
Identification of
epithelial-mesenchymal
transition prognostic signature
associated with prognosis, tumor
microenvironment, and
therapeutic effect in prostate
cancer

Yiyuan Li1,2†, Ke Li3†, Hua Wang3†, Jianguang Qiu1,2* and
Chutian Xiao1,2*
1Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong,
China, 2Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou,
Guangdong, China, 3Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University,
Guangzhou, Guangdong, China

Background: Prostate cancer (PCa) is a prevalent malignancy and a leading cause
of cancer-related death among men. Epithelial-mesenchymal transition (EMT)
plays a crucial role in tumor progression, metastasis, and treatment. However,
there are limited comprehensive studies on the EMT correlation with prognosis,
tumor microenvironment, and therapeutic efficacy in PCa.

Methods: We obtained mRNA expression profiles and clinical data of PCa
samples, along with 1,011 protein-coding EMT-related genes from public
databases. Functional annotation and consensus clustering were performed
based on differentially expressed genes. An EMT prognostic signature (EPS)
was constructed in the TCGA dataset after a series of bioinformatics analyses
and validated in the GSE116918 dataset. The signature was used to explore
clinicopathological features, genomic heterogeneity, the immune landscape,
and therapy responses. Finally, we examined the expression of key genes in
clinical specimens.

Results: An EPS was established based on four key genes (MEN1, H2AFZ, UCKL1,
and FUS). The patients were classified into low-risk and high-risk groups
according to their median EPS risk scores. In both datasets, patients in the
high-risk group exhibited significantly lower survival rates compared to those
in the low-risk group. Furthermore, the EPS risk score proved to be an
independent prognostic factor, and the prognostic nomogram based on the
EPS risk score and T stage yielded high accuracy. Subsequent investigations
found that the EPS risk score was correlated with both tumor mutation burden
and genomic heterogeneity. Notably, the low-risk group displayed a higher
proportion of tumor-infiltrating immune cells and exhibited better responses
to chemotherapy and immunotherapy. As expected, the validation analysis
confirmed substantial overexpression of MEN1, H2AFZ, UCKL1, and FUS in PCa
tissues relative to adjacent normal prostate tissues.
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Conclusion: Our preliminary EPS represents a promising biomarker for predicting
PCa prognosis and has great potential for clinical application.
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1 Introduction

Prostate cancer (PCa) is among the most prevalent malignancies
in men and poses a major health threat (Bergengren et al., 2023).
Globally, approximately 1.41 million new cases and 380,000 deaths
are attributed to PCa annually (Sung et al., 2021). In the
United States, PCa ranks first in new cases and second in tumor-
related deaths among men (Siegel et al., 2024). The prognosis of PCa
patients varies greatly depending on metastasis status (Siegel et al.,
2020). Most early and localized PCa tends to exhibit a slow growth
pattern and generally carries a favorable prognosis. However,
patients who developed distant metastases experienced a notable
decline in survival rates (Boeve et al., 2019; Kawakami et al., 2021).
Consequently, accurate prediction of metastasis becomes pivotal in
PCa management. However, the current understanding of
metastatic markers for prostate cancer remains inadequate.

The biological process of conversion of epithelial cells into
mesenchymal stromal cells, termed epithelial-mesenchymal
transition (EMT), greatly contributes to cancer metastasis (Bakir
et al., 2020). Tumor cells go through several changes during EMT,
such as losing epithelial cell characteristics like cell-cell adhesion and
gaining mesenchymal cell traits including higher collagenase and
extracellular matrix-degrading enzyme activity (Jonckheere et al.,
2022). As a result, tumor cells can breach the basement
membrane, invade adjacent tissues, and enter blood vessels
(Odero-Marah et al., 2018). Notably, EMT has been associated
with metastasis and poor prognosis in several solid malignancies
that promote metastasis (Odero-Marah et al., 2018; Liu et al., 2020;
Lüönd et al., 2021). In PCa, activation of signaling pathways such as
MAPK/ERK and PI3K/Akt can promote invasion and metastasis
through EMT (Meng et al., 2021; Li et al., 2022). Furthermore, EMT
may contribute to PCa metastasis or recurrence after treatment by
enhancing resistance to drugs (Wade and Kyprianou, 2018;
Jonckheere et al., 2022). Therefore, investigating EMT in PCa
holds promise for predicting metastatic tendencies and unraveling
the underlying metastatic mechanisms. Nonetheless, deepening the
process of EMT in PCa metastasis poses a significant challenge due to
the intricate network operating within the tumor microenvironment
(TME) (Odero-Marah et al., 2018) and the dynamic balance that
exists between EMT and mesenchymal-epithelial transition (MET) in
tumors (Bakir et al., 2020). Therefore, it is worth identifying key genes
associated with EMT in PCa.

Here, a comprehensive analysis was conducted to investigate key
EMT-related genes associated with PCa. In addition, this study
constructed a prognostic signature as an independent factor in PCa
patients. Finally, we utilized multiple public databases and
functional experiments to validate the stability and reliability of
our results. We expect that the present study will provide valuable
information for prognostic prediction and personalized medical
treatment of patients with PCa.

2 Materials and methods

2.1 Data sources

The RNA-seq expression profiles, mutation data, and
corresponding clinical information of PCa were obtained from
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)
database, which contained 499 PCa specimens and 52 normal tissue
specimens. Characteristics of the PCa patients from the TCGA data
were listed in Table 1. Furthermore, from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database, we
downloaded gene expression and complete biochemical recurrence

TABLE 1 Characteristics of different clusters included in this study.

