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Introduction: Feed efficiency is a key factor in animal production sustainability,
directly affecting production costs, environmental efficiency, and farmer
profitability. The inclusion of feeding efficiency traits in cattle breeding
programs has occurred later than other species due to longer life cycles and
the high costs associated with measuring feed intake. However, genomic
selection has facilitated the inclusion of difficult-to-measure traits in selection
schemes. Thus, understanding the genetic basis of feed efficiency, particularly
under varying environmental conditions, is essential.

Methods: This study aimed to identify genomic regions associated with dry
matter intake (DMI) and residual feed intake (RFI) in Nellore cattle by
performing a genome-wide association study (GWAS) based on single-step
genomic reaction norm models that account for genotype-by-environment
interactions (G×E). Phenotypic data from 23,170 young bulls and heifers were
collected across 301 feed efficiency trials. Genomic windows explaining more
than 1% of the total direct additive genetic variance were identified for both the
intercept and slope components of the reaction norm for each trait.

Results: For RFI, ten and eleven genomic windows explained more than 1% of the
genetic variance for the intercept and slope, respectively. For DMI, 12 windows
were identified for the intercept and 17 for the slope. Within these regions,
Multiple protein-coding genes were annotated (RFI: 66 for intercept and 47 for
slope; DMI: 107 for intercept and 109 for slope), which are involved in key
biological processes such as insulin, leptin, glucose, protein, and lipid
metabolism; energy balance; heat stress response; feeding behavior;
digestion; and nutrient absorption.

Discussion: The results highlight the functional diversity of genes involved in feed
efficiency and their dynamic response to environmental variation. While certain
genes remained central across environments, others were specifically important
under more challenging conditions, emphasizing the role of G×E in regulating
these traits. Furthermore, the magnitude and direction of SNP effects varied
across environmental gradients, reinforcing the relevance of G×E. Consequently,
genomic estimated breeding values for DMI and RFI also differed between
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environmental extremes. These findings underscore the adaptability of genetic
networks to environmental changes and are essential for refining strategies to
improve feed efficiency in Nellore cattle.
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1 Introduction

In animal production, the feed efficiency of individuals is one of
the main determinants of production costs, environmental impact,
and farm profitability (Nahm, 2002; Kenny et al., 2018). However,
despite the strong influence of feed efficiency on the financial return
of animal production (Herd and Arthur, 2009; Patience et al., 2015;
McLoughlin et al., 2020), in cattle, its measurement and
incorporation into selection indices began later compared to
poultry and swine (Bottje and Carstens, 2009). This delay can be
attributed to several factors unique to poultry and swine farming
systems, including shorter life cycles (Tokach et al., 2016; Mottet and
Tempio, 2017), easier management, and greater control over
environmental and feeding conditions (Kyriazakis, 2011; Gilbert
et al., 2015), facilitating standardization and measurement of feed
efficiency with greater precision. Furthermore, these species tend to
experience greater response to genetic improvement due to the
shorter generation intervals and higher selection intensities due to
the larger number of offspring per generation.

Given the diversity in cattle production systems and the high
costs of accurately measuring individual feed intake, genomic
selection (Meuwissen et al., 2001) represents a great opportunity
for genetically improving difficult or expensive-to-measure traits
such as feed efficiency (Pryce et al., 2014). The wide availability of
genomic information has also contributed to a better understanding
of the genetic architecture of complex traits, improving the accuracy
of selection, particularly for traits with low heritability and more
difficult or expensive to measure (Hayes et al., 2007; da Silva Neto
et al., 2023), such as feed efficiency traits.

Feed efficiency is influenced by multiple underlying biological
mechanisms, such as age, sex, locomotor activity, caloric increment,
body composition, feeding behavior, and others (Basarab et al., 2003;
Herd et al., 2004; Herd and Arthur, 2009; Haskell et al., 2019). A
particularity when considering feed efficiency in ruminants is their
ability to convert plant biomass into volatile fatty acids (VFA),
proteins, and vitamins due to the presence of microorganisms in the
rumen that ferment and transform their feed (McLoughlin et al.,
2020; Fregulia et al., 2021; Zhao et al., 2024). These microorganisms
are responsible for producing most of the VFAs that serve as
metabolizable energy sources for the host (Enjalbert et al., 2017;
Zeineldin et al., 2018; McLoughlin et al., 2020; Zhao et al., 2024).
Mechanisms related to ruminal function contribute to 23% of the
variation in feed efficiency in cattle (Herd et al., 2004). Furthermore,
the variability in ruminal microbiota has been associated with feed
efficiency, with diet being one of the main components influencing
the composition, diversity, and functionality of the rumen
microbiome (Krause et al., 2013; Shabat et al., 2016; Ellison et al.,
2017; 2019).

Metabolizable energy (ME) is another crucial determinant of
feed efficiency in cattle, as it provides the energy needed for vital

functions such as maintenance, growth and production (Reynolds
et al., 2011; Marcondes et al., 2013; Arndt et al., 2015). Differences in
ME utilization efficiency arise from interactions between diet
composition, rumen activity and the animal’s physiological
processes (Moe, 1981; Reynolds et al., 2011; Hales, 2019). Diets
with high energy density, such as those rich in grain, increase ME
availability, improving feed efficiency by reducing losses associated
with digestion and increasing nutrient assimilation (Reynolds et al.,
2011; Hales et al., 2017). In contrast, fiber-rich diets often result in
lower ME availability, which poses challenges for animals with higher
genetic potential for growth (Nkrumah et al., 2006; Reynolds et al.,
2011). Variations in microbiota, driven by diet or environmental
factors and management practices, can significantly influence the
efficiency of ME utilization (Shabat et al., 2016; Ellison et al., 2017;
2019). These complex interactions between ME, diet, and animal
physiology highlight the challenges and opportunities in selecting
cattle for greater feed efficiency in diverse production systems.

We have previously assessed genotype-by-environment
interactions (G × E) for dry matter intake (DMI) and residual feed
intake (RFI) in Nellore cattle using bivariate reaction norm models
(RN) (Silva Neto et al., 2023). The environmental gradient (EG) was
defined based on the Best Linear Unbiased Estimation (BLUE)
solutions of the contemporary groups (CG) for ADG, which
captures differences in nutritional, environmental, and management
practices during the feed efficiency trials. Heritability estimates for
DMI and RFI ranging from 0.26 to 0.54 and 0.07 to 0.41 across EG
levels were obtained, respectively, with average genetic correlations for
the same trait at different EG of 0.83 and 0.81. The lowest correlations
were observed between extreme levels of EG (i.e., 0.22 for RFI and
0.26 for DMI). These results indicated the presence of G × E
interactions, particularly under extreme environmental conditions
(low and high EG values), resulting in significant reranking of
selected animals. These findings underscore the complexities
involved in selecting for feed efficiency across varying environments.

Genome-wide association studies have been extensively
conducted for traits related to feed efficiency traits in cattle,
including DMI and RFI (de Oliveira et al., 2014; Olivieri et al.,
2018; Seabury et al., 2017; Brunes et al., 2020). These studies have
identified important genetic loci that influence these economically
important traits in livestock (Brito et al., 2020). However, there is a
notable gap in the literature regarding the inclusion of G × E
interactions in these analyses, especially for beef cattle raised
under varying environmental conditions, such as in the Nellore
breed (Silva Neto et al., 2024). The lack of studies addressing this
interaction for traits like DMI and RFI highlights the need for future
research that incorporates environmental variation, enabling more
precise and effective selection of animals adapted to diverse
environmental scenarios.

Therefore, the primary objectives of this study were to: 1)
conduct a genome-wide association study (GWAS) using a
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single-step genomic reaction norm model to identify specific
genomic regions associated with dry matter intake and residual
feed intake in Nellore cattle (Bos taurus indicus) considering G × E
interactions; and 2) identify biological processes and metabolic
pathways that regulate the expression of DMI and RFI across EG
levels. The findings from this study have the potential to provide
valuable information into the genetic mechanisms underlying feed
efficiency in Nellore cattle, offering a deeper understanding of how
environmental conditions modulate the expression of feed efficiency
in Nellore cattle.

2 Methods

2.1 Field data

Individual feed intake was measured on 23,170 Nellore animals
(16,430 males and 6,740 females) from 2011 to 2023. The National
Association of Breeders and Researchers (ANCP, Ribeirão Preto, SP,
Brazil; www.ancp.org.br) provided the data. Animals were recorded
during 301 feeding trials and belonged to 25 farms. The dataset used
includes phenotypic information for ADG, DMI, and RFI, following
the procedures for measuring individual feed intake in beef cattle
(Mendes et al., 2020). The herds involved are highly connected due
to the use of common sires through artificial insemination (AI), with
at least five genetic links across the feeding trials, which were
evaluated using the AMC program (Roso and Schenkel, 2006).
The animals were raised on pasture-based systems (Urochloa
brizantha cv). The commercial herds adopted different
nutritional practices with some farms providing protein and
mineral supplementation, especially during the dry season, while
others provided only urea supplementation.

2.2 Phenotypic information

The feeding trial was performed in group pens with animals
grouped by sex. Feed intake was recorded automatically based using
the GrowSafe (www.vytelle.com) and Intergado (www.intergado.
com) feeding systems. Detailed information on diet composition,
management, and the description of the evaluated traits, i.e., ADG,
DMI, and RFI, is provided in Silva Neto et al. (2023). Performance
evaluations and feed intake measurements followed the
recommended protocols for beef cattle, as described by Mendes
et al. (2020). To ensure consistency across trials, it is recommended
that the diet be provided ad libitum as a total mixed ration (TMR),
with a homogeneous blend of forage and concentrate to prevent
ingredient selection by the animals. The same standardized dietary
formulation should be maintained across all trials conducted at the
same facility, with only minimal adjustments in ingredient
quantities. Feed refusals should be monitored and maintained
between 5% and 10% of the total amount offered. The nutritional
value of the diet should reflect that of high-quality pasture, with total
digestible nutrient (TDN) levels aligned with the expected average
daily weight gain for the animal category under evaluation. The
dietary energy concentration should range from 2.4 to 2.8 Mcal of
metabolizable energy per kilogram of dry matter, and the average
daily gain of the group should not exceed 2.0 kg/day.

Across the feed efficiency trials, variations in dietary
composition were observed among different farms, and in some
cases, within the same farm across different years. In general, the
forage fraction accounted for 70%–80% of the total diet, consisting
predominantly of corn or sorghum silage, although some farms used
silage from Brachiaria grass species. The concentrate fraction
primarily consisted of ground corn and ground sorghum, with
the addition of protein sources in some trials, such as soybean
meal, soybean hulls, and urea.

The dietary effect was indirectly accounted for by including the
contemporary group (CG) as a fixed effect in the statistical model
(see Section 2.4.1). Information on geographic regions, climate
conditions, and the number of animals per farm is available in
Supplementary File 1 (Supplementary Table S1). The descriptive
statistics for these traits are reported in Table 1.

2.3 Genomic data

A total of 18,567 animals born between 2014 and 2022 were
genotyped with a SNP panel containing 65,414 markers (Clarifide®

Nelore 3.0). The genotypes were imputed to a SNP panel containing
735,964 markers using the Fimpute 3.0 software (Sargolzaei et al.,
2014). The reference population for genotype imputation consisted
of 963 representative sires of the main Nellore lineages (i.e., Karvadi,
Golias, Godhavari, Taj Mahal, Akasamu, and Nagpur). These
reference sires were born between 1995 and 2015 and genotyped
with the Illumina BovineHD BeadChip (Illumina Inc., San Diego,
CA, USA). Before imputation, we removed non-autosomal markers
and autosomal SNPs with GenCall <0.6 to remove genotyping
problems. We evaluated imputation accuracy by splitting the
reference population into three folds, simulating the medium-
density panel density (Mota et al., 2024), resulting in an accuracy
of 0.98 like da Silva Neto et al. (2023). The quality control of
genotypes after the imputation was performed using the
QCF90 software (Misztal et al., 2014). Samples and SNPs with a
call rate lower than 0.90 were removed from the dataset. Markers
with more than 1% of Mendelian conflicts, with unknown or
redundant genomic positions, MAF lower than 0.05, and those
located in non-autosomal chromosomes were also removed. After
quality control, 18,567 genotyped animals and 452,283 SNPs were
retained for further analyses.

