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Background: Obesity is an epidemic and systemic metabolic disease that
seriously endangers human health. This study aimed to understand the
transcriptomic characteristics of the blood of metabolically unhealthy obesity
(MUO) and provide insight into the target genes of differently expressed
microRNAs in the occurrence and development of MUO.

Methods: The GSE146869, GSE145412, GSE23561, and GSE169290 datasets
were analyzed to understand the transcriptome characteristics of the blood of
MUO and provide insights into the target genes of differently expressed
microRNAs (DEMs) in MUO. Functional and pathway enrichment analyses and
gene interaction network analyses were performed to profile the function of
differentially expressed genes (DEGs). In addition, miRNet 2.0, TransmiR v2.0,
RNA22, TargetScan 7.2, miRDB, and miRWalk databases were used to predict the
target genes of effective microRNAs.

Results: A total of 189 co-DEGs were identified in at least two datasets. The
156 co-upregulated genes were enriched into 29 biological process (BP) terms
and 12 KEGG pathways. Among the 29 BP terms, the immune- and metabolism-
related BP terms were enriched. The 33 co-downregulated genes were enriched
into two BP terms, including apoptotic process and regulation of the apoptotic
process, with no KEGG pathway. The hub genes EGF, STAT3, IL1B, PF4, SELP, and
ITGA2B in the gene interaction network might play important roles in abnormal
BP in MUO. Among the 19 DEMs identified in the blood of the MUO group by the
GSE169290 dataset, 18 microRNAs targeted 85 genes as risk factors in MUO.

Conclusion: A network consisting of 18 microRNAs and 85 target genes might
serve as a risk factor for metabolically unhealthy obesity.
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Introduction

Obesity is an epidemic and systemic metabolic disease that
seriously endangers human health (Collaboration, 2016). Obesity
is frequently associated with the abnormalities of metabolic
syndrome (MS) and an increased risk of its associated
conditions, such as type-2 diabetes (Regufe et al., 2020) and
cardiovascular diseases (Gargiulo et al., 2020). According to
metabolic indicators, obesity can be classified as “metabolically
healthy obesity” (MHO) and “metabolically unhealthy obesity”
(MUO) (Iacobini et al., 2019a). MHO (approximately 30% of
obesity) is characterized by obesity without obesity-related
metabolic abnormalities, such as hyperglycemia, hypertension,
dyslipidemia, and decreased insulin sensitivity (Bervoets and
Massa, 2016). Some obese populations develop MHO and are
resistant to obesity-associated metabolic diseases for some time,
whereas others readily develop MUO (Dagpo et al., 2020). Although
the exact mechanisms remain unclear, they are believed to involve
adipose tissue dysfunction, chronic inflammation, mitochondrial
oxidative dysfunction, genetics, and gut microbiota, which
collectively contribute to MUO pathogenesis (Longo et al., 2019;
Iacobini et al., 2019b). The risk of cardiovascular and metabolic
complications in the MUO population is significantly higher than in
the MHO population (Okamura et al., 2018). Therefore, the
prevention and reversal of the transition from MHO to MUO
should be considered therapeutic goals. Thus, understanding the
transcriptome characteristics and molecular determinants of the
occurrence and development of MUO becomes critical, with the
potential to lead to precision medicine approaches.

High-throughput sequencing and bioinformatics provide new
ideas for studying molecular mechanisms and therapeutic targets of
diseases (Pareek et al., 2011). For example, in whole human blood
RNA sequencing studies, the blood transcriptome in MUO is
analyzed by bioinformatics methods (Plaza-Florido et al., 2021;
Paczkowska-Abdulsalam et al., 2020; Grayson et al., 2011).
However, all of these studies have small sample sizes. Therefore,
integrating data from these studies increases the accuracy of
the results.