Variable Cluster1 (n = 309) Cluster2 (n = 186)

Number (%) Number (%)

Age

≤60 149 (48.2%) 73 (39.2%)

>60 160 (51.8%) 113 (60.8%)

Fustat

Dead 3 (1.00%) 7 (3.80%)

Alive 306 (99.00%) 179 (96.20%)

T stage

T2a 11 (3.56%) 2 (1.08%)

T2b 7 (2.26%) 3 (1.61%)

T2c 132 (42.72%) 32 (17.20%)

T3a 87 (28.16%) 70 (37.63%)

T3b 63 (20.39%) 71 (38.17%)

T4 4 (1.29%) 6 (3.23%)

Unknown 5 (1.62%) 2 (1.08%)

N stage

N0 218 (70.55%) 126 (67.74%)

N1 31 (10.03%) 47 (25.27%)

Unknown 60 (19.42%) 13 (6.99%)

PSA

≤10 272 (88.03%) 150 (80.65%)

10–20 7 (2.27%) 4 (2.15%)

>20 1 (0.32%) 4 (2.15%)

Unknown 29 (9.38%) 28 (15.05%)

Gleason Score

≤6 39 (12.62%) 6 (3.23%)

7 179 (57.93%) 67 (36.02%)

≥8 91 (29.45%) 113 (60.75%)

PSA, prostate-specific antigen.
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(BCR) data for 248 PCa samples in GSE116918 (Jain et al., 2018).
Then we validated our results in an independent external validation
dataset that combined the transcriptional expression of key
prognostic genes and clinical data. We acquired a total of
1,011 protein-coding EMT-related genes from dbEMT 2.0
(https://dbemt.bioinfo-minzhao.org/index.html) (Zhao et al., 2019).

2.2 Differential expression and functional
enrichment analysis

Differentially expressed genes related to EMT from TCGA
datasets were identified between PCa and normal prostate samples
using the ‘limma’ R package. The genes were considered significant if
they had an adjustedP-value <0.05 and log |fold change (FC)| > 1. The
functional enrichment analysis of the differentially expressed EMT-
related genes was systematically explored using Gene Oncology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
with the ‘clusterProfiler’ R package (Yu et al., 2012).

2.3 Protein–protein interaction network and
key modules analysis

The search tool for the retrieval of interacting genes/proteins
(STRING) database (http://string-db.org) was used to construct
protein-protein interactions (PPI) among the differentially expressed
EMT-related genes [18]. The most important module of the PPI
network was then identified using the Molecular Complex Detection
(MCODE) plugin of Cytoscape with default parameters [19].

2.4 Sample clustering based on a non-
negative matrix decomposition algorithm

Non-negative matrix factorization (NMF) was used to classify
patients into different EMT regulator patterns based on the gene
expression profiling of differentially expressed EMT-related genes. The
‘NMF’ R package was utilized for this purpose (Gaujoux and Seoighe,
2010). The number of clusters (k) ranged from 2 to 10, and the optimal
number (k = 2) was determined based on factorization ranking
parameters such as cophenetic and dispersions as well as consensus
heatmap. The study analyzed the differences in progression-free survival
(PFS) between distinct clusters. Additionally, the immune infiltration
landscape of different clusters was elucidated using the single-sample
gene set enrichment analysis (ssGSEA) algorithm (Subramanian et al.,
2005). The gene expression and the clinicopathological distribution of the
clusters were also visualized using the heatmaps. Finally, the expression
level of PD-1 was evaluated across different PCa patterns.

2.5 Construction and external validation of
the EMT prognostic signature

Differentially expressed genes (DEGs) were identified between
the different EMT regulator patterns, with an adjusted
P-value <0.05 and log |fold change (FC)| > 2. The genes related
to the EMT regulator pattern were then analyzed using univariate

Cox regression analysis to determine their association with PFS.
Additionally, patients were divided into different gene clusters based
on the expression of prognostic DEGs using the NMF unsupervised
clustering approach.

The EMT prognostic signature (EPS) was constructed using the
TCGA dataset. To minimize over-fitting prognostic characteristics,
the Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis was employed through the ‘glmnet’ R
package. The study identified key prognostic genes through
multivariate Cox analysis and constructed an EPS using the
formula: risk score = ∑ (Coefi*Expi), where Coefi and Expi
represent the regression coefficient and corresponding expression
value of each gene. According to the median risk score, 595 patients
in the TCGA dataset were sorted into low-risk group and high-risk
group, and then subjected to survival analysis. Furthermore, the
performance of the constructed EPS was tested using time-
dependent receiver operating characteristic (ROC) curve analysis,
principal component analysis (PCA), and t-distributed stochastic
neighbor embedding (t-SNE) with the ‘timeROC’ and ‘Rtsne’ R
packages. The EPS’s utility was validated using the
GSE116918 dataset as an independent external cohort. With the
’survminer’ R program, an optimal cut-off value for survival analysis
was established.

2.6 Correlation analysis of
clinicopathological features and
development of clinical nomogram

To determine the practical utility for the EPS, correlation
analyses, and stratified survival analyses in the TCGA dataset
were carried out. Next, to ascertain if the signature may function
as an independent prognostic factor, we conducted univariate and
multivariate Cox regression analyses. A clinical nomogram was
developed using the ’rms’ R package to predict PFS by
combining independent prognostic factors. The precision of the
nomogram prediction outcomes was evaluated with calibration
curves as well as decision curve analysis (DCA) via the ’ggDCA’
R package.