2.4 Statistical Modelling

2.4.1 Reaction norm models
A two-step reaction norm model (Mota et al., 2020a; Silva Neto

et al., 2023) was considered in the present study. In the first step, the
ADG during the feeding trials was used to define the EG levels, given
that the actual ADG shows significant variation from the
recommended ADG of 1.0 kg per day (Mendes et al., 2020). The
best linear unbiased estimates (BLUE) solutions of the CG for ADG
were used to quantify potential differences between the
management, nutritional, and environmental conditions during
the feeding trials. Thus, differences in ADG among CG were
used as an indirect indicator of better or worse environmental
conditions, as higher ADG values were interpreted as being
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associated with more favorable environments. The CG was defined
by year and season of the feeding trial, farm, sex (males and females
were allocated to different batches). Age at the beginning of trials
(415 ± 116 days of age) was considered a linear covariate in the
model. The CG solutions were obtained with an animal model using
the best linear unbiased predictions (BLUP) as follows:

y � Xβ + Zα + e

where y represents the phenotypic information for ADG, β is a
vector with the fixed effects of CG and age at feeding trails as a
linear covariate; α is a vector of additive genetic effects assumed to
be normally distributed N(0,Aσ2a), in which σ2a is the additive
genetic variance and A is the pedigree relationship matrix, and e is
a residual vector assumed N(0, Iσ2e), where I is an identity matrix
and σ2e is the residual variance. X and Z are incidence matrices
linking the records to the fixed and additive genetic effects,
respectively. The EG levels were obtained by the BLUE
solutions of the CG solutions standardized to a mean value of
0 and standard deviation (SD) of 1.

In the second step, to estimate the GEBV for DMI and RFI
across the EG levels, a single step bi-trait genomic reaction norm
model (ssBRN) was used as follows:

yij � Xb + ωfΦf EGj( ) + αf iΦf EGj( ) + eij

where yij is the vector of phenotypic information for DMI and RFI of
the animal i recorded at the level j of EG, b is the fixed effect of CG
and age of animal as linear covariate, X is the incidence matrix, ωf

are the f-th fixed regression coefficients (intercept and slope) on
Φf (EGj); Φf (EGj) are the f-th Legendre orthogonal polynomials
corresponding to EG level j (EGj), αf i are the random regression
coefficients for additive effects of intercept and slope corresponding
to animal i on EG level j, and eij is a random residual. The ssBRNwas

fitted considering heterogeneous residual variance across EG levels
(Silva Neto et al., 2023).

The additive and residual genetic effects were considered
normally distributed: α � α{ } ≈ N(0,H ⊗ K) and
e � e{ } ≈ N(0, I ⊗ R), where K represents the additive genetic
variance-covariance matrix attributed to the intercept and slope
and R is a diagonal residual variance matrix considering
heterogeneous classes; I is an identity matrix, ⊗ is the Kronecker
product and H is a matrix combining pedigree and genomic
relationship. The inverseH−1 was calculated as (Aguilar et al., 2010):

H−1 � A−1 + 0 0
0 G−1 − A−1

22
[ ]

where, A−1 is the inverse of the pedigree-based relationship matrix,
A−1
22 represents the inverse relationship matrix based on pedigree for

the genotyped animals, and G−1 is the inverse of the genomic
relationship matrix obtained according to the first method
proposed by VanRaden (2008).

Posterior distribution samples of the (co)variance components were
obtained throughBayesian inference using theGibbs sampling algorithm,
implemented in the GIBBSF90 software (Misztal et al., 2014). The
Bayesian analyses consisted of a single chain of 500,000 cycles, a
burn-in of 50,000 iterations, and storage of values every ten cycles.
The convergence was evaluated through visual inspection using the
BayesianOutputAnalysis (Smith, 2007) andGeweke test (Geweke, 1992).

2.4.2 Estimates of SNPs effects in different
environments

The SNP effects for the intercept and slope were obtained using
weighted single-step GWAS (WssGWAS) (Wang et al., 2012). The
breeding value of the genotyped animals (ag) is a function of the
SNPs effects:

TABLE 1 Descriptive statistics for dry matter intake (DMI), residual feed intake (RFI), and average daily liveweight gain (ADG) during feeding trials in Nellore
cattle.

Variable RFI (kg/day) DMI (kg/day) ADG (kg/day)

Number of phenotypic records (and animals) 23,170 23,170 23,170

Phenotypic average 0.003 8.532 1.231

Standard deviation 0.840 2.153 0.378

Minimum −7.109 2.519 −0.580

Maximum 6.940 20.658 3.460

Feeding trials information

Number of trials with only males 211

Number of trials with only females 90

Animals in the pedigree 46,631

Number of sires 2,833

Number of dams 21,888

Sires with progeny records 1,024

Dams with progeny records 11,477

Number of contemporary groups 760
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ag � Zgu

where Zg represents the incidence matrix of genotypes, and u is a
vector of the SNPs effects. Thus, the variance of the genetic effects is
given by:

var ag( ) � var Zgu( ) � ZgDZg´σ
2
u � G* σ2a

where D represents the diagonal matrix of the weights for the SNP
variances (D = I for GBLUP), σ2u is the variance of the additive
genetic effect obtained from each SNP when the same variance is
assumed for all SNPs, σ2a is the additive genetic variance of the trait,
and G* is the weighted genomic relationship matrix:

G* � var ag( )
σ2a

� var Zu( )
σ2a

� ZgDZg´λ

where, λ is a ratio of variances (σ2uσ2a) or normalization constant
(Vanraden et al., 2009) . According to Stranden and Garrick
(2009), the SNP effects (û) can be obtained as follows:

û � σ2u
σ2a

DZg´G*
−1âg � DZg´ ZgDZg´[ ]−1 âg

In this way, the best predictor of the SNPs effects given by the
genetic effect can be estimated. Estimates of the SNP effects can be
used to estimate the individual variance of each SNP effect (σ2u,i), and
apply a different weight to each SNP as follows:

σ2u,i � u2i 2pi 1 − pi( )
In summary, the SNP effects and weights for the WssGWAS

were derived as follows (Wang et al., 2012):

1. Let D = I in the first step.
2. Calculate G = ZgDZg´λ.
3. Calculate GEBVs for the entire data set using the ssGBLUP.
4. Convert GEBVs to SNP effects (û): û = λDZ9(Zg D Zg′ λ)−1 âg ,

where âg is the GEBVs of genotyped animals.
5. Calculate the weight for each SNP: di = û2i2pi(1−pi), where i is

the i-th SNP.
6. Normalize SNP weights to remain the total genetic

variance constant.

The SNP weights were calculated iteratively through two
iterations. The proportion of the genetic variance explained by
moving genomic windows of 100 adjacent SNP were computed
according to Wang et al. (2012):

Var ai( )
σ2a

× 100% � Var ∑j�1 Zjûj( )
σ2a

× 100%

where ai is the genetic value of the ith region of 100 SNP; σ2a is the
direct additive genetic variance; Zj is the vector with the genotype of
the jth SNP for all animals; and ûj is the estimated effect for the jth

SNP within the i-th region. Genomic windows that explained at least
1% of the genetic variance for the slopes were considered potentially
associated with animals’ specific responses to changes in EG. The
application of SNP windows aims to approximate the structure of
haplotype blocks, assuming that these windows can be inherited
together (da Silva Neto et al., 2023). The choice of genomic windows

consisting of 100 SNPs was based on studies in the literature
conducted on Nellore cattle for economic interest traits
(Fernandes Júnior et al., 2016; Marín-Garzon et al., 2021; Silva
et al., 2024). However, the concept of SNP window has not been
unified yet (Garcia et al., 2018).

2.5 Gene enrichment analyses

The proportion of the total direct additive genetic variance
explained by each genomic window containing 100 SNPs was
visualized using Manhattan plots, generated with the CMplot
v4.3.0 package in R (Yin et al., 2021). The identified relevant
genomic regions were annotated using the Bos taurus ARS-
UCD1.2 assembly as the reference genome (Rosen et al., 2020).
Candidate genes were identified based on the BioMart tool in the
ENSEMBL platform (www.ensembl.org/biomart/martview/).

Gene Ontology (GO) and KEGG pathway enrichment analyses
(p < 0.05) were conducted using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID; version 6.8)
(Dennis et al., 2003). This was done to identify biological
processes, molecular functions, cellular components, and
metabolic pathways associated with positional candidate genes.
Interactions between protein-coding genes were predicted using
the STRING database with default settings (Szklarczyk et al., 2015).

3 Results and discussion

3.1 Phenotypic means of RFI, DMI, and ADG
across EG levels

The phenotypic means and standard deviations by EG for the
studied traits are presented in Table 2. For DMI and ADG, the mean
values displayed an increasing trend as the environment became
more favorable (or less restrictive), with DMI ranging from 7.14 ±
1.40 (EG 2) to 12.80 ± 3.00 (EG 17) kg of DM/day and ADG from
0.696 (EG 1) to 2.050 (EG 17) kg/day. RFI, an indicator of feed
efficiency, remained relatively low and stable across the EG levels,
ranging from 0.00 ± 0.687 (EG 2) to 0.30 ± 1.450 (EG 17) kg DM/
day. This suggests that, in general, animals consumed more feed and
grew faster in better environments, while their efficiency in
converting feed to body mass remained largely consistent across
EG levels. However, small fluctuations in RFI among EG levels
might indicate a slight reduction in feed efficiency under highly
favorable environmental conditions. This finding suggests that the
animals might consume more feed than needed for growth and
maintenance in highly favorable conditions, which could result in
less efficient nutrient utilization. Furthermore, the phenotypic
expression of RFI can also be influenced by genetic differences in
feed utilization, management practices, or dietary composition
across farms.

Considering the recommendation to provide a diet that supports
an ADG of around 1.0 kg/day during feeding trials (Mendes et al.,
2020), there was significant variability in ADG across the different
EGs (Table 2). This variation may be attributed to the
physicochemical differences in dietary ingredients, which likely
resulted from the wide climatic and geographic diversity across
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the regions where the trials were held. Another important aspect is
that differences in management practices (for example, individual or
collective feed distribution systems and different animal densities in
the pen), the genetic background of herds, and the genetic selection
strategies employed by various farms also play a crucial role in ADG
variability. The combination of all these factors underscores the
complexity of GxE on feed efficiency traits measured in Nellore
cattle (Silva Neto et al., 2023).

3.2 Genome-wide association study and
functional genomic enrichment

In this study, we performed a GWAS that considered GxE
interactions for DMI and RFI, an approach not yet explored in
previously published work for these traits. The results are presented
in terms of intercept and slope, providing a more detailed
assessment of GxE interactions for these feed efficiency traits.
The intercept represents the adjusted mean value of the trait,
excluding environmental temporal influences (Mota et al., 2020a;
b; Silva Neto et al., 2023; 2024). This can be interpreted as the genetic
baseline of the trait under idealized conditions, where
environmental effects are considered standard. In practice, the
intercept captures the genetic variation of the trait before
considering interactions with the environment or over time. On
the other hand, the slope quantifies the rate of change in the trait as
environmental or temporal factors vary (Oliveira et al., 2018; Mota

et al., 2020a; b; Silva Neto et al., 2024). The slope measures how the
trait responds to these changes, offering insight into the GxE
interaction. This model allows for a deeper understanding of the
dynamics between genetic and environmental factors in animal
performance, aiding in the selection of genetically more
adaptable individuals to diverse environmental conditions (Silva
Neto et al., 2024).

3.2.1 Intercept for RFI
In this study, ten genomic windows explained more than 1% of

the intercept’s total direct additive genetic variance for RFI (Table 3;
Figure 1). These genomic windows are located on seven
chromosomes: BTA1 (94.24–95.04 Mb and 95.05–95.90 Mb),
BTA3 (79.33–80.65 Mb), BTA4 (71.07–72.11 Mb and
110.35–110.80 Mb), BTA5 (66.72–67.21 Mb), BTA12
(15.05–15.49 Mb and 42.95–43.49 Mb), BTA14 (10.43–10.64 Mb),
and BTA18 (34.60–35.22 Mb). Within these genomic regions, a total
of 71 genes were identified, including 2 miRNAs, 66 protein-coding
genes, 1 snoRNA, and 2 snRNAs. These results highlight the polygenic
architecture of RFI, a trait influenced by multiple genomic regions
exerting additive effects on its phenotypic expression.

Brunes et al. (2020) also identified genomic windows that
explained more than 0.5% of the total additive genetic variance
for RFI on BTA3 (54.02–54.06 Mb) and BTA5 (70.28–71.12 Mb) in
Nellore cattle. Similarly, Olivieri et al. (2016) found regions that
explained more than 1.0% of the total additive genetic variance for
RFI on BTA1 (100.01–100.02 Mb and 121.63–121.67 Mb), BTA4

TABLE 2 Number of records (N) and descriptive statistics for dry matter intake (DMI), residual feed intake (RFI), and average daily liveweight gain (ADG) by
environmental gradient level (EG) in Nellore cattle.