MicroRNAs, small RNAmolecules, are reported to be associated
with MUO because of their role in regulating gene expressions by
binding to target mRNAs (Rovira-Llopis et al., 2021). Therefore,
microRNAs and their target genes are intensely studied as
candidates for diagnostic and prognostic biomarkers, predictors
of drug response, and therapeutic agents of diseases, including

metabolic disorders (Ridolfi and Abdel-Haq, 2017). The target
genes of differentially expressed microRNAs (DEMs) in
neurodegenerative diseases can be predicted by several databases,
such as miRNet 2.0 (Chang et al., 2020), TransmiR v2.0 (Agarwal
et al., 2015), RNA22 (Miranda et al., 2006), TargetScan 7.2 (Agarwal
et al., 2015), miRDB (Chen and Wang, 2020; Liu and Wang, 2019),
and miRWalk (Wang et al., 2021). The combination of multiple
prediction databases and RNA sequencing results can more
accurately predict the target genes of microRNAs.

MicroRNAs are pivotal regulators linking obesity,
inflammation, and metabolism. In adipose tissue (AT),
microRNAs secreted by adipocytes, macrophages, and T cells
modulate immune cell crosstalk and metabolic organ
communication. Circulating microRNAs, derived from AT-
resident cells or immune cells such as M1 macrophages and
T cells, play dual roles: promoting or inhibiting inflammation
and insulin resistance. For example, miR-155 and miR-34a
enhance pro-inflammatory pathways (targeting SOCS1 and
KLF4), while miR-223 and miR-146b suppress macrophage
activation. These microRNAs also regulate adipocyte
differentiation (e.g., miR-16-5p and miR-326) and metabolic
signaling (e.g., miR-214 targeting DPP4). Circulating microRNAs,
stable in body fluids, serve as promising biomarkers for obesity-
related disorders (e.g., miR-27a and miR-130b correlate with obesity
severity). Additionally, they offer therapeutic potential; mimics or
antagomirs targeting miR-155, miR-34a, or miR-223 could
attenuate AT inflammation and metabolic dysfunction (Rakib
et al., 2022). Understanding microRNAs-mediated pathways in
circulating cells provides insights into obesity pathogenesis and
novel intervention strategies.

In the present study, GSE146869, GSE145412, GSE23561, and
GSE169290 datasets were analyzed to understand the transcriptome
characteristics of the blood of MUO and provide insights into the
target genes of differently expressed microRNAs in MUO.

Materials and methods

Dataset

The data discussed in this publication were deposited in NCBI’s
Gene Expression Omnibus and are accessible through GEO Series
accession numbers GSE146869, GSE145412, GSE23561, and
GSE169290. The GSE146869 dataset, including 14 MUO patients

TABLE 1 Details of datasets.

Series Public year Groups Samples Tissue Molecule

GSE146869 2020 Metabolically unhealthy obesity
“metabolically healthy obesity”

14
13

Whole-blood mRNA

GSE145412 2020 Metabolically unhealthy obesity
“metabolically healthy obesity”
healthy control

8
8
16

Whole-blood mRNA

GSE23561 2010 Metabolic syndrome
control

6
9

Whole-blood mRNA

GSE169290 2021 Metabolically unhealthy obesity
“metabolically healthy obesity”

16
16

Whole-blood microRNA
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and 13 MHO individuals, was a gene expression dataset in human
whole blood (Table 1) [9]. The GSE145412 dataset was a gene
expression dataset in human whole blood of 8 MUO patients,
8 MHO individuals, 16 patients with metabolic syndrome, and
16 healthy control individuals [10]. The GSE23561 dataset was a
gene expression dataset in the peripheral blood of six MS patients
and nine control individuals [11]. Finally, the GSE169290 dataset
was a microRNA expression dataset from the whole blood of
10 MUO patients and 10 MHO individuals [12]. In the present
study, a multi-dataset strategy was employed, which led to a
substantial expansion of the sample pool compared to previous
investigations with limited sample sizes. By analyzing each dataset
independently for differentially expressed genes (DEGs) and
subsequently identifying co-DEGs present in at least two datasets,
our approach effectively mitigated the influence of dataset-specific
biases. This filtering mechanism ensured that only the genes whose
differential expression was robust and consistent across multiple
datasets were retained, thereby significantly enhancing the accuracy
of our findings.

Differentially expressed gene and
microRNA analyses

The limma package of R language was applied to identify the
DEGs and differential expressed microRNAs. The required data
were mRNA and microRNA with |FC| > 2 and p-value <0.05. The
volcano plot and heatmap were plotted using ggplot2 and
pheatmap packages.

