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Background: The tumor immune microenvironment (TIME) and N7-
methylguanosine (m7G) modification play crucial roles in the progression of
acute myeloid leukemia (AML). This study aims to establish an IME-related and
m7G-related prognostic model for improved risk stratification and personalized
treatment in AML.

Methods: Immune score for the Cancer Genome Atlas acute myeloid leukemia
(AML) patients were calculated using the ESTIMATE algorithm, followed by
identification of immune score-associated differentially expressed genes Non-
negative matrix factorization (NMF) clustering was performed to stratify AML
subtypes based on immune microenvironment (immune microenvironment)-
related DEGs and 29 m7G regulatory genes. Intersecting DEGs co-linked to IME
and m7G features were analyzed through weighted gene co-expression network
analysis Weighted correlation network analysis combined with univariate Cox,
LASSO, and multivariate Cox regression to establish a prognostic signature.
Biological pathway disparities between risk subgroups were analyzed via Gene
Set Enrichment Analysis, Gene Set Variation Analysis, and ssGSEA. A clinical
nomogram integrating the signature with prognostic indicators was
developed. The expression of the 12 prognostic genes were tested and
compared in AML and healthy donors. Drug sensitivity predictions for high-
risk patients were generated using oncoPredict, supported by molecular docking
simulations of ligand-target interactions and in vitro validation of candidate
compounds in AML cell models.

Results: We constructed an IMEm7G prognostic signature comprising 12 genes
(MPZL3, TREML2, PTP4A3, AHCYL1, CBR1, REEP5, PPM1H, WDFY3, LAMC3,
KCTD1, DDIT4, KBTBD8) that robustly stratified AML risk and predicted survival
in multiple cohorts. The high- and low-risk subgroups exhibited divergent
biological pathways, mutational landscapes, immune infiltration patterns,
immune checkpoint expression, and HLA profiles. This signature further
guided therapeutic selection, with dactolisib identified as a high-risk-specific
candidate. The quantitative real-time PCR (qPCR) analysis demonstrated that in
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comparison with healthy donors, the expression of WDFY3, PPM1H, and REEP5 was
significantly lower, while that of PTP4A3, AHCYL1, CBR1, MPZL3, TREML2, and
KBTBD8 was higher in AML patients. In vitro CCK-8 assays validated dactolisib’s
monotherapy efficacy and synergistic cytotoxicity when combined with
doxorubicin in AML cells.

Conclusion: The IMEm7G gene signature established in our study effectively
optimized the risk classification and predicted immunotherapy response in AML.
Moreover, dactolisib was identified and demonstrated cytostatic activity alone and
synergistic effects with doxorubicin in AML cells.

KEYWORDS

acute myeloid leukemia, immune microenvironment, m7G, gene signature,
prognosis, therapy

Introduction

Acute myeloid leukemia (AML) is a hematologic malignancy with
high mortality that is characterized by impaired hematopoiesis and
extramedullary infiltration of immature myeloid hematopoietic cell
invasion. It is one of the most common types of leukemia in adults
(Tallman et al., 2019). Induction chemotherapy combined with
consolidation chemotherapy or hematopoietic stem cell
transplantation (HSCT) has been the primary treatment strategy for
most de novo AML patients over recent decades (Rai et al., 1981; Short
et al., 2020). Although many patients experience their first remission
after the standard treatment, the 5-year survival rate remains only 30%
for young patients and less than 10% for older patients (Miller et al.,
2019). The immune microenvironment (IME) of AML significantly
impacts therapeutic efficacy and prognosis (Tettamanti et al., 2022).
Additionally, the intricate outcomes of AML patients vary with
alterations in epigenetic factors (Ueda and Steidl, 2021; Zhao et al.,
2024; Zhang et al., 2024). Identifying meaningful biomarkers based
upon the IME and its epigenetic characteristics to stratify patients is a
wise strategy for exploring heterogeneity, providing prognostic
information, and guiding therapy.

The tumor immune microenvironment (TIME) is a complex
regulatory network comprised of tumor cells and surroundings, and
the surroundings mainly include immune cells and stromal cells. The
immune landscape within the tumor microenvironment has brought
new insights into treatment approaches for AML patients and has also
facilitated the development of immunotherapy (Vago and Gojo, 2020).
Nonetheless, accurately identifying the optimal population that would
benefit from immunotherapy remains a significant concern, requiring
more comprehensive risk stratification and a deeper understanding of
the IME for patients with AML.