EG N DMI (Kg DM/day) RFI (Kg DM/day) ADG (Kg/day)

Mean ± SD

1 828 7.88 ± 1.76 0.18 ± 0.862 0.696 ± 0.210

2 1,371 7.14 ± 1.40 0.00 ± 0.687 0.839 ± 0.207

3 1,247 7.79 ± 1.77 0.00 ± 0.732 0.936 ± 0.241

4 1,703 7.28 ± 1.39 0.00 ± 0.626 0.960 ± 0.226

5 1,936 7.69 ± 1.42 0.00 ± 0.589 1.040 ± 0.223

6 1,923 7.72 ± 1.38 0.02 ± 0.652 1.100 ± 0.264

7 1,183 7.96 ± 1.69 0.00 ± 0.705 1.140 ± 0.215

8 2,465 8.19 ± 2.10 0.14 ± 1.030 1.210 ± 0.219

9 1,336 8.54 ± 1.69 0.02 ± 0.826 1.270 ± 0.233

10 1,031 8.48 ± 1.93 0.00 ± 0.711 1.300 ± 0.238

11 1,111 8.70 ± 2.02 0.00 ± 0.902 1.320 ± 0.251

12 1,409 9.49 ± 1.92 0.07 ± 0.798 1.410 ± 0.272

13 1,257 9.43 ± 1.84 0.00 ± 0.851 1.430 ± 0.283

14 1,915 9.42 ± 1.94 0.03 ± 0.811 1.490 ± 0.303

15 1,018 9.85 ± 1.82 0.10 ± 0.791 1.630 ± 0.276

16 812 10.80 ± 2.35 0.27 ± 1.380 1.770 ± 0.254

17 625 12.80 ± 3.00 0.30 ± 1.450 2.050 ± 0.377

Frontiers in Genetics frontiersin.org06

Silva Neto et al. 10.3389/fgene.2025.1539056

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1539056


(105.90–105.91 Mb and 118.56–118.60 Mb), and BTA18
(11.03–11.06 Mb). Additionally, Bolormaa et al. (2011) identified
SNPs significantly associated with RFI on BTA3 (105–106 Mb),
BTA4 (41–42Mb and 91–92 Mb), BTA5 (51–52 Mb, 75–76 Mb,
85–86 Mb and 110–111 Mb), BTA12 (55–56 Mb) and BTA18
(3–4 Mb) across seven different cattle breeds (Angus, Murray
Grey, Shorthorn, Hereford, Brahman, Santa Gertrudis, and
Belmont Red).

Considering the genetic variance explained by the regions that
accounted for at least 1% of the direct additive genetic variance,
20.63% of the total direct additive genetic variance was captured.
The genomic window on BTA18 (34.60–35.22 Mb) explained the
largest proportion of the total additive genetic variance for RFI,
accounting for 3.41%, with 36 annotated genes identified within this
region (Table 3). The genes located in this genomic window have
important functions related to animal performance across different
environmental conditions. For instance, the Cadherin 16 (CDH16)
gene is a protein primarily expressed in kidney epithelial cells
(Lennartz et al., 2023). Cadherins are crucial for cell-cell
adhesion, and in the kidney, CDH16 influences nutrient
reabsorption (Igarashi, 2003; Cali et al., 2012; Lennartz et al.,
2023). This role is particularly relevant for RFI, as efficient
nutrient utilization directly affects the energy balance and intake
in cattle (Swanson and Miller, 2008). The Ras-related glycolysis
inhibitor and calcium channel regulator (RRAD) gene is involved
in glucose and fatty acid metabolism, which are essential for energy
homeostasis (Wang et al., 2014; Lin et al., 2018; Astrain et al., 2022).
Its role in regulating glucose levels and insulin signaling could affect
how efficiently cattle utilize energy from feed.

Another important set of genes includes carboxylesterase 2
(CES2), carboxylesterase 3 (CES3), and carboxylesterase 4A
(CES4A), which belong to the carboxylesterase family (Hosokawa
et al., 2007; Lamego et al., 2013; Liu et al., 2021). These genes are
involved in lipid metabolism and detoxification of xenobiotics
(Lamego et al., 2013; Liu et al., 2021). The ability of animals to
efficiently process and metabolize lipids and other dietary
components is particularly important in environments with great

variability in feed composition. Differences in carboxylesterase
activity could influence how effectively nutrients are converted
into energy, thereby affecting feed efficiency (Nawaz et al., 2024).
The heat shock factor 4 (HSF4) gene plays a crucial role in cellular
responses to heat stress (Lang et al., 2021; Singh et al., 2024). HSF4
regulates the expression of heat shock proteins, which are important
for maintaining protein stability and cellular function under
conditions of heat stress (Abbas et al., 2020; Hu et al., 2024;
Lang et al., 2021; Tian et al., 2021). In tropical environments,
where Nellore cattle are commonly raised, efficient heat shock
protein response can preserve metabolic efficiency during hotter
conditions. Therefore, genetic variations in the HSF4 gene may
account for differences in cattle responses to heat stress, potentially
affecting their feed efficiency and overall energy expenditure.

In the functional enrichment analysis for the intercept of RFI,
17 processes were significantly associated (p-value <0.05) with this
trait (Table 4). These processes provide valuable information into
the polygenic regulation of RFI and biological mechanisms
influencing this trait. One of the biological annotated was the
adult feeding behavior (GO:0008343), with the involvement of
growth hormone secretagogue receptor (GHSR), neuropeptide Y
(NPY), and agouti-related peptide (AGRP) genes. This process
directly relates to the regulation of feeding behavior, which is
crucial for determining how efficiently an individual converts
feed into body mass (Muhammad et al., 2018; Chen et al., 2019).
GHSR regulates energy balance by mediating the effects of ghrelin, a
hormone that stimulates appetite (Klok et al., 2007; Muhammad
et al., 2018). NPY and AGRP are also key regulators of hunger and
energy homeostasis (Cansell et al., 2012; Chen et al., 2019).
Variations in these genes could result in differences in feed
intake and consequently, RFI. Furthermore, positive regulation of
appetite (GO:0032100), with the genes GHSR and NPY (Chen et al.,
2019; Zhang et al., 2019), further underscores the relationship
between hunger regulation, energy intake, and RFI. In tropical
environments, where feed availability and quality may vary, the
ability to regulate appetite and energy expenditure becomes critical
for maintaining efficient growth and production.

TABLE 3 List of the top genomic windows that explained more than 1% of the total direct additive genetic variance (σ2a) for residual feed intake (RFI -
intercept).

BTA Location (Mb) Genes σ2
a (%)

18 34.60–35.22 CDH16, RRAD, CIAO2B, CES2, CES3, CES4A, CBFB, PHAF1, B3GNT9, TRADD, FBXL8, HSF4, NOL3, MATCAP1, EXOC3L1,
E2F4, ELMO3, bta-mir-328, TMEM208, FHOD1, SLC9A5, PLEKHG4, KCTD19, LRRC36, TPPP3, ZDHHC1, HSD11B2,

ATP6V0D1, AGRP, RIPOR1, CTCF, CARMIL2, ACD, PARD6A, ENKD1, C18H16orf86

3.41

1 95.05–95.90 GHSR, FNDC3B, TMEM212, PLD1 3.02

5 66.72–67.21 PAH, ASCL1, U1 2.30

4 71.07–72.11 GSDME, PALS2, NPY, STK31, FAM221A, ADAM22 2.29

12 15.05–15.49 NUFIP1, GPALPP1, GTF2F2, KCTD4, TPT1, SNORA31, SLC25A30 2.08

12 42.95–43.49* - 1.77

4 110.35–110.80 CNTNAP2 1.69

3 79.33–80.65 LEPR, LEPROT, DNAJC6, AK4, bta-mir-101-1, JAK1, RAVER2, U2 1.44

1 94.24–95.04 SPATA16, ECT2, NCEH1, TNFSF10 1.36

14 10.43–10.64 ASAP1, CYRIB 1.27

BTA, bos taurus autosome.
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The endocytosis (bta04144) was also annotated in the
enrichment analyses, involving par-6 family cell polarity
regulator alpha (PARD6A), dnaj Heat Shock Protein Family
(HSP40) Member C6 (DNAJC6), ankyrin repeat and PH domain
1 (ASAP1), and Phospholipase D1 (PLD1) genes. This pathway
plays a role in cellular nutrient uptake and signaling (Watts and
Marsh, 1992; Scita and Fiore, 2010). Endocytosis is essential for
internalizing nutrients and cellular receptors (Grant and
Donaldson, 2009), which may influence how cattle absorb and
process nutrients from their feed, thus impacting feed efficiency.
Another important pathway is the adipocytokine signaling
pathway (bta04920), involving TNFRSF1A-Associated via Death
Domain (TRADD), NPY, leptin receptor (LEPR), and AGRP genes.
This pathway plays a major role in energy metabolism and the
regulation of fat storage (Jiang et al., 2019; Ahmad et al., 2020).
LEPR mediates the effects of leptin, a hormone that signals satiety

and regulates energy expenditure and fat storage (Meier and
Gressner, 2004; Gan et al., 2012; SuárezMesa et al., 2024).
Disruptions or variations in this pathway could alter how
efficiently cattle utilize energy from feed, influencing their feed
efficiency and overall growth (Prihandini et al., 2024).

At the molecular function level, carboxylesterase hydrolase
activity (GO:0052689) was also found as a significant process,
with genes such as Neutral cholesterol ester hydrolase 1 (NCEH1),
CES4A, and CES2 being annotated. Carboxylesterases are enzymes
that catalyze the hydrolysis of ester bonds, involved in lipid
metabolism and the detoxification of xenobiotics (Lamego et al.,
2013; Liu et al., 2021). Efficient lipid metabolism is essential for
optimizing energy use, especially under varying environmental
conditions where feed quality may differ. This process directly
impacts how efficiently cattle convert feed into usable energy,
which influences RFI.

FIGURE 1
Manhattan plots for the proportion of the total additive genetic variance explained by each genomic window for the intercept (a) and slope (b)
coefficients of the reaction normmodel for residual feed intake (RFI) in Nellore cattle. The horizontal line represents the relevance threshold of 1% of the
total additive genetic variance explained by each genomic window.
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3.2.2 Slope for RFI
Eleven relevant genomicwindowswere identified for the slope of RFI

(Table 5; Figure 1). These genomic regions were distributed across seven
chromosomes, with four windows located on BTA14 (22.61–22.99 Mb,
22.99–23.45 Mb, 24.39–24.91 Mb, and 24.91–25.43 Mb), two on BTA2
(104.16–104.55 Mb and 104.65–105.41 Mb), and one genomic window
each on BTA4 (70.83–71.85 Mb), BTA5 (66.51–67.03 Mb), BTA7

(16.07–16.44 Mb), BTA11 (74.02–74.67 Mb), and BTA21
(7.35–8.15 Mb). These regions overlap with genomic regions
previously associated with RFI in Nellore cattle (Mota et al., 2022).
These eleven genomic windows accounted for 29.65% of the total direct
additive genetic variance for the slope of RFI. In total, 49 genes were
mapped within these regions, of which 47 are protein-coding genes and
2 are snRNA genes.

TABLE 4 Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for residual feed intake (RFI -
intercept).

Category GO term Genes symbol p-value

BP GO:0008343 - Adult feeding behavior GHSR, NPY, AGRP <0.001

PWY bta04920 - Adipocytokine signaling pathway TRADD, NPY, LEPR, AGRP <0.001

MF GO:0052689 - Carboxylic ester hydrolase activity NCEH1, CES4A, CES2 0.002

CC GO:0043231 - Intracellular membrane-bounded organelle HSD11B2, DNAJC6, TMEM208, PLD1, CES2 0.005

BP GO:0032100 - Positive regulation of appetite GHSR, NPY 0.008

BP GO:0060259 - Regulation of feeding behavior LEPR, AGRP 0.013

R_PWY R-BTA-109581 - Apoptosis TRADD, TNFSF10, GSDME 0.016

R_PWY R-BTA-3371378 - Regulation by c-FLIP TRADD, TNFSF10 0.021

R_PWY R-BTA-69416 - Dimerization of procaspase-8 TRADD, TNFSF10 0.021

PWY bta04144 - Endocytosis PARD6A, DNAJC6, ASAP1, PLD1 0.022

CC GO:0005923 - Bicellular tight junction PARD6A, PALS2, ECT2 0.024

R_PWY KW-0970 - Cilium biogenesis/degradation TRADD, TNFSF10 0.025

BP R-BTA-140534 - Caspase activation via Death Receptors in the presence of ligand KCTD19, KCTD4, ECT2 0.027

R_PWY GO:0051260 - Protein homooligomerization TRADD, TNFSF10 0.029

R_PWY R-BTA-5357769 - Caspase activation via extrinsic apoptotic signalling pathway TRADD, TNFSF10, GSDME 0.030

MF R-BTA-5357801 - Programmed Cell Death DNAJC6, FHOD1, E2F4 0.031

BP GO:0019904 - Protein domain specific binding GHSR, TPPP3 0.033

BP, biological process; CC, cellular component; MF, molecular function; PWY, metabolic pathway; R_PWY, biochemical reactions and signaling.

TABLE 5 List of the top genomic windows that explained more than 1% of the total direct additive genetic variance (σ2a) for residual feed intake (RFI - slope).