Functional and pathway
enrichment analyses

Both GO and KEGG pathways, which were mainly used to study
DNA- and protein-related issues, are biological sequence analysis
methods that can effectively cluster functional genes into different
biological processes. Next, the DAVID database (https://david.
ncifcrf.gov/tools.jsp) was used to perform GO and KEGG
analyses on differential expression genes. These analyses were
mapped with bioinformatics. The p-value and false discovery rate
(FDR) were controlled at the 0.05 threshold.

Gene interaction network analysis

The gene interaction networks were analyzed using the STRING
database version 11.0 (http://string-db.org). In addition, the
interaction networks of differential expression genes were
visualized using Cytoscape 3.6.0 software.

Prediction of target genes of differentially
expressed microRNAs

miRNet 2.0 [14], TransmiR v2.0 [15], RNA22[16], TargetScan
7.2 [15], miRDB [17, 18], and miRWalk databases [19] were used to
predict the target mRNAs of effective microRNAs in mammals.

Statistics

R 3.5.1 was used for statistical analysis. P values less than
0.05 were considered statistically significant.

Results

Differentially expressed genes in MUO

GSE146869, GSE145412, and GSE23561 datasets were analyzed
to explore the transcriptome characteristics of MUO. The
GSE146869 dataset included two groups of samples: 14 MUO
patients and 13 MHO individuals. Compared with the MHO
group, 437 DEGs were identified in the blood of the MUO
group, including 226 upregulated genes and 211 downregulated
genes (Figure 1A). In the GSE145412 dataset, 8 MUO patients,
8 MHO individuals, 16 patients with metabolic syndrome, and
16 healthy control individuals were included. A total of
659 DEGs were identified in the MUO group compared with the
MHO group, including 444 upregulated genes and
215 downregulated genes (Figure 1B). A total of 275 DEGs were
identified in the MS group compared with the control group,
including 218 upregulated genes and 57 downregulated genes
(Figure 1C). The GSE23561 dataset included two groups of
samples: six MS patients and nine control individuals. Compared
with the control group, 1,466 DEGs were identified in the blood of
the MS group, including 548 upregulated genes and
918 downregulated genes (Figure 1D). A total of 156 co-
upregulated genes were identified, at least in two datasets
(Figure 1E). A total of 33 co-downregulated genes were
identified, at least in two datasets (Figure 1F). A total of
189 co-DEGs were found to represent the effect of
metabolically unhealthy obesity. Thus, functional and pathway
enrichment analyses and gene interaction network analyses on
these 189 co-DEGs were further performed to profile the
abnormal function and potential molecular mechanism in the
occurrence and development of MUO.

Functional and pathway enrichment
analyses of the co-DEGs of MUO

GO and KEGG analyses were performed to summarize the
functional and pathway enrichment of co-DEGs. In GO analyses,
156 co-upregulated genes were enriched in 29 biological process
(BP) terms (Figure 2A). Among the BP terms, immune-related
biological processes, such as immune response, inflammatory
response, and leukocyte migration, and metabolism-related
biological processes, such as lipid metabolic process, long-chain
fatty-acyl-CoA biosynthetic process, and positive regulation of nitric
oxide biosynthetic process, were enriched. In addition, 33 co-
downregulated genes were enriched in two BP terms, namely
apoptotic process and regulation of apoptotic process (Figure 2A).

Enrichment analysis of the KEGG pathway showed that 156 co-
upregulated genes were mainly related to 12 pathways (Figure 2B),
such as adipocytokine signaling pathway, cGMP-PKG signaling
pathway, and complement and coagulation cascades (Figure 2B).
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FIGURE 1
Differentially expressed genes in metabolically unhealthy obesity. (A) Volcano plot comparing the MUO group with the MHO group, based on the
GSE146869 dataset. (B) Volcano plot comparing the MUO group with the MHO group, based on the GDE145412 dataset. (C) Volcano plot comparing the
MS (metabolic syndrome) group with the control (Con) group, based on the GSE145412 dataset. (D) Volcano plot comparing the MS group with the Con
group, according to the GSE23561 dataset. (E) Venn diagram presenting the upregulated genes. (F) Venn diagram of the downregulated genes. MS,
metabolic syndrome. MUO, metabolically unhealthy obesity. MHO, metabolically healthy and obese. DEGs, differentially expressed genes.
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FIGURE 2
Functional enrichment of co-DEGs inmetabolically unhealthy obesity. (A)GO analyses of co-DEGs. This analysis clusters the co-DEGs into different
biological processes, providing an overview of the functions that these genes are associated with. (B) KEGG (Kyoto Encyclopedia of Genes and Genomes)
enrichment of co-DEGs.
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On the other hand, no KEGG pathway was enriched according to
the 33 co-downregulated genes.