2.7 Genomic heterogeneity analysis

The tumor mutation burden (TMB) value of each PCa sample was
calculated with the ’maftools’ R package (Mayakonda et al., 2018) after
downloading somatic variant data. Additionally, we conducted
differential and survival analyses of TMB between two risk groups.
We also utilized Pearson’s method to examine the correlation between
the risk score and various genomic heterogeneities, including homologous
recombination defect (HRD), loss of heterozygosity (LOH), microsatellite
instability (MSI), purity, mutant-allele tumor heterogeneity (MATH),
neoantigens, and ploidy (Bonneville et al., 2017; Thorsson et al., 2018).

2.8 Immune landscape analysis

Immune infiltration scores were assessed by currently accepted
methods, such as TIMER (Li et al., 2020), CIBERSORT (Chen et al.,
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2018), CIBERSORT-ABS (Tamminga et al., 2020), QUANTISEQ
(Chen et al., 2018), MCPCOUNT (Dienstmann et al., 2019), XCELL
(Aran et al., 2017), and EPIC (Racle et al., 2017). The relative
abundance of immune cells between different risk groups of PCa
patients was compared by a ssGSEA. Additionally, the relative
contents of 22 tumor-infiltrating immune cells (TIICs) were
obtained with the CIBERSORT algorithm. We then conducted
correlation analyses between the risk scores and the TIIC
contents. Finally, we analyzed the relationship between the two
risk groups and the immune subtypes reported by Thorsson et al.
This study conducted an immunogenomic analysis of more than a
thousand tumor samples covering 33 different cancer types and
defined six immunological categories (C1-C6) (Thorsson
et al., 2018).

2.9 Immunotherapy response and
chemotherapy sensitivity analysis

We compared the expression levels of 46 immune checkpoints
between two risk groups. Then, we utilized the Cancer Immunome
Atlas (TCIA, https://tcia.at/home) database (Charoentong et al.,
2017) to quantitatively measure tumor immunogenicity using the
immunophenoscore (IPS), which ranges from 0–10. To identify the
relationship between drug sensitivity and risk score, we used the
“oncoPredict” R package to predict the five most common drug
sensitivities (Maeser et al., 2021). The difference in sensitivity score
was then compared between the two groups with Wilcoxon signed-
rank tests. Subsequently, the anti-cancer drug targets were extracted
from the DrugBank (https://go.drugbank.com/) database (Wishart
et al., 2018) and expression differences were also analyzed between
the two groups. The association of the key prognostic gene with
chemotherapeutic drug sensitivity was explored to validate the
efficacy of these genes in predicting drug sensitivity using the
Gene Set Cancer Analysis (GSCA, https://guolab.wchscu.cn/
GSCA) database (Liu et al., 2023).

2.10 Validation of protein expression and
mRNA levels of key prognostic genes

The protein expression levels of the key prognostic genes in PCa
relative to normal tissue were measured via immunohistochemistry
(IHC) staining in the Human Protein Atlas database (HPA, https://
www.proteinatlas.org/) (Asplund et al., 2012). The IHC images were
downloaded from this database. The IHC images were analyzed by
calculating the percentage of the reaction areas using ImageJ
software, version 1.53k, (Wayne Rasband, the National Institutes
of Health in the USA). Data visualization was conducted with the
GraphPad Prism software, version 9.0.0.

Additionally, tissues from ten PCa patients were obtained for
quantitative real-time polymerase chain reaction (qRT-PCR) assays.
This study was approved by the Ethics Committee of The Sixth
Affiliated Hospital of Sun Yat-sen University (the Ethical Approval
Number: 2022ZSLYEC-468). All patients signed written informed
consent forms to use their histopathological samples for research
purposes, and the study was conducted in accordance with the
Declaration of Helsinki. Total RNA was extracted from cells using

TRIzol™ Reagent (Invitrogen, USA) according to the
manufacturer’s instructions. cDNA was synthesized from 1 μg of
total RNA using a reverse transcription kit (please specify the kit and
manufacturer, if available). Quantitative real-time PCR (qRT-PCR)
was performed using SYBRGreenER™ qPCR SuperMix (Invitrogen,
USA) on a Bio-Rad iCycler system (Bio-Rad Laboratories, CA,
USA). The thermal cycling conditions were as follows: initial
denaturation at 95°C for 1 min, followed by 35 cycles of
denaturation at 95°C for 90 s, annealing at 60°C for 30 s, and
extension at 72°C for 30 s. A final extension was performed at 72°C
for 10 min. The relative mRNA levels were standardized using the
2−ΔΔCT technique and compared to GAPDH. The qRT-PCR primer
sequences can be found in Table 2.

3 Results

3.1 Differentially expressed EMT-related
genes in prostate cancer and functional
enrichments analysis

Information on EMT-related genes in homo sapiens was obtained
from the dbEMT2.0 database, with 1,184 genes identified. Of these,
85.4% (n = 1,011) were retained for subsequent analysis.
Transcriptome data for these genes were obtained from the TCGA
database. Differential expression analysis identified 186 EMT-related
DEGs, with 42 upregulated DEGs and 144 downregulated DEGs in
PCa relative to normal tissue (Figures 1A,B).