BTA Location (Mb) Genes σ2
a (%)

4 70.83–71.85 OSBPL3, GSDME, PALS2, NPY 6.89

14 24.39–24.91 RPL39, UBXN2B, CYP7A1, U1, SDCBP, NSMAF 3.60

5 66.51–67.03 U6, PAH, ASCL1, U1 3.51

21 7.35–8.15 LRRC28, TTC23, SYNM, IGF1R, PGPEP1L 3.26

2 104.16–104.55 XRCC5, MARCHF4, SMARCAL1 2.89

14 22.99–23.45 TMEM68, TGS1, LYN, RPS20, U1, MOS, PLAG1, CHCHD7, SDR16C5, FAM110B 2.04

2 104.65–105.41 IGFBP5, TNP1 1.65

7 16.07–16.44 INSR, ARHGEF18, PEX11G, TEX45, ZNF358, MCOLN1, PNPLA6 1.56

14 24.91–25.43 TOX 1.49

14 22.61–22.99 XKR4 1.45

11 74.02–74.67 DNMT3A, POMC, EFR3B, DNAJC27, ADCY3, CENPO, PTRHD1, NCOA1 1.31

BTA: bos taurus autosome
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The genomic window located on BTA4 (70.83–71.85 Mb)
explained the largest proportion of the total additive genetic
variance for the slope of RFI (6.89%), and the Oxysterol Binding
Protein-Like 3 (OSBPL3), Gasdermin E (GSDME), Protein
Associated with Lin Seven 2 (PALS2), and NPY genes were
identified within this window. OSBPL3 is involved in lipid
metabolism and intracellular lipid transport, suggesting a
potential effect in energy homeostasis and efficiency (Song et al.,
2012), which are processes that have an influence in RFI. GSDME is
known for its role in programmed cell death (pyroptosis), which
could influence energy expenditure through tissue turnover and
inflammatory responses, thereby impacting metabolic efficiency

(Zhu et al., 2024). NPY is a key regulator of appetite and energy
balance, making it a direct candidate for influencing feed intake and
energy utilization (Cansell et al., 2012; Chen et al., 2019). The
involvement of these genes in some metabolic pathways related
to energy balance and tissue homeostasis could explain their
contribution to the genetic variance in the slope of RFI. This
suggests that variations in the expression or function of these
genes might modulate how Nellore cattle adjust their feed intake
and energy expenditure in response to environmental or nutritional
changes, thereby affecting the slope of the reaction norm for RFI.

The functional enrichment analyses of genes found in the
genomic windows that explained the largest proportion of the

TABLE 6 Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for residual feed intake (RFI -
slope).

Category GO term Gene symbol p-value

BP GO:0043410 - Positive regulation of MAPK cascade MOS, LYN, INSR, GSDME, IGF1R <0.001

MF GO:0031994 - Insulin-like growth factor I binding IGFBP5, INSR, IGF1R <0.001

R_PWY R-BTA-211976 - Endogenous sterols NCOA1, POMC, CYP7A1 0.001

R_PWY R-BTA-8957322 - Metabolism of steroids NCOA1, POMC, OSBPL3, CYP7A1 0.001

R_PWY R-BTA-192105 - Synthesis of bile acids and bile salts NCOA1, OSBPL3, CYP7A1 0.001

R_PWY R-BTA-194068 - Bile acid and bile salt metabolism NCOA1, OSBPL3, CYP7A1 0.002

R_PWY R-BTA-556833 - Metabolism of lipids NCOA1, POMC, OSBPL3, TGS1, PNPLA6, CYP7A1 0.003

R_PWY R-BTA-211897 - Cytochrome P450 - Arranged by substrate type NCOA1, POMC, CYP7A1 0.003

CC GO:0005899 - Insulin receptor complex INSR, IGF1R 0.006

MF GO:0005009 - Insulin receptor activity INSR, IGF1R 0.006

PWY bta04923 - Regulation of lipolysis in adipocytes INSR, NPY, ADCY3 0.007

PWY bta04213 - Longevity regulating pathway - multiple species INSR, ADCY3, IGF1R 0.007

MF GO:0043559 - Insulin binding INSR, IGF1R 0.008

PWY bta04913 - Ovarian steroidogenesis INSR, ADCY3, IGF1R 0.008

R_PWY R-BTA-211945 - Phase I - Functionalization of compounds NCOA1, POMC, CYP7A1 0.009

MF GO:0031995 - Insulin-like growth factor II binding IGFBP5, INSR 0.014

MF GO:0043560 - Insulin receptor substrate binding INSR, IGF1R 0.016

PWY bta04211 - Longevity regulating pathway INSR, ADCY3, IGF1R 0.016

PWY bta04914 - Progesterone-mediated oocyte maturation MOS, ADCY3, IGF1R 0.017

R_PWY R-BTA-193807 - Synthesis of bile acids and bile salts via 27-hydroxycholesterol NCOA1, CYP7A1 0.020

MF GO:0043548 - Phosphatidylinositol 3-kinase binding INSR, IGF1R 0.025

R_PWY R-BTA-193368 - Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol NCOA1, CYP7A1 0.028

BP GO:0030335 - Positive regulation of cell migration LYN, INSR, IGF1R 0.028

PWY bta04114 - Oocyte meiosis MOS, ADCY3, IGF1R 0.030

BP GO:0071333 - Cellular response to glucose stimulus CYP7A1, IGF1R 0.035

PWY bta04915 - Estrogen signaling pathway NCOA1, POMC, ADCY3 0.035

R_PWY R-BTA-211859 - Biological oxidations NCOA1, POMC, CYP7A1 0.036

R_PWY R-BTA-400206 - Regulation of lipid metabolism by PPARalpha NCOA1, TGS1 0.036

MF GO:0005184 - Neuropeptide hormone activity POMC, NPY 0.048

BP, biological process; CC, cellular process; MF, molecular function; PWY, metabolic pathaway; R_PWY, biochemical reactions and signaling.
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genetic variance of the slope of RFI in Nellore cattle are displayed in
Table 6. Twenty-nine mechanisms were significantly associated with
the slope of RFI (p-value <0.05), including the positive regulation of
the MAPK cascade (GO:0043410), which plays a crucial role in
mediating cellular responses to environmental stimuli (Bardwell,
2006; Meng and Zhang, 2013). The MAPK signaling pathway
influences growth, cell proliferation, and stress response, essential
for maintaining metabolic balance in varying environmental
conditions (Bardwell, 2006; Meng and Zhang, 2013; Yue and
López, 2020). The v-mos Moloney murine sarcoma viral oncogene
homolog (MOS), LYN proto-oncogene, Src family tyrosine kinase
(LYN), Insulin receptor (INSR), Gasdermin E (GSDME), and Insulin-
like growth factor 1 receptor (IGF1R) genes were annotated and
involved in the positive regulation of the MAPK cascade (Gonzalez-
Garcia et al., 2014; Werner, 2023). MOS is a key regulator of the
MAPK pathway, primarily known for its role in cellular proliferation
and differentiation (Gonzalez-Garcia et al., 2014). Changes in the
regulation of the MAPK pathway byMOS could alter energy balance
and metabolic rate (Okazaki and Sagata, 1995; Adhikari and Cullen,
2014), which are critical for feed efficiency. LYN plays a significant
role in the activation of the MAPK pathway (Avila et al., 2012), and
variations in the expression of LYN may influence how cattle
respond to feeding under different environmental conditions,
possibly by affecting energy expenditure and metabolic
adjustments. The LYN gene was also found in a GWAS study for
growth traits in Nellore cattle (Terakado et al., 2018). The INSR gene
is associated with the insulin signaling pathway, closely interacting
with the MAPK cascade (Zhang et al., 2011; Werner, 2023). Insulin
is a key regulator of glucose metabolism and energy homeostasis
(Payankaulam et al., 2019). Genetic variation in INSRmay influence
how cattle manage nutrient absorption, storage, and overall energy
balance. Given the importance of glucose metabolism on efficient
feed use, INSR variants could impact feed efficiency by modulating
energy use under different environmental conditions, thus
influencing RFI. Alongside INSR, the IGF1R gene also plays a
pivotal role in growth, development, and nutrient partitioning, all
of which are integral to feed efficiency (Yang et al., 2019; Mota et al.,
2022). The interaction of IGF1Rwith theMAPK pathway underlines
its importance in mediating growth and metabolic responses,
particularly in response to environmental changes (Yang et al.,
2019). Mutations in IGF1R may alter the cattle’s ability to utilize
feed for efficient growth, affecting how well animals adapt their
nutrient use in response to varying environmental conditions.

Other biological processes associated with IGF1R and INSR,
including insulin-like growth factor I binding (GO:0031994), insulin
receptor activity (GO:0005158), and insulin receptor complex (GO:
0005899) were found in the enrichment analysis for the slope of RFI.
These processes are crucial for regulating energy balance and
nutrient partitioning. Insulin-like growth factor I (IGF-I) is
critical for growth and metabolic regulation, with its binding
modulating activity in pathways central to nutrient efficiency
(Pereira et al., 2016; Rieger and O’Connor, 2021; Díaz Del Moral
et al., 2022). More efficient insulin receptor activity could allow
cattle to optimize energy use, particularly in response to
environmental challenges, ensuring consistent feed efficiency.
This pathway may be important in determining how well
animals adapt their nutrient utilization strategies in response to
GxE interactions. The slope of RFI, which reflects the animal’s

efficiency in utilizing feed under different conditions, could thus be
significantly influenced by the genetic variation within the insulin
and IGF signaling pathways.

Enriching pathways related to bile acid and salt metabolism
(R-BTA-194068) further emphasizes the importance of lipid
homeostasis in determining feed efficiency. Bile acids are
essential for fat digestion and absorption, and the cytochrome
P450 family 7 subfamily A member 1 (CYP7A1) and nuclear
receptor coactivator 1 (NCOA1) genes are key regulators of bile
acid metabolism (Jia et al., 2024). Variations in the efficiency of bile
acid metabolism could influence the absorption of nutrients (Jia
et al., 2021), particularly lipids, which are critical for energy balance.
Animals with optimized bile acid metabolism may be better able to
maintain feed efficiency under fluctuating environmental
conditions, contributing to differences in the RFI slope.

The neuropeptide hormone activity (GO:0005184) was also one
of the processes significatively associated with RFI. The ability of
animals to regulate feed intake through neuroendocrine
mechanisms may be a key determinant of how efficiently they
convert feed into body mass, particularly when facing
environmental variability. The pro-opiomelanocortin (POMC) and
adrenocorticotropic hormone (ACTH) genes play fundamental roles
in appetite regulation and energy balance (Millington, 2007;
Hasenmajer et al., 2021). This regulation could explain variations
in feed efficiency as environmental conditions change, influencing
the slope of RFI.

The regulation of lipid metabolism by PPARalpha (R-BTA-
400206) pathway, which includes Nuclear Receptor Coactivator 1
(NCOA1) and Trimethylguanosine Synthase (TGS1), highlights the
role of lipid metabolism in RFI expression. PPARalpha (peroxisome
proliferator-activated receptor alpha) is a critical regulator of lipid
metabolism, particularly in response to fasting or limited nutrient
availability (Lefebvre et al., 2006; Bougarne et al., 2018; Fuior et al.,
2023). This pathway may influence how animals utilize lipids for
energy under stressful or nutrient-limited conditions, which could
affect the slope of RFI by enabling animals to maintain energy
balance and feed efficiency across different environments.

3.2.3 Intercept for DMI
Twelve genomic windows explaining more than 1% of the total

direct additive genetic variance of the intercept for DMI were
identified as shown in Table 7 and Figure 2. These genomic
regions are located on seven chromosomes: BTA1 (95.09–95.95),
BTA4 (70.88–71.88 Mb), BTA6 (36.02–36.57 Mb and
37.15–37.95 Mb), BTA8 (67.24–67.72 Mb), BTA14
(22.90–23.31 Mb and 23.33–23.89 Mb), BTA18 (34.83–35.42 Mb),
BTA20 (9.15–9.83 Mb), BTA21 (68.47–68.77 Mb) and BTA29
(46.18–47.10 Mb and 48.54–50.15 Mb). Some regions in these
chromosomes were also identified as associated with DMI in other
GWAS studies with cattle (Serão et al., 2013; de Oliveira et al., 2014;
Brunes et al., 2020; Mota et al., 2022). A total of 112 genes were
identified within these genomic windows, including 107 protein-
coding genes, three miRNAs, and two snRNAs. These findings
highlight the polygenic nature of DMI, a trait influenced by
numerous genomic regions that collectively contribute to its
phenotypic expression, as RFI.