Gene interaction network analyses of co-
DEGs of MUO

In the interaction network analyses, the 189 co-DEGs were
clustered into an interaction network complex containing
89 nodes and 159 edges (Figure 3). Epidermal growth factor
(EGF), signal transducer and activator of transcription 3
(STAT3), interleukin 1 beta (IL-1B), platelet factor 4 (PF4),
selectin P (SELP), and integrin subunit alpha 2b (ITGA-2B),
respectively, interacted with at least ten co-DEGs, which were
defined as the hub genes. In addition, immune-, metabolism-,
and aging-related genes are presented in Figure 3, which might
regulate abnormal biological processes in MUO.

DEMs and target DEGs in MUO

The GSE169290 dataset included 10 MUO patients and
10 MHO individuals. Compared with the MHO group, 19 DEMs
were identified in the blood of the MUO group, including
11 upregulated microRNAs and eight downregulated microRNAs
(Figure 4A). has-miR-137, has-mir-224, has-mir-24-2, has-miR-
3157-3p, has-miR-3921, has-miR-4532, has-miR-4697-3p, has-
mir-548d-1, has-miR-6797-3p, has-miR-6798-3p, and has-miR-
6858-5p were increased in MUO. On the other hand, has-mir-
126, has-miR-3613-3p, has-miR-4508, has-miR-4722-3p, has-miR-
4750-3p, has-miR-5047, has-mir-548a-3, and has-mir-6742 were
decreased in MUO (Figure 4B, Supplementary Table S1).

To predict the target genes of the DEMs, miRNet 2.0, TransmiR
v2.0, RNA22, TargetScan 7.2, miRDB, and miRWalk databases were
used in the present study (Supplementary Figure S1). Target genes
were defined as those predicted by at least three databases. In

FIGURE 3
Gene interaction network analyses of the co-DEGs in metabolically unhealthy obesity. The network is composed of nodes (genes) and edges
(interactions between genes). The identified hub genes, EGF, STAT3, IL1B, PF4, SELP, and ITGA2B, which interact with at least 10 co-DEGs, are highlighted.
Additionally, genes related to immune response, metabolism, and aging are also presented, suggesting their role in regulating the abnormal biological
processes in MUO. BP, biological process.
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addition, 9 co-DEGs were predicted as target genes of has-mir-126
(Supplementary Figure S1A), 8 co-DEGs were predicted as target
genes of has-miR-137 (Supplementary Figure S1B), 8 co-DEGs were
predicted as target genes of has-mir-224 (Supplementary Figure
S1C), 11 co-DEGs were predicted as target genes of has-mir-24-2
(Supplementary Figure S1D), 11 co-DEGs were predicted as target
genes of has-miR-3157-3p (Supplementary Figure S1E), 4 co-DEGs
were predicted as target genes of has-miR-3613-3p (Supplementary
Figure S1F), 25 co-DEGs were predicted as target genes of has-miR-
3921 (Supplementary Figure S1G), 15 co-DEGs were predicted as
target genes of has-miR-4508 (Supplementary Figure S1H), 3 co-

DEGs were predicted as target genes of has-miR-4532
(Supplementary Figure S1I), no co-DEGs were predicted as target
genes of has-miR-4697-3p (Supplementary Figure S1J), 20 co-DEGs
were predicted as target genes of has-miR-4722-3p (Supplementary
Figure S1K), 16 co-DEGs were predicted as target genes of has-miR-
4750-3p (Supplementary Figure S1L), 30 co-DEGs were predicted as
target genes of has-miR-5047 (Supplementary Figure S1M), 1 co-
DEG was predicted as the target gene of has-mir-548a-3
(Supplementary Figure S1N), 1 co-DEG was predicted as the
target gene of has-mir-548d-1 (Supplementary Figure S1O), 7 co-
DEGs were predicted as target genes of has-mir-6742