Functional enrichment analysis was utilized to investigate the
molecular mechanisms related to the EMT-related DEGs. The
biological processes were associated with gland development, cell-
substrate adhesion, and mesenchyme development. The cellular
component was found to be involved in the collagen-containing
extracellular matrix, focal adhesion, and cell-substrate junction. The
molecular function was related to receptor-ligand activity, cytokine
receptor binding, and transmembrane receptor protein kinase
activity (Figure 1C). Leading edge analysis of 186 differentially
expressed EMT-related genes was shown in Figure 1D.
Additionally, KEGG enrichment analysis revealed the enrichment
of several malignancy-associated signaling pathways (Figure 1E).

TABLE 2 Primer sequences for qRT-PCR.

Gene Primer sequences

MEN1-F1 GTGGCCACCAAGATCAACTC

MEN1-R1 CCGCTTGAGGAAAGACAGA

H2AZ1-F1 ACTTGAACTGGCAGGAAATG

H2AZ1-R1 GCCTTGATGAGAGAATCCA

UCKL1-F1 CAGTCGCGACGAGTTCATCT

UCKL1-R1 GTGATCTGCTTCCCCGCATA

FUS-F1 TCACGTCATGACTCCGAACA

FUS-R1 CTCCCTTCAGCTTGCCAGTT

GAPDH-F1 GGGAAACTGTGGCGTGAT

GAPDH-R1 GAGTGGGTGTCGCTGTTGA
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The PPI networks of 186 EMT-related DEGs were reconstructed
using the STRING database. The resulting network of interaction
relationships consisted of 161 nodes and 917 edges (with a
minimum required interaction score >0.4), indicating the
complexity of EMT in PCa progression (Figure 1F). The most
important module was identified using the Cytotype parameter
Settings with the MCODE plug-in (Figure 1G). According to the
KEGG enrichment analysis, the genes in this module were found to
be highly correlated with PCa (Figure 1H). This implies that these
genes may potentially contribute significantly to the
progression of PCa.

3.2 Consensus clustering of PCa patients
based on the expression of EMT-related
DEGs and identification of EMT regulator
pattern-related gene clusters

Consensus clustering was conducted using the NMF algorithm
to differentiate PCa patients with different EMT regulation patterns
based on the expression of 186 EMT-related DEGs. The NMF rank
survey, including cophenetic and dispersion (Figure 2A), and the
consensus matrix heatmap (k = 2–5, Figure 2B), showed that k =
2 was the optimal parameter to categorize the PCa patients into two

FIGURE 1
Transcriptional alterations of EMT-related genes and functional enrichment analysis in PCa. (A,B) Heat map and volcano map of differentially
expressed EMT-related genes in the TCGA cohort, and differential expression analysis identified 186 EMT-related DEGs, with 42 upregulated DEGs and
144 downregulated DEGs in PCa relative to normal tissue. (C)GO annotation of 186 differentially expressed EMT-related genes. (D) Leading edge analysis
of 186 differentially expressed EMT-related genes. (E) KEGG annotation of 186 differentially expressed EMT-related genes. (F) PPI network
constructed with the STRING database. (G) Themost significant module was obtained from the Cytoscape plugin MCODE. (H) KEGG pathway analysis of
the genes from the most significant module.
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FIGURE 2
Identification of distinct EMT regulation patterns using the NMF algorithm. (A) The NMF rank survey with the different number of clusters (rank k =
2–10). (B) The EMT regulation patterns with the different number of clusters (rank k = 2–4), indicating k = 2was identified as the optimal value. (C) Kaplan-
Meier survival analysis was applied to analyze the PFS prognosis of PCa patients between the two EMT regulation patterns. (D) The distributions in
clinicopathologic characteristics between the two EMT regulation patterns. (E) Boxplot of relative infiltrating immune cell abundance between the
two EMT regulation patterns. (F) Difference of PD1 and PD-L1 between the two EMT regulation patterns.
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distinct regulation patterns. There were 309 cases in EMT cluster
1 and 186 cases in EMT cluster 2. Characteristics of cluster 1 and
cluster 2 from TCGA data were listed in Table 1. Prognostic analysis
revealed that EMT cluster 1 had a more significant survival
advantage than EMT cluster 2 (Figure 2C). The heatmap of the
expression of EMT-related DEGs demonstrated the distinction
between the two clusters (Figure 2D). Next, we utilized the

ssGSEA method to analyze the differences in immune cell
composition between the two EMT clusters. The study results
indicate that the abundance of immune cells, including mast
cells, natural killer T cells, neutrophils, regulatory T cells, and
follicular/Type1 helper T cells, was significantly higher in EMT
cluster 1. On the other hand, the abundance of Gamma-delta (γδ)
T cells and Type2 helper T cells was significantly higher in EMT

FIGURE 3
Construction of a novel EMT prognostic signature in the TCGA cohort. (A) LASSO regression analysis identified candidate genes with a minimum
lambda value. (B) Coefficients of the LASSO analysis. (C) Coefficients of the final four genes for the construction of the EMT prognostic signature in the
Multivariate Cox regression analysis. (D) Kaplan-Meier survival analysis showing a significant PFS difference between low- and high-risk groups. (E) Time-
dependent ROC curves analysis. (F) Heatmap of four key prognostic gene expressions of low- and high-risk groups. (G) Distribution of risk scores
and patient survival of low- and high-risk groups. (H) PCA and t-SNE plot displaying the distribution of low- and high-risk groups.
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cluster 2 (Figure 2E). Additionally, tumors in EMT cluster 1 showed
increased expression of PD-1 and PD-L1 (Figure 2F). These results
indicate that two EMT regulatory patterns are distinct in terms of
clinical features and immune infiltration levels, suggesting that PCa
cases can be classified according to EMT-related genes.