The relevant genomic regions for DMI explained 34.83% of the
overall direct additive genetic variance. The genomic window
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located on BTA6 (37.15–37.95 Mb) explained the largest portion of
additive genetic variance, accounting for 4.29%, with six annotated
genes identified within this region (Table 7). The Leucine
Aminopeptidase 3 (LAP3) is involved in protein degradation,
processing and regulating peptide breakdown (Yao et al., 2021;
Wang et al., 2024). It has been associated with growth traits in
Holstein cattle and Yak (Bos grunniens) (Yao et al., 2019; Wang
et al., 2024). Given its role in protein metabolism, LAP3 may
influence the efficiency of cattle utilizing nutrients, which is
directly related to DMI. Therefore, efficient protein metabolism
could enable animals to optimize their intake for growth and
maintenance under varying environmental conditions. Another
important gene widely associated with growth traits and feed
intake in cattle is Non-SMC Condensin I Complex Subunit G
(NCAPG) (Hoshiba et al., 2013; Lindholm-Perry et al., 2013).
Studies have shown that polymorphisms in NCAPG are linked to
ADG and DMI in cattle (Angus, Hereford, Simmental, Limousin,
Cha rolais, Gelbvieh and Red Angus) (Lindholm-Perry et al., 2011;
Lindholm-Perry et al., 2013; Seabury et al., 2017). This gene is
involved in cell cycle regulation and it has been associated with
growth rate and body size in several cattle breeds (Setoguchi et al.,
2011; Zhang et al., 2016). NCAPG influences feed intake by
modulating growth demands, where larger or faster-growing
animals require more feed to meet their energy needs. This
makes it a strong candidate gene for influencing DMI in
response to average environmental conditions.

The Ligand Dependent Nuclear Receptor Corepressor Like
(LCORL) is a transcription factor associated with skeletal
growth and body size in humans, horses, and cattle
(Utsunomiya et al., 2013; Al-Mamun et al., 2015). LCORL has
been linked to growth traits and feed efficiency in cattle, often
acting in concert with NCAPG (La et al., 2019). Polymorphisms in
LCORL have been correlated with feed intake and gain, particularly

in beef cattle (Angus, Hereford, Simmental, Limousin, Cha rolais,
Gelbvieh and Red Angus) (Lindholm-Perry et al., 2013). Its role in
skeletal growth may be crucial for determining body size and the
corresponding feed requirements, thereby influencing DMI. The
DDB1 and CUL4 Associated Factor 16 (DCAF16) is part of the
ubiquitin-proteasome pathway, essential for protein degradation
and cellular homeostasis (Zhang et al., 2021). By influencing
protein degradation, it indirectly impacts growth rate and
metabolic efficiency (Mistry et al., 2020; Zhang et al., 2021),
potentially altering the energy requirements and feed intake of
cattle. Since protein metabolism is energy-intensive, variations in
this gene may affect how animals convert feed into growth.

In the functional enrichment analysis, 53 processes were
found to be significantly associated (p-value <0.05) with the
intercept of DMI (Table 8). These processes offer important
insights into the polygenic control of DMI and the biological
pathways affecting its regulation. In comparison to the significant
processes identified for RFI, DMI had a greater number of
associated processes. This can be attributed to the larger
number of relevant genomic windows identified for DMI,
which also reflected in a higher number of genes found and
involved in regulating this trait.

One of the biological annotated was the Insulin Signaling and
Pathways IGF1 (R_BTA-74752, R_BTA-77387, R_BTA-2428924),
with the involvement of Fibroblast Growth Factor 19 (FGF19),
ATPase H+ Transporting V0 Subunit D1 (ATP6V0D1), ATPase
H+ Transporting V1 Subunit B2 (ATP6V1B2), Insulin-like
Growth Factor 2 (IGF2), Fibroblast Growth Factor 3 (FGF3) and
Insulin (INS). These pathways are linked to insulin receptor
signaling and IGF1 receptor activation, both of which are critical
for energy metabolism and growth (Hakuno and Takahashi, 2018;
Al-Massadi et al., 2022; Werner, 2023). The insulin pathway
regulates glucose uptake, energy storage, and lipid metabolism

TABLE 7 List of the top genomic windows that explained more than 1% of the total direct additive genetic variance (σ2a) for dry matter intake (DMI -
intercept).

BTA Location (Mb) Genes σ2
a (%)

6 37.15–37.95 LAP3, MED28, FAM184B, DCAF16, NCAPG, LCORL 4.29

14 22.90–23.31 XKR4, TMEM68, TGS1, LYN, RPS20, U1, MOS 4.14

1 95.09–95.95 FNDC3B, TMEM212, PLD1 3.66

18 34.83–35.42 E2F4, ELMO3, bta-mir-328, TMEM208, FHOD1, SLC9A5, PLEKHG4, KCTD19, LRRC36, TPPP3, ZDHHC1, HSD11B2,
ATP6V0D1, AGRP, RIPOR1, CTCF, CARMIL2, ACD, PARD6A, ENKD1, C18H16orf86, GFOD2, RANBP10, TSNAXIP1, CENPT,

THAP11, NUTF2, EDC4, NRN1L, PSKH1, PSMB10

3.64

21 68.47–68.77 TDRD9, RD3L, ASPG, MIR203B, KIF26A 3.15

6 36.02–36.57 FAM13A, HERC3, NAP1L5, PYURF, HERC5, HERC6, PPM1K, ABCG2, U6, bta-mir-10170 2.66

29 46.18–47.10 CPT1A, MRPL21, IGHMBP2, MRGPRF, TPCN2, CCND1, LTO1, FGF19, FGF4, FGF3 2.52

8 67.24–67.72 SLC18A1, ATP6V1B2, LZTS1 2.42

29 48.54–50.15 U6, CARS1, NAP1L4, PHLDA2, SLC22A18, CDKN1C, KCNQ1, TRPM5, TSSC4, TSPAN32, ASCL2, TH, INS, IGF2, TNNT3, LSP1,
PRR33, TNNI2, SYT8, CTSD, IFITM10, DUSP8, MOB2, BRSK2

2.40

4 70.88–71.88 OSBPL3, GSDME, PALS2, NPY 2.21

20 9.15–9.83 ZNF366, PTCD2, MRPS27, MAP1B 2.04

14 23.33–23.89 PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, U6, BPNT2 1.70

BTA, bos taurus autosome.
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(Hakuno and Takahashi, 2018), directly influencing feed efficiency
and body weight gain. In cattle, variations in these processes can lead
to differences in nutrient utilization, thereby affecting DMI and,
consequently, feed efficiency.

The Cascata MAPK (GO:0043410, GO:0030334) was also
annotated in the enrichment analyses, involving Moloney
Murine Sarcoma Viral Oncogene (MOS), LYN Proto-Oncogene,
Src Family Tyrosine Kinase (LYN), Insulin-like Growth Factor 2
(IGF2) and Gasdermin E (GSDME) genes. Processes such as
growth, differentiation, and response to environmental stress
are regulated by this pathway (Avila et al., 2012; Adhikari and
Cullen, 2014; Gonzalez-Garcia et al., 2014; Werner, 2023). The
influence of these processes on DMI may be related to how animals
respond to their environment, impacting their nutritional
requirements and feed intake. Genes such as LYN and IGF2,
which are associated with growth and development (Avila et al.,
2012; Pereira et al., 2016; Terakado et al., 2018; Rieger and
O’Connor, 2021), further highlight the importance of this

pathway in managing energy demands. Another crucial
pathway is the PI3K-AKT signaling pathway (R_BTA-1257604,
R_BTA-6811558), involving the FGF19, FGF3, and Fibroblast
Growth Factor 4 (FGF4), as well as INS genes. The PI3K-AKT
pathway is central to cell survival, growth, and metabolism,
particularly in insulin response (Hardy et al., 2011; Toschi and
Baratta, 2021; Yang et al., 2022). In cattle, this pathway is closely
linked to feed efficiency and nutrient metabolism, influencing how
animals efficiently convert feed into body mass (Cantalapiedra-
Hijar et al., 2018; Toschi and Baratta, 2021; Yang et al., 2022).
Variations in genes related to this pathway could alter how energy
is allocated for growth, maintenance, and reproduction, thereby
affecting DMI.

The Ras signaling pathway (bta04114, bta04015) was also
identified, with genes such as FGF19, IGF2, FGF3, and FGF4
involved in this process. This pathway regulates cell proliferation,
differentiation, and survival (Huang et al., 2014; Nies et al., 2016). It
can influence growth and metabolism in response to environmental

FIGURE 2
Manhattan plots for the proportion of the total additive genetic variance explained by each genomic window for the intercept (a) and slope (b)
coefficients of the reaction norm model for dry matter intake (DMI) in Nellore cattle. The horizontal line represents the relevance threshold of 1% of the
total additive genetic variance explained by each genomic window.
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TABLE 8 Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for dry matter intake (DMI -
intercept).

Category GO term Gene symbol p-value

R_PWY R-BTA-74752 - Signaling by Insulin receptor FGF19, ATP6V1B2, ATP6V0D1, CTSD, FGF3, FGF4, INS <0.001

R_PWY R-BTA-9006934 - Signaling by Receptor Tyrosine Kinases FGF19, ATP6V1B2, IGF2, ATP6V0D1, CTSD, FGF3, FGF4, INS <0.001

R_PWY R-BTA-77387 - Insulin receptor recycling ATP6V1B2, ATP6V0D1, CTSD, INS <0.001

BP GO:0009887 - Animal organ morphogenesis FGF19, E2F4, PHLDA2, FGF3, FGF4 <0.001

R_PWY R-BTA-2428928 - IRS-related events triggered by IGF1R FGF19, IGF2, FGF3, FGF4 <0.001

R_PWY R-BTA-2428924 - IGF1R signaling cascade FGF19, IGF2, FGF3, FGF4 <0.001

R_PWY R-BTA-2404192 - Signaling by Type 1 Insulin-like Growth
Factor 1 Receptor (IGF1R)

FGF19, IGF2, FGF3, FGF4 <0.001

R_PWY R-BTA-74751 - Insulin receptor signalling cascade FGF19, FGF3, FGF4, INS <0.001

BP GO:0043410 - Positive regulation of MAPK cascade MOS, LYN, IGF2, GSDME, INS 0.001

CC GO:0005737 - Cytoplasm RIPOR1, BRSK2, TSSC4, FHOD1, IGHMBP2, NCAPG, FGF3, FGF4, HERC5,
HERC3, CCND1, TSNAXIP1, E2F4, PHLDA2, LZTS1, HERC6, LYN, TDRD9,
DUSP8, NAP1L4, THAP11, MED28, MOS, TPPP3, TH, KIF26A, FGF19, MOB2,

RANBP10, ELMO3, LAP3, CARS1, GSDME

0.001

BP GO:0001934 - Positive regulation of protein
phosphorylation

CCND1, FGF19, MOB2, FGF3, FGF4 0.002

R_PWY R-BTA-1257604 - PIP3 activates AKT signaling FGF19, FGF3, PSMB10, FGF4, INS 0.003

R_PWY R-BTA-199418 - Negative regulation of the PI3K/AKT
network

FGF19, FGF3, FGF4, INS 0.003

R_PWY R-BTA-6811558 - PI5P, PP2A and IER3 Regulate PI3K/
AKT Signaling

FGF19, FGF3, FGF4, INS 0.003

R_PWY R-BTA-9006925 - Intracellular signaling by second
messengers

FGF19, FGF3, PSMB10, FGF4, INS 0.004

MF GO:0005104 - Fibroblast growth factor receptor binding FGF19, FGF3, FGF4 0.005

BP GO:0010628 - Positive regulation of gene expression PLAG1, FGF19, CTCF, FGF3, FGF4, INS 0.005

PWY bta05218 - Melanoma CCND1, FGF19, FGF3, FGF4 0.005

PWY bta04014 - Ras signaling pathway FGF19, IGF2, PLD1, FGF3, FGF4, INS 0.006

BP GO:0030334 - Regulation of cell migration FGF19, PHLDA2, FGF3, FGF4 0.007

R_PWY R-BTA-109704 - PI3K Cascade FGF19, FGF3, FGF4 0.007

R_PWY R-BTA-112399 - IRS-mediated signalling FGF19, FGF3, FGF4 0.008

MF GO:0003779 - actin binding MAP1B, TNNT3, TNNI2, LSP1, MED28 0.008

BP GO:0051781 - Positive regulation of cell division IGF2, FGF3, FGF4 0.009

CC GO:0045121 - Membrane raft LYN, KCNQ1, CTSD, ABCG2 0.014

PWY bta04010 - MAPK signaling pathway FGF19, IGF2, DUSP8, FGF3, FGF4, INS 0.014

BP GO:0006006 - Glucose metabolic process KCNQ1, IGF2, INS 0.015

R_PWY R-BTA-917937 - Iron uptake and transport ATP6V1B2, ATP6V0D1, ABCG2 0.016

BP GO:0008543 - Fibroblast growth factor receptor signaling
pathway

FGF19, FGF3, FGF4 0.016

R_PWY R-BTA-162582 - Signal Transduction CPT1A, FGF19, NPY, PENK, ATP6V1B2, IGF2, ATP6V0D1, CTSD, FGF3,
PSMB10, FGF4, INS

0.019

PWY bta04015 - Rap1 signaling pathway PARD6A, FGF19, FGF3, FGF4, INS 0.020

MF GO:0008083 - Growth factor activity FGF19, IGF2, FGF3, FGF4 0.025

PWY bta04810 - Regulation of actin cytoskeleton MOS, FGF19, FGF3, FGF4, INS 0.025

(Continued on following page)
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stressors, directly impacting DMI. For instance, cattle exposed to
adverse conditions may experience altered metabolic demands, and
genes such as FGF19 and IGF2 can modulate these responses,
leading to changes in feed intake (Mota et al., 2022). The
regulation of the actin cytoskeleton (GO:0005824, GO:0008543)
was also annotated in the enrichment analyses, involving genes
such asMOS, FGF3, FGF4, IGF2. This process includes alterations in
cellular structure, which are essential for various cellular functions
such as growth and mobility (Illescas et al., 2021; Gao and
Nakamura, 2022; Dehghanian Reyhan et al., 2023). It may affect
muscle development and maintenance, key factors in determining
the energy demands of cattle (Dehghanian Reyhan et al., 2023;
Arikawa et al., 2024; Sacarrao-Birrento et al., 2024), and
consequently, could influence DMI. In the context of DMI, this
process may influence how animals metabolize nutrients and
convert feed into body mass efficiently, affecting feed intake
requirements. The genes and pathways identified for the DMI
intercept are central to metabolic processes that regulate growth,
energy balance, and nutrient utilization. These biological processes
are particularly important for animals raised under variable
environmental conditions, such as Nellore cattle, which may
impact feed intake and efficiency.

