition, Hao et al. (2016) reported Pearson
correlation values ranging from 0.02 to 0.25 and 0.03–0.23 for
traditional and improved methods on AV45 and FDG phenotypes,
respectively. Our model also falls within these performance ranges,
suggesting comparable accuracy in these tasks. In summary, our
proposed method exhibited comparable predictive capabilities to
existing state-of-the-art methods in multiple AD-related
phenotypes, further demonstrating its potential in modeling
Alzheimer’s disease progression.

These performance gains can be largely attributed to the
underlying design of our method. Our method is constructed
within a deep learning framework, effectively parsing complex trait
relationships, particularly in the context of multi-gene co-regulation.
Additionally, it can dynamically determine shared layers and thus is
more powerful in managing intricate relationships among traits.
Evidence suggests that these AD-related traits reflect different
aspects of AD, and they are neither entirely correlated nor
completely independent. For example, cognitive decline and
neuroimaging abnormalities often exhibit strong genetic
correlations (Zhang et al., 2021), but they do not share identical
genetic causes. Therefore, methods like Multi-Lasso that rely on fixed
feature selection across all tasks are unable to capture these nuanced
relationships, as they do not allow for the dynamic identification of
shared and unique factors between traits. Similarly, both STL andHPS
models are unlikely to achieve the optimal performance, as STL fails to
exploit inter-task correlations andHPS pre-specifies shared layers that
lead to limited flexibility. Therefore, for the prediction of AD-related
traits, our auto-branch multi-task learning method can leverage
shared signals among genes or biological pathways to gain a more
comprehensive understanding of these phenotypes while allowing
each phenotype to have their unique characteristics, and thus offers
greater flexibility as compared to Multi-Lasso, STL, and HPS.

We found that the APOC1, APOE, and TOMM40 exhibit stable
and significant predictive abilities for all seven AD-related phenotypes,
but their predictive capabilities vary substantially across traits,
indicating HPS that forces most of the model parameter the same
is unlikely to work well. All highly predictive genes are significantly
associated with AD. For example, APOE4*ε4 regulates neuronal
metabolism and epigenetics, and is involved in the pathological
processes of AD (Prasad and Rao, 2018). APOC1 influences AD
development through its role in cholesterol metabolism (Leduc
et al., 2010), with the APOC1 H2 allele potentially acting
synergistically with APOE to increase the risk of cognitive decline
(Zhou et al., 2014). TOMM40 is strongly linked to APOE and

contributes to the pathological changes in AD (Tasaki et al., 2019),
including the formation of neurofibrillary tangles and neuritic plaques.
TOMM40 regulates oxidative stress andmitochondrial function, and is
associated with late-onset AD (Roses, 2010). We noticed that the
predictive ability of APOE for FDG and AV45 is especially significant,
aligning with findings from previous research (Prasad and Rao, 2018).
Future studies are needed to further decipher additional factors that
contribute to the variability of each phenotype.

While this study offers valuable insights into the effectiveness of
multi-task learning, several limitations remain. Due to the NP-hard
nature of the problem, we pre-specified the optimal number of
branches and then found the corresponding partitions. Future
research can improve this by determining the optimal number of
branches using a data-drivenmanner (e.g., cross-validation). Although
our method outperforms baseline approaches, factors such as limited
sample size, low-to-median heritability, and trait heterogeneity may
still contribute to variability and should be further explored in future
work. Additionally, the findings presented in this study are based on
simulated data and ADNI dataset. Future work should validate these
results across diverse datasets and applications.

In summary, we developed an efficient auto-branch multi-task
learning framework for the prediction analyses of multiple correlated
phenotypes. It can dynamically branch the network to allow for
efficient information transfer and improve the overall prediction.
Our method is available at https://github.com/jiaqi69/TAB.
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