To demonstrate the heterogeneity of different EMT regulator
patterns, we compared gene expression profiles between the two
clusters and identified 2,512 genes associated with the EMT
regulator pattern (Supplementary Figure S1A). Subsequently, a
univariate Cox regression was conducted on these genes and
identified 873 genes significantly associated with PFS
(Supplementary Figure S1B). Consistent with the clustering of
EMT regulation patterns, NMF cluster analysis based on the
expression of these 873 genes explicitly categorized PCa patients
into four clusters, which we termed EMT gene clusters 1-4,
respectively (Supplementary Figures 1C, D). Of the 495 patients
with PCa, 84 were clustered into gene cluster 1, which was linked to
the best prognosis among the four gene clusters, while patients in
gene cluster 2 (n = 178) experienced the worst outcome
(Supplementary Figure S1E). The expression profiles of the
873 genes that regulate EMT patterns and their clinical
characteristics were illustrated in a heatmap (Supplementary
Figure S1F). Significant differences in the expression of EMT-
related DEGs were observed in the most important module of
the four EMT gene clusters, which is in accordance with the
predicted findings of the EMT patterns
(Supplementary Figure S1G).

3.3 Construction and validation of the EMT
prognostic signature

To quantify individual patients’ EMT scores, we constructed an
EPS considering the heterogeneity and complexity of PCa patients.
We included 873 EMT regulator pattern-related prognostic genes in
the LASSO-Cox regression model and screened out nine genes based
on the minimum value of λ (Figures 3A,B). A multivariate Cox
regression analysis was conducted on nine genes using the Akaike
information criterion value. Four genes (MEN1, H2AFZ, UCKL1,
and FUS) were selected to establish an EPS (Figure 3C). The risk
score was derived with the expression levels and coefficients of the
above four genes: risk score = (0.0575 *MEN1) + (0.0150 *H2AFZ) +
(0.0765 * UCKL1) + (0.0347 * FUS).

Next, the patients were classified into low-risk and high-risk
groups according to their median risk scores. According to the
Kaplan-Meier curve, PCa patients in the low-risk group had better
PFS (P < 0.001) (Figure 3D). The area under the ROC curve (AUC)
values for 1-, 3-, and 5-year survival were 0.786, 0.769, and 0.726,
respectively (Figure 3E). The gene expression profiling heatmap
showed a significant increase in the expression of four genes in the
high-risk stratification (Figure 3F). The plot of survival status and
risk score revealed that the high-risk group had a worse PFS rate
(Figure 3G). Additionally, we demonstrated the bidirectional
distribution of PCa patients in different groups by PCA and
t-SNE analyses (Figure 3H).

To verify the prognostic potential of the EPS, a similar analysis
was performed on the GSE116918 dataset. Patients were categorized
into two groups based on the formula used in the TCGA cohort. The

high-risk group exhibited lower survival rates (P < 0.001)
(Supplementary Figure S2A). The AUC values of 0.992, 0.873,
and 0.613 predicted 1-, 3-, and 5-year BCR, respectively
(Supplementary Figure S2B). Additionally, our results were
consistent with those of the TCGA dataset in terms of the
distribution plots of the expression of the 4 genes, risk score and
survival status, PCA, and t-SNE analyses (Supplementary Figures
2C–E). The results indicate that the EPS is a significant biomarker
for predicting the survival of PFS and BCR, with potential clinical
applications.

3.4 Clinical evaluation of the EMT
prognostic signature

To investigate the correlation between the risk scoring system
and clinicopathological characteristics, we analyzed differences in
various stratified features. The findings revealed that in the TCGA
cohort, patients with older age (P < 0.05), higher T-stage (P < 0.01),
and higher N-stage (P < 0.001) had higher risk scores
(Supplementary Figures 3A, B). Furthermore, patients in gene
cluster 2 and cluster 1 had the highest and lowest risk score,
which was consistent with their survival outcomes. Next, we
investigated the predictive value of risk scores for various clinical
characteristics. Furthermore, stratified prognostic analysis revealed
that the high-risk group had a worse prognosis in all subgroups
except for the N1 stage (Supplementary Figure S3C).

Univariate and multivariate Cox regression analyses were
conducted to determine the predictiveness of risk scores. The
study found that the T-stage and risk score are independent
prognostic indicators of PFS in PCa patients (Figures 4A,B). A
nomogram using these independent indicators (T-stage and risk
score) was developed to predict PFS (Figure 4C). The calibration
curves showed good agreement between the predicted and actual
observations of 1-, 3-, and 5-year PFS (Figure 4D). Additionally, the
DCA demonstrated that the nomogram provided a greater net
benefit compared to other independent factors, indicating its
reliability (Figure 4E). To summarize, the predictive nomogram
can accurately predict an individual’s survival risk and aid in clinical
management.