3.2.4 Slope for DMI
For the DMI slope across EG levels, 17 relevant genomic

windows were identified (Table 9; Figure 2). These genomic
windows are located on ten chromosomes: BTA1
(155.72–156.03 Mb), BTA2 (104.16–104.55 Mb and
104.58–105.27 Mb), BTA5 (15.53–15.88 Mb and
65.97–66.93 Mb), BTA6 (2.32–2.80 Mb), BTA9
(49.80–50.31 Mb), BTA11 (4.85–5.21 Mb, 5.55–5.92 Mb and
100.94–101.52 Mb), BTA13 (41.40–41.97 Mb), BTA14
(22.90–23.31 Mb and 23.33–23.89 Mb), BTA18 (32.19–32.54 Mb
and 35.62–36.07 Mb) and BTA29 (48.74–50.54 Mb). In other
GWAS studies with Nellore cattle, some of these regions were
also associated with DMI (Brunes et al., 2020; Mota et al., 2022).
A total of 111 genes were identified within these genomic windows,
including 109 protein-coding genes and two snRNAs.

A total of 37.57% of the overall direct additive genetic variance
was captured by the relevant genomic regions identified. The
genomic window located on BTA14 (22.90–23.31 Mb) explained
the largest portion of additive genetic variance, accounting for
3.55%, with 14 annotated genes identified within this window
(Table 9). The XK Related 4 (XKR4) gene encodes a protein
involved in apoptosis and membrane remodeling (Chakraborty

TABLE 8 (Continued) Significant GeneOntology (GO) terms and Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway analyses for drymatter intake
(DMI - intercept).

Category GO term Gene symbol p-value

BP GO:0008343 - Adult feeding behavior NPY, AGRP 0.026

R_PWY R-BTA-190236 - Signaling by FGFR FGF19, FGF3, FGF4 0.026

R_PWY R-BTA-5658623 - FGFRL1 modulation of FGFR1 signaling FGF3, FGF4 0.026

R_PWY R-BTA-382551 - Transport of small molecules SLC9A5, SLC22A18, ATP6V1B2, ATP6V0D1, PSMB10, ABCG2 0.031

CC GO:0016324 - Apical plasma membrane PARD6A, KCNQ1, ATP6V1B2, PLD1, ABCG2 0.032

CC GO:0005861 - Troponin complex TNNT3, TNNI2 0.035

PWY bta05224 - Breast cancer CCND1, FGF19, FGF3, FGF4 0.036

BP GO:1902600 - Proton transmembrane transport SLC9A5, ATP6V1B2, ATP6V0D1 0.037

PWY bta05226 - Gastric cancer CCND1, FGF19, FGF3, FGF4 0.038

BP GO:0046628 - Positive regulation of insulin receptor
signaling pathway

IGF2, INS 0.038

PWY bta04151 - PI3K-Akt signaling pathway CCND1, FGF19, IGF2, FGF3, FGF4, INS 0.039

BP GO:0007218 - Neuropeptide signaling pathway NPY, PENK, AGRP 0.043

MF GO:0005159 - Insulin-like growth factor receptor binding IGF2, INS 0.043

R_PWY R-BTA-5683057 - MAPK family signaling cascades FGF19, FGF3, PSMB10, FGF4 0.046

R_PWY R-BTA-5654228 - Phospholipase C-mediated cascade;
FGFR4

FGF19, FGF4 0.047

R_PWY R-BTA-5654219 - Phospholipase C-mediated cascade:
FGFR1

FGF3, FGF4 0.047

R_PWY R-BTA-190242 - FGFR1 ligand binding and activation FGF3, FGF4 0.047

R_PWY R-BTA-190322 - FGFR4 ligand binding and activation FGF19, FGF4 0.047

CC GO:0030672 - Synaptic vesicle membrane ATP6V1B2, SYT8, SLC18A1 0.048

PWY bta04920 - Adipocytokine signaling pathway CPT1A, NPY, AGRP 0.048

BP, biological process; CC, cellular component; MF, molecular function; PWY, metabolic pathway; R_PWY, biochemical reactions and signaling.
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et al., 2024; Song et al., 2024). XKR4 is expressed in a wide range of
tissues, including the nervous system and muscles (Xu P. et al., 2020;
Yu et al., 2024). Given that DMI influences muscle growth and
energy balance, the role of XKR4 in muscle-related processes (Edea
et al., 2020) may render it significant for energy metabolism, and
consequently, for feed intake and utilization under varying
environmental conditions. Another relevant gene,
Transmembrane Protein 68 (TMEM68), is implicated in lipid
metabolism (Edea et al., 2020; Wang et al., 2023; Zeng et al.,
2024). Genes involved in lipid metabolism are generally critical
for energy storage and utilization (Srivastava et al., 2020). Lipid
metabolism plays a pivotal role in feed efficiency by regulating how
energy is stored, mobilized, and used by the animal. In more feed-
efficient cattle, enhanced lipid oxidation pathways and more
effective lipid transport have been observed, leading to greater
energy availability for growth and maintenance (Artegoitia et al.,
2019; Yang et al., 2023). Additionally, these animals tend to exhibit
reduced hepatic lipid synthesis and accumulation, further
supporting the association between lipid metabolism and
improved nutrient utilization (Taiwo et al., 2022). Altogether,
these findings highlight the importance of lipid metabolic
pathways in promoting feed efficiency in beef cattle. As lipid
metabolism is closely linked to feed efficiency, TMEM68 may
influence the conversion rate of feed into energy, particularly
under diverse environmental conditions, thereby influencing total
feed intake. Another gene identified was Pleomorphic Adenoma
Gene 1 (PLAG1). Its role is involved in regulating growth and

development, particularly influencing body size and stature (Hou
et al., 2019; Zhang et al., 2022; Pan et al., 2022). The effect of PLAG1
on growth potentially makes it a critical gene for feed efficiency.
Cattle with variants of this gene that promote more efficient growth
may exhibit different patterns of DMI, particularly under variable
environmental conditions.

The Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 7
(CHCHD7) gene is involved in mitochondrial function, specifically
in maintaining mitochondrial integrity (Li et al., 2020; Yan et al.,
2024). This gene is also associated with growth and stature in several
species, including cattle (Li et al., 2020; Xu H. et al., 2020; Pan et al.,
2022; Kolpakov et al., 2024). Mitochondria are central to energy
production, and variations in genes affecting mitochondrial
efficiency can influence energy metabolism, thereby impacting
how much feed is required to maintain or support growth under
different environmental conditions. Another gene, Proenkephalin
(PENK), encodes a precursor for enkephalins, which are
neuropeptides involved in pain regulation and stress responses
(Adhikari et al., 2022; Pierzchała-Koziec and Scanes, 2023). Stress
responses can influence appetite and metabolism in cattle
(Fernandez-Novo et al., 2020; Sammad et al., 2020; Meneses
et al., 2021). Variations in PENK may affect how cattle respond
to environmental stressors, thereby influencing their feeding
behavior and metabolic efficiency.

A total of 42 processes were found to be significantly linked
(p-value <0.05) with the slope of DMI (Table 10). One of the key
processes identified is signaling by the Insulin Receptor (R-BTA-

TABLE 9 List of the top genomic windows that explained more than 1% of the total direct additive genetic variance (σ2a) for dry matter intake (DMI - slope).

BTA Location (Mb) Genes σ2
a (%)

14 22.90–23.31 XKR4, TMEM68, TGS1, LYN, RPS20, U1, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, U6, BPNT2 3.55

5 65.97–66.93 PARPBP, PMCH, IGF1, U6, PAH, ASCL1, U1 3.33

18 32.19–32.54* - 3.21

13 41.40–41.97 FOXA2, U6, THBD, CD93 3.09

2 104.16–104.55 XRCC5, MARCHF4, SMARCAL1 2.96

18 34.95–35.60 LRRC36, TPPP3, ZDHHC1, HSD11B2, ATP6V0D1, AGRP, RIPOR1, CTCF, CARMIL2, ACD, PARD6A, ENKD1, C18H16orf86,
GFOD2, RANBP10, TSNAXIP1, CENPT, THAP11, NUTF2, EDC4, NRN1L, PSKH1, PSMB10, LCAT, SLC12A4, DPEP3, DPEP2,

DDX28, DUS2, NFATC3, U6

2.93

2 104.58–105.27 IGFBP2, IGFBP5, TNP1 2.87

11 5.55–5.92 NMS, PDCL3, NPAS2 2.17

1 155.72–156.03* - 2.09

6 2.32–2.80 NPY5R, NPY1R, NAF1, U6 1.94

14 23.33–23.89 PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, U6, BPNT2 1.61

5 15.53–15.88 NTS, MAGT4C, PARPBP, PMCH, IGF1, U6, PAH, ASCL1, U1 1.46

29 48.74–50.54 KCNQ1, TRPM5, TSSC4, TSPAN32, ASCL2, TH, INS, IGF2, TNNT3, LSP1, PRR33, TNNI2, SYT8, CTSD, IFITM10, DUSP8,
MOB2, BRSK2, TOLLIP, MUC2, AP2A2

1.35

11 100.94–101.52 PRDM12, EXOSC2, ABL1, QRFP, FIBCD1, LAMC3, NUP214, FAM78A, PLPP7 1.32

9 49.80–50.31 MCHR2, PRDM13, U6, CCNC, TSTD3, USP45 1.30

18 35.62–36.07 ESRP2, PLAG2G15, SLC7A6, SLC7A6OS, PRMT7, SMPD3, ZPF90, CDH3, CDH1 1.20

11 4.85–5.21 AFF3 1.19

BTA: bos taurus autosome.
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TABLE 10 Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for dry matter intake (DMI -
slope).