FIGURE 4
Differentially expressed microRNA targets DEGs in metabolically unhealthy obesity. (A) Volcano plot of differentially expressed microRNAs in the
MUO group compared with the MHO group, based on the GSE169290 dataset. (B) Heatmap of the differentially expressed microRNAs. (C) Interaction
network of the differentially expressed microRNA and target DEGs in metabolic syndrome. MUO, metabolically unhealthy obesity. MHO, metabolically
healthy and obese. DEGs, differentially expressed genes.
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(Supplementary Figure S1P), 4 co-DEGs were predicted as target
genes of has-miR-6797-3p (Supplementary Figure S1Q), 1 co-DEG
was predicted as the target gene of has-miR-6798-3p
(Supplementary Figure S1R), and 1 co-DEG was predicted as the
target gene of has-miR-6858-5p (Supplementary Figure S1S). The
DEMs and target genes were present in an interaction network
containing 18 microRNA nodes, 85 gene nodes, and 175 edges
(Figure 4C). In the network, has-miR-5047, has-miR-3921, has-
miR-4722-3p, has-miR-4750-3p, has-miR-4508, has-mir-24-2, and
has-miR-3157-3p, respectively, interacted with at least 11 co-DEGs,
which were defined as the hub micro-RNA.

Discussion

In this study, we identified a total of 189 co-differentially
expressed genes (co-DEGs) across at least two of the GSE146869,
GSE145412, and GSE23561 datasets. These co-DEGs comprised
156 co-upregulated genes and 33 co-downregulated genes. The
156 co-upregulated genes were enriched in 29 BP terms and
12 KEGG pathways. Significantly, the BP terms included
enrichments in immune- and metabolism-related processes,
highlighting the complex interplay between these two aspects in
MUO. In contrast, the 33 co-downregulated genes were only
enriched in two BP terms related to the apoptotic process, with
no significant KEGG pathway enrichment.

Within the gene interaction network, six hub genes, namely,
EGF, STAT3, IL1B, PF4, SELP, and ITGA2B, were identified. These
genes likely play crucial roles in the abnormal biological processes
associated with MUO. EGF has been linked to higher serum
concentrations in patients with metabolic syndrome or obesity
(Kim et al., 2020), indicating its potential as a biomarker. The
inhibition of the STAT3 signaling pathway has shown promise in
reducing visceral obesity (Su et al., 2020), countering metabolic
syndrome development (Hua et al., 2018), and preventing obesity-
induced neuroinflammation (Zhou et al., 2020). IL1B, a key
inflammatory regulator, has been associated with cardiovascular
risks induced by obesity and is considered a targeted therapy for
metabolic syndrome (Maedler et al., 2011; Amaral et al., 2020). SELP
has also been proposed as a target therapy for metabolic syndrome,
while increased levels of integrin beta 2 in adipose tissue and blood
have been observed in diet-induced obesity (Patel et al., 2017;
Mesgari-Abbasi et al., 2021; Wu et al., 2010). Although PF4 may
not have a direct reported association with MUO, platelet activation
and PF4 secretion are present in obesity (Karamouzis et al., 2011).
Therefore, EGF, STAT3, IL1B, SELP, ITGA2B, and PF4 could be
markers of MUO and target therapy for the prevention and reversal
factors of the transition from MHO to MUO.

We also identified 19 DEMs in the blood of the MUO group
using the GSE169290 dataset. Among these, 18 microRNAs targeted
85 genes, which may act as a risk factor for MUO. The potential
functions of these DEMs are summarized in Supplementary Table
S1. Among the 19 DEMs, three decreased microRNAs (has-mir-126,
has-miR-4508, and has-miR-5047) and six increased microRNAs
(has-miR-3157-3p, has-miR-137, has-miR-4532, has-miR-4697-3p,
has-mir-548d-1, and has-miR-6798-3p) were reported in the blood
of MUO (Rovira-Llopis et al., 2021). Thus, the DEMs could be
markers of MUO and target therapy for the prevention and reversal