3.5 Mutation status and genomic
heterogeneity associated with the EMT
prognostic signature

Since genetic mutations and genomic heterogeneity are the
conditions for oncogenesis, we visualized somatic mutations of
PCa samples based on the EPS, which showed that SPOP (11%),
TP53 (11%), and TTN (10%) had the highest mutation frequencies
(Supplementary Figure S4A). Analysis of variance showed that TMB
was significantly higher in the high-risk group than in the low-risk
group (Supplementary Figure S4B). Spearman’s correlation analysis
revealed a positive correlation between TMB and the risk score
(Supplementary Figure S4C). The Kaplan-Meier curve also
demonstrated that the low-TMB group had a better prognosis
(P = 0.01) (Supplementary Figure S4D). By combining TMB and
the risk score, PCa patients were categorized into four subgroups for
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survival assessment. The survival analysis showed that patients with
low TMB and low risk had the best prognosis (P < 0.01)
(Supplementary Figure S4E), which validates the EPS. Correlation
analysis subsequently revealed that the risk score was positively
correlated with HRD (R = 0.37, P = 3.5e-16), LOH (R = 0.34, P =
3.3e-14), MSI (R = 0.28, P = 1.7e-10), and purity (R = 0.42, P = 1.3e-
07), but not with MATH, neoantigen, and polity (Supplementary
Figure S4F). These results may reflect the practical application of the
EPS in exploring PCa heterogeneity.

3.6 Immune landscape and therapeutic
responses associated with the EMT
prognostic signature

Various levels of immune cell infiltration play a crucial role in
the development and progression of cancer. We conducted an
analysis of immune cell infiltration using seven algorithms to
investigate the correlation between the risk score and the tumor
immune microenvironment in patients with PCa (Figure 5A).
Besides, the study assessed the abundance of tumor-infiltrating
immune cells and immune functions with the ssGSEA algorithm
(Figure 5B). Moreover, the results suggest that there may be a
difference in immune cell infiltration that leads to altered
immune function. The results showed that the low-risk group
had significantly higher immune cell and function scores than
the high-risk group (Figures 5C,D). Although the stroma score
was higher in the low-risk group, there was no significant
difference in immune scores between the two subgroups (Figures

5E,F). To further clarify the effect of the risk score on 22 tumor-
infiltrating immune cells (TIICs), we calculated the TIIC levels for
each sample using the CIBERSORT method. The risk score was
shown to be positively associated with Tregs and CD8 T cells, but
negatively associated with resting memory CD4 T cells, resting mast
cells, and neutrophils (Figure 5G). Upon comparing the relationship
between the risk score and the defined immune categories, as per the
study conducted by Thorsson et al. (Thorsson et al., 2018), we
observed a distribution difference in the proportions of C3
(inflammatory) and C4 (lymphocyte depleted) between the low-
risk and high-risk groups (P = 0.001) (Figure 5H). Specifically,
C3 was prevalent in the low-risk group, which was significantly
associated with good survival, consistent with our findings. C4 was
highly clustered in the high-risk group. This result not only reveals
the unique features of the PCa immune microenvironment but also
adds to previous studies.

Considering the significance of tumor immunotherapy based on
immune checkpoint inhibitors (ICIs), we further investigated the
differential expression of immune checkpoints between the two
groups. In the high-risk group, 13 out of 46 immune
checkpoints, including PD-1 (PDCD1) and CTLA4, were
upregulated, while 10 immune checkpoints, including PD-L1
(CD274) and PD-L2 (PDCD1LG2), were downregulated
(Figure 6A). Additionally, we investigated the immune-related
progression-free survival of patients undergoing various
treatments. Our findings indicate that in the CTLA4-negative/
PD-1-positive subgroups, patients with a low-risk score had a
higher IPS (P = 0.03). This higher IPS predicted a more
favorable therapeutic outcome (Figure 6B).

FIGURE 4
Development of a comprehensive nomogram predicting the PFS of PCa patients. (A,B) Univariate and multivariate Cox analyses of the EMT
prognostic signature and clinicopathological features. (C) A nomogram model was developed to predict patients’ prognosis quantitatively. (D) The
calibration curves showing good agreement between the anticipated and actual probability of 1-, 3-, and 5-year survival rates. (E)Decision curve analysis
of the nomogram for 1-, 3-, and 5-year survival.
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Furthermore, to determine the feasibility of using the risk score
to personalize chemotherapy for PCa, we explored whether risk
scores correlated with IC50 values for five commonly used
medications. As shown in Figure 6C, Cisplatin, Docetaxel,
Gemcitabine, Paclitaxel, and Vinblastine exhibited greater
sensitivity in the low-risk group. From the gene expression data
obtained from the DrugBank database, it was observed that nine
genes targeted by these drugs had different expression patterns
between the two groups (Figure 6D). We next conducted the
correlation analysis between risk prognostic-related four key
genes and the clinical efficacy of PCa treatments. By analyzing
the drug response data from the GDSC database, we noticed that
these four genes were significantly linked with sensitivity or
resistance to multiple therapeutic drugs and molecular inhibitors
using Spearman’s correlation coefficient. The results indicated that
the high expression of MEN1, H2AFZ, UCKL1, and FUS produced

resistance to 17-AAG (a selective HSP90 inhibitor), and MEN1,
H2AFZ, and FUS also produced resistance to TGX221 (a selective
PI3K inhibitor) and Trametinib (a selective MEK inhibitor).
Simultaneously, MEN1, H2AFZ UCKL1, and FUS were all
sensitive to Navitoclax (ABT-263), an effective Bcl-2 inhibitor.
MEN1, H2AFZ, and FUS were also sensitive to Tubastatin (a
selective HDAC6 inhibitor), Vorinostat (an HDAC inhibitor),
and other molecular inhibitors as well as drugs (Figure 6E).