Category Terms Gene symbol p-value

BP R-BTA-74752 - Signaling by Insulin receptor FGF19, ATP6V1B2, ATP6V0D1, CTSD, FGF3, FGF4, INS <0.001

BP R-BTA-9006934 - Signaling by Receptor Tyrosine Kinases FGF19, ATP6V1B2, IGF2, ATP6V0D1, CTSD, FGF3, FGF4, INS <0.001

BP R-BTA-77387 - Insulin receptor recycling ATP6V1B2, ATP6V0D1, CTSD, INS <0.001

R_PWY GO:0009887 - Animal organ morphogenesis FGF19, E2F4, PHLDA2, FGF3, FGF4 <0.001

BP R-BTA-2428928 - IRS-related events triggered by IGF1R FGF19, IGF2, FGF3, FGF4 <0.001

MF R-BTA-2428924 - IGF1R signaling cascade FGF19, IGF2, FGF3, FGF4 0.001

BP R-BTA-2404192 - Signaling by Type 1 Insulin-like Growth
Factor 1 Receptor (IGF1R)

FGF19, IGF2, FGF3, FGF4 0.001

CC R-BTA-74751 - Insulin receptor signaling cascade FGF19, FGF3, FGF4, INS 0.001

BP GO:0043410 - Positive regulation of MAPK cascade MOS, LYN, IGF2, GSDME, INS 0.001

BP GO:0005737 - Cytoplasm RIPOR1, BRSK2, TSSC4, FHOD1, IGHMBP2, NCAPG, FGF3, FGF4, HERC5,
HERC3, CCND1, TSNAXIP1, E2F4, PHLDA2, LZTS1, HERC6, LYN, TDRD9,
DUSP8, NAP1L4, THAP11, MED28, MOS, TPPP3, TH, KIF26A, FGF19, MOB2,

RANBP10, ELMO3, LAP3, CARS1, GSDME

0.003

BP GO:0001934 - Positive regulation of protein
phosphorylation

CCND1, FGF19, MOB2, FGF3, FGF4 0.003

BP R-BTA-1257604 - PIP3 activates AKT signaling FGF19, FGF3, PSMB10, FGF4, INS 0.005

PWY R-BTA-199418 - Negative regulation of the PI3K/AKT
network

FGF19, FGF3, FGF4, INS 0.005

MF R-BTA-6811558 - PI5P, PP2A and IER3 Regulate PI3K/
AKT Signaling

FGF19, FGF3, FGF4, INS 0.006

MF R-BTA-9006925 - Intracellular signaling by second
messengers

FGF19, FGF3, PSMB10, FGF4, INS 0.006

BP GO:0005104 - Fibroblast growth factor receptor binding FGF19, FGF3, FGF4 0.007

R_PWY GO:0010628 - Positive regulation of gene expression PLAG1, FGF19, CTCF, FGF3, FGF4, INS 0.007

R_PWY bta05218 - Melanoma CCND1, FGF19, FGF3, FGF4 0.012

MF bta04014 - Ras signaling pathway FGF19, IGF2, PLD1, FGF3, FGF4, INS 0.014

MF GO:0030334 - Regulation of cell migration FGF19, PHLDA2, FGF3, FGF4 0.014

BP R-BTA-109704 - PI3K Cascade FGF19, FGF3, FGF4 0.016

PWY R-BTA-112399 - IRS-mediated signaling FGF19, FGF3, FGF4 0.017

BP GO:0003779 - actin binding MAP1B, TNNT3, TNNI2, LSP1, MED28 0.023

R_PWY GO:0051781 - Positive regulation of cell division IGF2, FGF3, FGF4 0.025

R_PWY GO:0045121 - Membrane raft LYN, KCNQ1, CTSD, ABCG2 0.032

BP bta04010 - MAPK signaling pathway FGF19, IGF2, DUSP8, FGF3, FGF4, INS 0.032

BP GO:0006006 - Glucose metabolic process KCNQ1, IGF2, INS 0.032

BP R-BTA-917937 - Iron uptake and transport ATP6V1B2, ATP6V0D1, ABCG2 0.033

MF GO:0008543 - Fibroblast growth factor receptor signaling
pathway

FGF19, FGF3, FGF4 0.033

MF R-BTA-162582 - Signal Transduction CPT1A, FGF19, NPY, PENK, ATP6V1B2, IGF2, ATP6V0D1, CTSD, FGF3,
PSMB10, FGF4, INS

0.033

BP bta04015 - Rap1 signaling pathway PARD6A, FGF19, FGF3, FGF4, INS 0.036

R_PWY GO:0008083 - Growth factor activity FGF19, IGF2, FGF3, FGF4 0.037

CC bta04810 - Regulation of actin cytoskeleton MOS, FGF19, FGF3, FGF4, INS 0.037

(Continued on following page)
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74752), which is critical for glucose metabolism and overall energy
homeostasis. The insulin receptor pathway controls how cells take
up glucose from the bloodstream, a process essential for energy
production (Pereira et al., 2016; Rieger and O’Connor, 2021; Díaz
Del Moral et al., 2022). Genes like FGF19, ATP6V1B2, and INS are
involved in this pathway, with INS directly regulating nutrient
uptake and metabolism (Payankaulam et al., 2019). In the
context of DMI slope, these genes may influence how cattle
adjust their feed intake in response to energy needs, impacting
their efficiency in converting feed into energy under variable
environmental conditions.

Similarly, the Receptor Tyrosine Kinases (RTK) signaling
pathway (R-BTA-9006943), which includes genes such as FGF19,
FGF3, and INS, is involved in cellular growth, proliferation, and
metabolism (Schlessinger, 2000). RTKs play a pivotal role in
transmitting extracellular signals to the cell’s interior, regulating
growth and development processes (Schlessinger, 2000). Variations
in these genes could affect how cattle respond to growth-related
signals, potentially altering their feed intake based on growth
demands in different environments, which could explain
variation in the DMI slope.

The Insulin-like Growth Factor 1 Receptor (IGF1R) signaling
pathway (R-BTA-2428924) also emerged as significant. This
pathway is crucial for growth and development, influencing cell
growth, differentiation, and survival (Pereira et al., 2016; Rieger and
O’Connor, 2021; Díaz Del Moral et al., 2022). Genes like FGFR3,
FGFR4, and INS are associated with this process. Given that IGF1R
signaling regulates anabolic processes and energy usage, it is
plausible that variations in this pathway could influence how
efficiently cattle manage their energy resources when
environmental conditions fluctuate, thus impacting the
slope of DMI.

The PI3K/AKT signaling pathway (R-BTA-1257044) is another
important metabolic pathway linked to the regulation of growth and
survival, particularly under conditions of nutrient stress (Edinger,
2007). This pathway includes genes like PI3K, AKT1, and PSMB10,
which are involved in cell survival, proliferation, and glucose
metabolism (Edinger and Thompson, 2004; Edinger, 2007; Wu
et al., 2016). As this pathway integrates signals related to nutrient
availability, it likely plays a role in determining how cattle adjust

their intake to optimize growth and energy storage under variable
conditions, affecting the slope of DMI.

Additionally, pathways related to Fibroblast Growth Factor
Receptor (FGFR) signaling (GO-0005104) and Ras signaling
(GO-0043404) were highlighted. These pathways involve genes
like FGFR1, FGFR3, and FGF19, which are critical for cell
proliferation, differentiation, and metabolism (Itoh and Ornitz,
2004; Itoh, 2007). The Ras pathway is central in transmitting
signals that regulate cellular growth and energy use (Huang et al.,
2014; Nies et al., 2016). Variations in these genes might influence
how cattle balance their growth and metabolic processes in response
to environmental changes, impacting their feed efficiency and
DMI slope.

Moreover, cytoplasmic processes (GO:0005737) and positive
regulation of protein phosphorylation (GO:0001934) are involved
in cellular signaling and metabolic regulation (Hüttemann et al.,
2007; Hermann et al., 2008; Humphrey et al., 2015; Zhu and
Thompson, 2019). Genes such as INS, FGFR4, and PSMB10 play
crucial roles in modulating these processes (Hüttemann et al., 2007;
Zhu and Thompson, 2019). These pathways could influence the
efficiency of nutrient metabolism and energy utilization, thereby
affecting how animals adapt their feed intake to varying
environmental conditions, which in turn affects the DMI slope.

In summary, the processes identified in the enrichment analysis,
particularly those involved in insulin signaling, growth factor
signaling, and cellular metabolism, suggest a strong connection
between the regulation of energy balance and the slope of DMI
in Nellore cattle. The genes involved in these pathways, such as
FGF19, FGFR3, and INS, are likely to affect the cattle’s ability to
adjust their feed intake in response to changing environmental
conditions, influencing their overall efficiency and adaptability.
This genomic information can provide a foundation for
improving feed efficiency and productivity in livestock through
targeted breeding strategies.

3.3 Functional networks for RFI

The functional networks of the candidate genes identified for
RFI in Nellore cattle showed significant changes in connectivity and

TABLE 10 (Continued) Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for dry matter
intake (DMI - slope).

Category Terms Gene symbol p-value

MF GO:0008343 - Adult feeding behavior NPY, AGRP 0.038

R_PWY R-BTA-190236 - Signaling by FGFR FGF19, FGF3, FGF4 0.039

BP R-BTA-5658623 - FGFRL1 modulation of FGFR1 signaling FGF3, FGF4 0.041

BP R-BTA-382551 - Transport of small molecules SLC9A5, SLC22A18, ATP6V1B2, ATP6V0D1, PSMB10, ABCG2 0.041

PWY GO:0016324 - Apical plasma membrane PARD6A, KCNQ1, ATP6V1B2, PLD1, ABCG2 0.043

MF GO:0005861 - Troponin complex TNNT3, TNNI2 0.047

BP bta05224 - Breast cancer CCND1, FGF19, FGF3, FGF4 0.049

BP GO:1902600 - Proton transmembrane transport SLC9A5, ATP6V1B2, ATP6V0D1 0.049

R_PWY bta05226 - Gastric cancer CCND1, FGF19, FGF3, FGF4 0.049

BP, biological process; CC, cellular component; MF, molecular function; PWY, metabolic pathway; R_PWY, biochemical reactions and signaling.
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the central role of certain genes between the intercept and slope.
These results illustrate the GxE interaction, highlighting how
different gene networks are mobilized depending on the
environmental influence on the phenotype. In the network
related to the intercept (Figure 3), genes such as LEPR, LEPROT,
NPY, GHSR, and AGRP exhibited high connectivity, forming a
functional core with several interactions. These genes are closely
associated with appetite regulation and energy metabolism, such as
GHSR and LEPR, which are known for their roles in regulating
feeding behavior and energy efficiency, suggesting that central
metabolic pathways are key determinants in the baseline genetic
variation of RFI. Additionally, several smaller sub-networks with
fewer connections were identified, indicating that these genes may
be linked to more specific processes or sub-functions within the
regulation of RFI.

In contrast, in the network related to the slope of RFI (Figure 4),
there was a shift in the most connected genes. Genes such as
TMEM68, XKR4, CHCHD7, RPS20, PLAG1, and FAM110B

emerged as central, exhibiting multiple interactions with other
genes. This indicates that distinct genetic mechanisms may be
involved in the variation of RFI over time, with feed intake
regulation being mediated by different genetic pathways. The
interaction between genes related to energy metabolism and
growth is evidenced by the connection of INSR with IGF1R and
IGFBP5, which are fundamental to insulin signaling. Additionally,
NPY and POMC indicate the influence of appetite control pathways
on feed efficiency. The network also includes genes such as CYP7A1
and SDR16C5, involved in lipid metabolism, that interact with
CHCHD7 and UBXN2B, suggesting a role in lipid metabolism in
the variation of the slope of RFI. Genes associated with
mitochondrial function, such as TMEM68 and CHCHD7,
emphasize the importance of cellular health in feed efficiency.
Finally, small subnetworks formed by genes like PTRH1,
DNMT3A, and MOS indicate potential more specific functions,
such as epigenetic regulation and response to stressors. This
complex network highlights the interconnection of multiple

FIGURE 3
Functional network of genes identified in the genomic windows that explained more than 1% of the total direct additive genetic variance of the
intercept for residual feed intake (RFI) in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known functional
interactions or associations between these genes. The different colors of the nodes and lines indicate distinct types of interactions or classifications of
biological functions, based on the network analysis.
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biological processes that influence feed efficiency under different
environmental conditions.

3.4 Functional gene networks for DMI

Figures 5 (intercept), Figure 6 (slope) present the functional gene
networks identified based on the candidate genes identified for DMI
in Nellore cattle. In Figure 5, the functional network consists of a
dense web of interactions among genes, suggesting strong basal
genetic regulation for DMI under controlled environments. Genes
such as PLAG1, IGF2, CHCHD7, CCND1, and NCAPG show
centrality, with several direct and indirect connections, indicating
their crucial role in regulating this trait. The interactions among
these genes stand out as responsible for the genetic architecture of

the phenotype in an average environment, with particular emphasis
on NCAPG, a gene known for its association with growth traits and
feed efficiency in cattle (Takasuga, 2015).

Figure 6 represents the genetic modulation in response to the
environment in which a complex interaction between central and
peripheral genes is observed, highlighting pathways associated with
appetite regulation and energy metabolism. Genes such as IGF2,
INS, PLAG1, and PMCH are strongly connected to other genes
related to energy homeostasis, such as IGFBP5 and ASCL2,
suggesting their involvement in growth regulation and response
to changes in feed intake over time. The gene NPY1R, centralized in
the network, reinforces its function in appetite regulation and
variation of DMI, while less connected sub-networks, such as
those involving the TNNI2 and SYT8 genes, may indicate
specialized functions. The different colors in the connections

FIGURE 4
Functional network of genes identified in the genomic windows that explainedmore than 1% of the total direct additive genetic variance of the slope
for residual feed intake (RFI) in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known functional interactions or
associations between these genes. The different colors of the nodes and lines indicate distinct types of interactions or classifications of biological
functions, based on the network analysis.
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between genes suggest varied gene interactions, potentially
correlated with environmental and dietary factors. The gene
PENK, which encodes precursors of enkephalins, stands out for
its influence on neural signaling and appetite control, suggesting a
crucial role in modulating feed intake and feeding behavior, thereby
forming, along with the other genes, a complex regulatory network
that affects the slope of DMI. Therefore, the differences observed
between Figures 5, 6 clearly demonstrate the plasticity of the genetic
network in response to environmental changes. While some genes
maintain central importance in both contexts, others emerge as key

players in genetic modulation in the face of environmental
variations, highlighting the role of GxE in regulating DMI in
Nellore cattle.