factors of the transition from MHO to MUO. Most of these DEMs
(has-mir-126 (Park et al., 2018; Yu et al., 2013), has-miR-137 (Deng
et al., 2016; Liu et al., 2017), has-miR-3613-3p (Yan et al., 2018;
Zhang et al., 2017), has-mir-24-2 (Tang et al., 2019; Zhou et al.,
2018), and has-mir-224 (Manzanarez-Ozuna et al., 2018;
Kandhavelu et al., 2019; Wu et al., 2013)) were potential
biomarkers or potential therapeutic targets for multiple tumors.
Interestingly, three DEMs (has-miR-3157-3p (Pala and Denkceken,
2020), has-miR-137 (Li et al., 2017; Jiang et al., 2018), and has-miR-
4532 (Li et al., 2021)) have been associated with neurodegenerative
diseases, with an increased risk observed in obese patients (Dye et al.,
2017). Some of these DEMs have been previously reported in the
blood of MUO patients, suggesting their potential as markers and
therapeutic targets for preventing and reversing the transition from
MHO to MUO. Intriguingly, many of these DEMs are also
associated with multiple tumors, and some are linked to
neurodegenerative diseases, which are more prevalent in obese
patients. However, the functions of five of these DEMs remain
unclear, warranting further investigation in animal models or cell-
based studies.

Compared to previous research, our study integrated data from
multiple datasets in the GEO database, thereby increasing the
sample size and enhancing the accuracy of our results (Plaza-
Florido et al., 2021; Paczkowska-Abdulsalam et al., 2020; Grayson
et al., 2011). Similar to other studies, we found that immune and
metabolic functions are intricately involved in the development of
MUO (Plaza-Florido et al., 2021; Pandolfi et al., 2016). The co-
upregulated genes were enriched in immune- and metabolism-
related biological processes, while the co-downregulated genes
were associated with the apoptotic process. Additionally, the
decreased expression of genes related to autophagy in MUO
compared to MHO suggests that promoting protective
autophagy, as observed with caloric restriction and weight loss,
may be a strategy to prevent or reverse the transition from MHO to
MUO (Morselli et al., 2010; Hansen et al., 2008; Szafranski and
Mekhail, 2014).

This study innovatively integrates data from multiple GEO
datasets. The multi-dataset strategy, distinct from prior limited
sample size studies, expands the sample pool. By independently
analyzing each dataset and identifying co-DEGs present in at least
two datasets, dataset-specific biases are minimized, ensuring that
only robustly differentially expressed genes are retained, thus
enhancing accuracy. Moreover, while similar studies recognized
the role of immune and metabolic functions in MUO, this
research uncovers 189 co-DEGs, regulating immune, metabolic,
and autophagy-related processes. Identifying 19 DEMs in MUO
blood, especially 18 targeting 85 co-DEGs, reveals novel molecular
mechanisms, offering potential for more targeted MUO prevention
and treatment strategies.

Our findings provide comprehensive insights into the molecular
mechanisms underlying MUO. The identified co-DEGs and DEMs,
along with their associated pathways, offer potential biomarkers and
therapeutic targets. The 189 co-DEGs show promise as therapeutic
targets for MUO in several respects. First, modulating key biological
processes is a viable approach. The 156 co-upregulated genes
enriched in immune- and metabolism- related processes can be
targeted to alleviate chronic inflammation and correct abnormal fat
metabolism. The 33 co-downregulated genes associated with
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apoptosis may restore normal cell-death regulation. Second,
targeting six identified hub genes can influence abnormal
processes. Third, regulating the miRNA–gene interaction network
can adjust gene expression and rectify molecular imbalances in
MUO. However, further research is needed to fully understand the
complex relationships between these molecular components and
translate these findings into clinical applications.

Conclusion

A total of 189 co-DEGs, among which 156 were co-upregulated
and 33 were co-downregulated, hold the potential to be biomarkers
or therapeutic targets for MUO. These co-DEGs play regulatory
roles in immune-, metabolism-, and autophagy-related biological
processes within the context ofMUO. In addition, in the blood of the
MUO group, 19 DEMs were identified. Of these, 18 microRNAs
target 85 co-DEGs, which may represent a potential molecular
mechanism underlying the occurrence and development of
MUO. This finding implies that the intricate interplay between
these microRNAs and their target genes could be pivotal in
understanding the pathophysiology of MUO, potentially paving
the way for more targeted preventive and therapeutic strategies.
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