3.7 Verification of the protein and mRNA
expression levels of four key
prognostic genes

As previously mentioned, the EPS was based on four key
prognostic genes, including MEN1, H2AFZ, UCKL1, and FUS. It

FIGURE 5
Potential effects of EMT prognostic signatures on tumor immunemicroenvironment. (A)Heatmap showing the abundance of the tumor-infiltrating
immune cells using seven algorithms between the two risk groups. (B) Heatmap of the relationship of different groups and 29 immune signatures
identified by a previous study. (C) The 16 immune cell infiltration levels between the two risk groups. (D) The 13 immune function levels in two risk groups.
(E,F) Comparison of the immune scores and stromal scores between the two risk groups. (G) Correlation between risk score and 22 tumor-
infiltrating immune cells obtained using the CIBERSORT method. (H) The distribution of two risk groups from PCa in the pan-cancer immune subtypes.
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is noteworthy that MEN1 and H2AFZ are EMT-related genes. We
associated the expression levels of these four key genes with
clinicopathological features and found that their expression was
inversely correlated with T- and N-stage (Figures 7A,B). IHC were
introduced to examine the protein expression levels of the four genes
in the HPA database, the results revealed a significant increase in
their protein expression in PCa tissues compared to normal prostate
tissues (all P < 0.05) (Figure 7C). Furthermore, we conducted a real-
world experiment to detect the relative mRNA expression levels
using qRT-PCR. The study confirmed that the expression levels of
MEN1, H2AFZ, UCKL1, and FUS were higher in PCa than in
adjacent normal prostate tissues (P < 0.05) (Figure 7D). This
finding is consistent with the bioinformatic analyses.

4 Discussion

Compared to early-stage PCa, advanced or metastatic PCa does
not respond well to various treatments, and is often associated with
considerable poor prognosis and shortened overall survival (OS).
The limitations of traditional treatments for advanced or metastatic
PCa, such as androgen deprivation therapy (ADT) and
chemotherapy, remind us of the need to investigate novel
treatments that can achieve durable disease control and long-
term survival benefits. Recent studies suggest that the initiation,
progression, metastasis, and treatment resistance of PCa involve the
interaction between tumor cells and the host immune system
induced by EMT. Therefore, immunotherapy should be

FIGURE 6
Potential effects of EMT prognostic signatures on immunotherapy and chemotherapy. (A) Difference in the expression of immune checkpoint
inhibitors between the two risk groups. (B) Difference in the immunophenoscore (IPS) between the low- and high-risk groups stratified by both
CTLA4 and PD-1. (C) Drug sensitivity of Cisplatin, Docetaxel, Gemcitabine, Paclitaxel, and Vinblastine between the two risk groups. (D) Difference in
expression of target genes in anticancer drugs between the two risk groups. (E) The correlation of the four key prognostic genes with the resistance
to common chemotherapeutics using the GDSC database. Red indicates a positive correlation, which means that the high expression of the gene is
resistant to the drug. The opposite is true for a negative correlation.
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considered as a potential treatment option for PCa management.
However, unlike other urologic malignancies such as bladder cancer
(BCa) or kidney cancer, the response to immunotherapy in PCa is
insufficient. Investigating novel prognostic signatures of EMT-
related genes is critical for predicting survival and treatment
responses of PCa immunotherapy.

In this study, patients were classified according to the
expression of 186 EMT-related DEGs. Of 2,512 differentially

expressed EMT regulation pattern-related genes, 873 were
identified as significantly associated with PFS and had distinct
EMT regulation patterns between the two clusters. A second
clustering analysis was conducted using the NMF algorithm to
divide the patients into four distinct clusters (C1, C2, C3, and C4)
based on the expressions of 873 differentially expressed genes
related to EMT regulation patterns. From these 873 genes, four
were identified to construct an EPS through LASSO and Cox

FIGURE 7
Validation of protein and mRNA expression of four key prognostic genes (MEN1, H2AFZ, UCKL1, and FUS) that comprised the EMT prognostic
signature. (A,B) The expression levels of four key prognostic genes in different T stage and N stage. (C) Assessment of protein levels of four key prognostic
genes using data from theHuman Protein Atlas. Histograms represent MEN1, H2AFZ, UCKL1, and FUS area% expression in PCa andNC groups. IHC results
showed that the protein levels of these genes are higher in PCa tissues compared to normal prostate tissues. (D) qRT-PCR results showed that four
key prognostic genes were highly expressed in PCa tissues compared with the adjacent normal prostate tissues.
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regression analysis. The EPS divided PCa patients into low- and
high-risk groups and demonstrated outstanding survival
prediction efficacy for patients with PCa. Its prognostic utility
was confirmed in an independent validation cohort
(GSE116918). ROC analysis evaluated the time-associated
outcomes of the EPS in PCa patients from the TCGA cohort.
The analysis showed that the prediction efficacy in short-term
survival was relatively better than in long-term survival. Similar
results were observed in the external validation cohort
(GSE116918), confirming the prognostic utility of the EPS in
patients with PCa. The AUC value obtained from the EPS may
not have reached its maximum potential due to the complex
mechanisms involved in tumor progression and metastasis in
PCa, which are influenced by various factors beyond the EMT-
related genes. Therefore, other important genes may also
contribute to this pathological process. Besides, our study
found that EPS was an independent risk factor for worse
outcomes, in addition to T-stage and N-stage. However,
M-stage and Gleason scores were not found to be independent
prognostic factors for patients with PCa. This may be due to EMT
being more associated with tumor occurrence and lymph node
metastasis than with PCa metastasis and Gleason score.
Therefore, EPS constructed using EMT-related genes, T-stage,
and N-stage can serve as an independent predictor. M-stage and
Gleason score were not included.