3.5 SNP effects by environmental gradient

The graphs presented in Figure 7 demonstrate the reaction
norms of 100 SNPs within the relevant genomic windows (panels
“a” to “k”) associated with RFI in Nellore cattle. The effects of the

FIGURE 5
Functional network of genes identified in the genomic windows that explained more than 1% of the total direct additive genetic variance of the
intercept for dry matter intake (DMI) in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known functional
interactions or associations between these genes. The different colors of the nodes and lines indicate distinct types of interactions or classifications of
biological functions, based on the network analysis.
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SNPs are plotted across low, medium, and high EG, allowing for the
visualization of GxE interactions. The genomic windows are ordered
according to their relevance, providing a comparative view of the
environmental sensitivity of the SNPs within each genomic window.

SNP-environment interactions are evident in certain genomic
windows. Panels such as “b”, “d”, “e”, “f”, “g”, “h” and “j” (BTA14:

24.39–24.91 Mb; BTA21: 7.35–8.15 Mb; BTA2: 104.16–104.55 Mb;
BTA14: 22.99–23.45 Mb; BTA2: 104.65–105.41 Mb; BTA7:
16.07–16.44 Mb and BTA14: 22.61–22.99 Mb, respectively) reveal
variability in SNP effects as the environment shifts from low to high
environmental conditions (extremes), highlighting the presence of
GxE interactions (Figure 7). In these cases, the SNPs show

FIGURE 6
Functional network of genes identified in the genomic windows that explainedmore than 1% of the total direct additive genetic variance of the slope
for dry matter intake (DMI) in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known functional interactions or
associations between these genes. The different colors of the nodes and lines indicate distinct types of interactions or classifications of biological
functions, based on the network analysis.
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differentiated effects depending on environmental conditions, with
some alleles exhibiting higher or lower effects as the environmental
gradient changes. This suggests that these genomic regions may
harbor genes that are particularly sensitive to environmental factors
affecting RFI. On the other hand, some genomic windows, such as
those located in BTA4: 70.83–71.85 Mb; BTA5: 66.51–67.03 Mb;
BTA14: 24.91–25.43 Mb and BTA11: 74.02–74.67 Mb illustrated in
panels “a”, “c”, “i”, and “k”, respectively, show relatively more stable
SNP effects across the EG (Figure 7). These SNPs appear to be less
affected by environmental variation, indicating they may play a
more consistent role in RFI across different environments. The
greater stability observed in these windows may make them valuable
targets for selection when a robust genetic response across
environments is desired.

An important pattern observed in several graphs is the crossing of
reaction norms, where the effects of SNPs change not only inmagnitude
but also in direction as the environmental conditions shifts. This
highlights the complexity of GxE interactions. The crossed reaction
norms underscore the need to consider the environmental context
when selecting animals for traits related to RFI, as certain alleles may be
beneficial only under specific conditions. Genomic windows with more
pronounced changes in SNP effects likely capture a larger share of the
genetic variability linked to environmental response. These windows are
of particular interest for future research, as they may contain key genes
that influence the adaptability of feed efficiency to environmental
changes. Identifying these SNPs could lead to more precise genetic
selection strategies, improving cattle resilience and performance across
different environments.

The effects of SNPs located in the genomic regions associated
with DMI in Nellore cattle are shown in Figure 8. Similar to what
was observed for RFI, certain genomic regions exhibited interactions
between SNPs and the environment. Panels such as “b” (BTA5:
65.97–66.93 Mb), “e” (BTA2: 104.16–104.55 Mb), “g” (BTA2:
104.58–105.27 Mb), “j” (BTA6: 2.32–2.80 Mb), “l” (BTA5:
15.53–15.88 Mb), “n” (BTA11: 100.94–101.52 Mb) and “o”
(BTA9: 49.80–50.31 Mb) highlight the variation in SNP effects as
the EG shifts from low to high (Figure 8). Furthermore, the crossing
of reaction norms was also observed, indicating that the effects of
SNPs not only vary in magnitude but also change direction with
environmental alterations, suggesting that these genomic regions
may harbor genes that are highly sensitive to environmental factors.
In contrast, some genomic windows, such as those represented in
panels “a” (BTA14: 22.90–23.31 Mb), “c” (BTA18: 32.19–32.54 Mb),
“d” (BTA13: 41.40–41.97 Mb), “f” (BTA18: 34.95–35.60 Mb), “i”
(BTA11: 155.72–156.03 Mb), “k” (BTA14: 23.33–23.89 Mb), “m”

(BTA29: 48.74–50.54 Mb) and “p” (BTA18: 35.62–36.07 Mb) show
more consistent SNP effects across EG (Figure 8), indicating that
these SNPs are less influenced by environmental variations and may
play a more stable role in DMI across different environments.

The variation in SNP effects across EG suggests that breeding
programs to improve RFI and DMI should consider GxE
interactions. SNPs that exhibit significant positive effects in low
environmental gradients may not perform similarly in high
gradients, which could impact the genomic selection efficiency of
cattle in diverse environments. By identifying SNPs that maintain
stable effects across different environments or that are advantageous

FIGURE 7
Reaction norms for the effects of all 100 Single Nucleotide Polymorphisms (SNP) comprising the genomicwindows (a-k) that explained at least 1% of
the total additive genetic variance associated with residual feed intake (RFI) in Nellore cattle across low, medium, and high environmental gradients (EG).
The graphs are presented in order of the magnitude of additive genetic variance explained by each genomic window, as shown in Table 5, allowing for
comparison of SNP impacts under different environmental conditions (EG). Each color of the lines represents a different SNP. Chromosomes and
regions: (a) BTA4: 70.83–71.85 Mb; (b) BTA14: 24.39–24.91 Mb; (c) BTA5: 66.51–67.03 Mb; (d) BTA21: 7.35–8.15 Mb; (e) BTA2: 104.16–104.55 Mb; (f)
BTA14: 22.99–23.45 Mb; (g) BTA2: 104.65–105.41 Mb; (h) BTA7: 16.07–16.44 Mb; (i) BTA14: 24.91–25.43 Mb; (j) BTA14: 22.61–22.99 Mb; (k) BTA11:
74.02–74.67 Mb.
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under specific conditions, breeding strategies can be tailored to
optimize feed efficiency. Understanding the genetic architecture of
these traits in relation to environmental variation will be crucial for
enhancing feed efficiency and sustainability in cattle production,
especially considering the increasing challenges posed by climatic
variability.

3.6 Reaction norms to GEBV for RFI

Figure 9 provides a comprehensive analysis of RFI, revealing
the complexity of the interaction between GEBVs and EG. In panel
“a”, the reaction norms for RFI indicate considerable variation in
GEBVs across the EG. Different inclinations suggest that some
individuals respond more to environmental variations, while
others maintain stable performance, reflecting genetic plasticity.
This suggests that the phenotypic response to feed efficiency
depends on environmental conditions, emphasizing the
importance of considering phenotypic plasticity in genetic
improvement strategies.

In panel “b”, Pearson’s correlation analysis highlights the
similarity between GEBV values in different EGs, with most
correlations exceeding 0.80 (Figure 9). This finding suggests that,
while variations exist, sires with high GEBVs tend to maintain their

ranking across environments, indicating consistency in the
expression of the RFI. However, the lowest correlation (0.62) at
the extremes (low and high) of the EG implies that environmental
factors may more intensely influence feed efficiency under more
divergent environmental conditions, which warrants attention in
future selection programs.

Panel “c” illustrates the intersection of sires classified into
different EG levels (Figure 9). The presence of 18 sires that stand
out across all EG indicates that these individuals possess a robust
genetic profile that translates into stable performance across varying
environmental conditions. However, the significant number of sires
exclusive to one environment (22 in the low EG and 11 in the high
EG) suggests reduced precision in selection when contrasting
environments are considered. These results provide a foundation
for implementing genetic improvement programs aimed at
sustainability and productivity, where GxE is considered crucial
for optimizing sire selection and maximizing feed performance
under diverse environmental conditions.

3.7 Reaction norm to GEBV for DMI

Figure 10 presents the results of the relationships between
GEBVs and EG for DMI. In panel “a”, the reaction norms

FIGURE 8
Reaction norms for the effects of all 100 Single Nucleotide Polymorphisms (SNP) comprising each genomic window (a-p) that explain at least 1% of
the additive genetic variance associated with dry matter intake (DMI) in Nellore cattle across low, medium, and high environmental gradients (EG). The
graphs are presented in order of the magnitude of additive genetic variance explained by each genomic window, as shown in Table 9, allowing for
comparison of SNP impacts under different environmental conditions (EG). Each color of the lines represents a different SNP. Chromosomes and
regions: (a) BTA14: 22.90–23.31 Mb; (b) BTA5: 65.97–66.93 Mb; (c) BTA18: 32.19–32.54 Mb; (d) BTA13: 41.40–41.97 Mb; (e) BTA2: 104.16–104.55 Mb; (f)
BTA18: 34.95–35.60 Mb; (g) BTA2: 104.58–105.27 Mb; (H) BTA11: 5.55–5.92 Mb; (i) BTA11: 155.72–156.03 Mb; (j) BTA6: 2.32–2.80 Mb; (k) BTA14:
23.33–23.89 Mb; (l) BTA5: 15.53–15.88 Mb; (m) BTA29: 48.74–50.54 Mb; (n) BTA11: 100.94–101.52 Mb; (o) BTA9: 49.80–50.31 Mb; (p) BTA18:
35.62–36.07 Mb.
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FIGURE 9
Reaction norms for residual feed intake (RFI) (a) Pearson correlation for genomic estimatedbreeding values (GEBVs) (b) and the number of commonand
specific sires with offspring in the environmental classes for RFI (c) considering the 50 sires with the highest number of progeny and top-ranked by GEBV in
the moderate environmental gradient (EG = 0.0). The colors of the lines in panel “a” represent the EG, green for medium, red for high and blue for low.

FIGURE 10
Reaction norms for dry matter intake (DMI) (a) Pearson correlation for genomic estimated breeding values (GEBVs) (b) and the number of common and
specific sires with offspring in the environmental classes for DMI (c) considering the 50 sires with the highest number of progeny and top-ranked by GEBV in
the moderate environmental gradient (EG = 0.0). The colors of the lines in panel “a” represent the EG, green for medium, red for high and blue for low.
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illustrate the variation in GEBVs across the environmental
gradient. The sires show different response patterns to
environmental changes, with some animals exhibiting increasing
GEBVs along the EG (upward lines), while others show a decrease
(downward lines). Like for RFI, this indicates heterogeneity in the
genetic response to the environment for DMI, highlighting the
presence of GxE, as different sires perform variably across
different EG.

The Pearson correlation matrix of GEBVs across different
EGs for DMI (Figure 10, panel “b”) presents correlations that
exceed 0.90, demonstrating a strong consistency in the sires’
GEBV rankings across EG levels. The decrease in the correlation
(0.85) at the most different EGs (low and high) underscores a
potential variability in DMI responses among sires, even if that is
low. Higher Pearson correlations for DMI compared to RFI can
be explained by the greater relative stability of the SNPs’ effects
present in the genomic windows that explain more additive
genetic variance (Figure 8), thus reflecting the observed
behavior in the GEBVs. The intersection of sires classified
across low, medium, and high EG levels is shown in
Figure 10, panel “c”. The presence of 30 sires consistently
ranked high across all environments, demonstrating genetic
robustness under different EG. However, 17 sires were
exclusive to the low EG, and four sires were unique to the
high EG, suggesting that these animals may be better adapted
to specific environmental conditions. Only three sires stood out
in both low and medium EG, while one sire was shared between
medium and high EG.

4 Conclusion

This study identified key genomic regions associated with
RFI and DMI in Nellore cattle, providing significant insights
into the genetic background of feed efficiency traits across
environmental gradients. For RFI, the intercept network
pointed to biological processes crucial for appetite regulation
and energy metabolism, emphasizing their role in the genetic
variation of RFI in the average environment. The slope network
shifted focus to distinct genetic mechanisms influencing RFI
variation across EG, including lipid metabolism and
mitochondrial function. In the context of DMI, the intercept
network featured processes involved in growth regulation,
cellular proliferation, and energy metabolism, while the slope
network emphasized pathways associated with appetite
regulation and energy homeostasis. These findings
underscore the adaptability of genetic networks in response
to EG influences and highlight the importance of understanding
these biological processes, which will be crucial for developing
targeted breeding strategies to enhance feed efficiency in
Nellore cattle, contributing to improved livestock production
and sustainability.
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