The EPS comprises four genes:Menin 1 (MEN1), Histone H2A
Z (H2AFZ), Uridine-cytidine kinase 1 like 1 (UCKL1), and FUS
RNA binding protein (FUS), which have been reported to be
associated with several malignancies. MEN1 has been reported
to act as an oncogenic factor in various solid tumors, such as
hepatocellular carcinoma (Kempinska et al., 2018), breast cancer
(Dreijerink et al., 2017), and PCa (Kim et al., 2022). Kim T. et al.
discovered that menin is involved in tumor cell growth and
metastasis in PCa cells with low or deficient levels of androgen
receptor (AR) (Kim et al., 2022). Cherif C. et al. found that menin is
overexpressed in high-grade PCa and castration-resistant prostate
cancer (CRPC). Besides, elevated MEN1 mRNA expression is
linked to shorter BCR-free survival and OS. Inhibiting menin
could suppress CRPC cell proliferation and restore
chemosensitivity (Cherif et al., 2022). H2AFZ and H2AFV are
two non-allelic genes responsible for encoding two distinct
isoforms of H2A.Z, which is one of the histone H2A variants in
mammalian cells with 60% similarity with canonical histone H2A
(Sevilla and Binda, 2014). Studies have shown that overexpression
of H2A.Z promotes proliferation in breast cancer, BCa, and PCa
(Vardabasso et al., 2014). Ito S. et al. discovered that the MRG
domain binding protein enhances the expression of specific AR
target genes, such as kallikrein-related peptidase 3 (also known as
prostate-specific antigen) and TMPRSS2, by activating AR-
associated enhancer and promoter regions through acetylation
of histone variant H2A.Z at the AR binding site. This may explain
H2AFZ’s oncogenic role in PCa disease (Ito et al., 2018). S Many
reports have revealed the oncogenic effects of UCKL1 in
hepatocellular carcinoma (Yu et al., 2019), breast cancer
(Kovalevska et al., 2021), and colorectal cancer (Wu et al.,
2023). However, there are few studies on the role of UCKL1 in
PCa. Kovalevska L. et al. have found that UCKL1 was
overexpressed in both blood sera and tumor tissue of PCa

patients (Kovalevska et al., 2022). Similarly, Cheng W. et al.
investigated PCa-related genes and identified UCKL1 as one of
the most important differentially expressed genes in PCa disease
(Cheng et al., 2014). In contrast, the role of FUS in PCa has been
extensively studied. Experiments conducted by Feng Y. et al.
confirmed that FUS promotes the proliferation and migration
of PCa cells (Feng et al., 2019). However, other researchers
have found that FUS has an antitumor effect in PCa disease
(Wang et al., 2020; Abd Raboh et al., 2021). This study clarifies
the prognostic value of four EMT-related genes in PCa. Further
investigation is needed to understand the mechanism of these four
genes in PCa.

TME comprises cancer cells, stromal cells, immune cells,
extracellular matrix, and associated acellular components.
Infiltrating immune cells are vital in tumorigenesis, metastasis,
and regulation of anti-cancer immunity, making them a potential
therapeutic target (Pitt et al., 2016). Our study analyzed TMB levels
in different EPS-based risk score groups. We found that patients in
the low-risk group had lower TMB levels and better prognosis than
those in the high-risk group. High TMB is generally associated
with a better response to ICIs, such as anti-PD-1 therapy. This
association is supported by pooled analyses of 27 tumor types
(Yarchoan et al., 2017). However, the present study’s seemingly
contradictory finding may reflect the fact that the association of
TMB with survival outside of the immunotherapy context is poorly
understood. Additionally, the broad applicability of high TMB as a
biomarker of response across all solid malignancies is unclear. This
research aims to investigate the ideal biomarkers for guiding the
selection and management of immunotherapy. Under the selective
pressure of immunotherapy, persisting mutations are preserved in
tumor development. Tumors with elevated TMB exhibit a more
inflammatory TME (Niknafs et al., 2023). Our study showed a high
EPS-based risk score was positively associated with T cells and
macrophages, while negatively associated with mast cells and
neutrophils. This finding is consistent with previous reports, as
several studies have examined the function of immune cells that
infiltrate tumors. Four studies have shown that increased
infiltration of M1 macrophages is associated with poor disease
outcomes in PCa (Wu et al., 2020; Zhang et al., 2020). One study
investigated the role of M0 macrophages in PCa prognosis and
reported increased infiltration of M0 macrophages into the
prostate tissue of patients with a high risk of cancer-specific
death, disease-free survival, or biochemical recurrence (Zhang
et al., 2020). Other studies have shown that increased
infiltration of mast cells into cancerous tissue is associated with
improved prognosis or reduced risk score for PCa (Zhang et al.,
2021; Zhao et al., 2021). However, conflicting results have been
observed regarding the effects of T cells and neutrophils on PCa, as
some studies have found that these immune cells can either
promote or suppress cancer (Hu et al., 2015; Masucci et al.,
2019; Fu et al., 2021; Zhao et al., 2021).

Despite the above-mentioned strengths of our study, several
limitations existed in the present study. Firstly, our study was
retrospective and relied on information from a public database
for both modeling and validation. Therefore, future prospective
studies are warranted to evaluate the clinical utility of our model in
patients with PCa. This study only explored the relative expression
levels of the four target genes in PCa specimens. Comprehensive
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functional experiments should be conducted subsequently to
elucidate the detailed mechanisms of the four target genes.
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