Epigenetics involves studying how gene expression is regulated
without changes to nucleotide sequence. Researches has indicated
that dysregulated RNA modifications frequently result in aberrant
gene expression and are closely correlate with developmental
disorders and malignancies (Cavalli and Heard, 2019). N7-
methylguanosine (m7G) is one of the most common RNA
modifications that arises from the methylation of RNA guanine
at the N7 position by methyltransferase and is commonly found in
transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), the 5′cap of
messenger RNA (mRNA), and within mRNAs themselves (Cai et al.,
2023). Recent studies have demonstrated that the m7Gmodification
has the potential to influence the IME, and this alteration can

subsequently contribute to tumor development and therapeutic
effectiveness (Han et al., 2024). Nonetheless, no research has
been done about integrating both IME and m7G for prognostic
stratification and treatment guidelines in AML. Our study aimed to
explore the feasibility of concurrently modeling these two critical
components to enhance our understanding and improve the
management of AML.

In this study, we constructed a 12-gene signature based upon
both IME and m7G for robust risk stratification. Moreover, we
established a nomogram incorporating common clinical indices and
the gene signature. We ultimately confirmed that dactolisib has
therapeutic potential, demonstrating inhibitory activity against
AML cells in monotherapy and exhibiting a synergistic effect
when combined with doxorubicin.

Materials and methods

Data acquisition and processing

AML patients with complete clinical characteristics were enrolled in
our study. The transcriptomic profiles of 151 AML patients were
retrieved from the TCGA cohort. The clinical data of AML patients
was gathered from the UCSCXena database (http://xena.ucsc.edu/). The
transcriptomic profiles of Beat-AML (346 AML samples) and the
microarray data with matrix format of AML patients from GSE10358
(91 AML samples) and GSE71014 (104 AML samples) were used for
external validation. The probes for the GSE10358 and GSE71014 were
annotated by Affymetrix Human Genome U133 Plus 2.0 Array GPL
platform and Illumina HumanHT-12 V4.0 expression beadchip
GPL10558 platform, respectively. If multiple probes corresponded to
the same gene, themean expression value was calculated and defined as a
final value using the limma (Ritchie et al., 2015) package in the R
language (version 4.4.1). The transcriptome data from TCGA was
analyzed in FPKM values.

Identification of DEGs related to AML
immune microenvironment (IME)

The immune score, stromal score, and estimate score of
151 AML cases from the TCGA database were assessed using the
ESTIMATE algorithm (Yoshihara et al., 2013). Patients were

Frontiers in Genetics frontiersin.org02

Chen et al. 10.3389/fgene.2025.1540992

http://xena.ucsc.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1540992


classified into high and low immune score groups based on the
median immune score. We used the limma package to compare the
DEGs between the high- and low-score groups, with an adjusted
p-value <0.05 and | log2 fold change (FC) | > 1 as the cutoff criteria.
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of DEGs were
conducted with the “clusterProfiler” R package (Yu et al., 2012).
The “ggplot2” was utilized to visualize the outcome (Ginestet, 2011).

Identification of IME-relevant and
m7G-relevant subclasses

For IME-relevant unsupervised classification, the IME-
related DEGs were enrolled for non-negative matrix
factorization (NMF) clustering (Gao and Church, 2005).
29 m7G-related genes were identified from the published
literature (Tomikawa, 2018) and the Gene Set Enrichment
Analysis (GSEA) website (http://www.gsea-msigdb.org/gsea/
index.jsp). AML patients from the TCGA database were
divided into subgroups based on the expression of 29 m7G-
related genes using the “NMF” R package. The “survival” R
package was used for the Kaplan-Meier (KM) complete
survival curve analysis between the different clusters.

Weighted correlation network analysis

Using the WGCNA package in R, the Weighted correlation
network analysis (WGCNA) determines the correlation patterns
between genes (Langfelder and Horvath, 2008). We executed
WGCNA using 2429 IME- and m7G-relevant DEGs (named
IMEm7G-DEGs) to identify the ‘survival’ models for further
investigation. The correlation values of DEGs to ‘survival’ models
were determined through Pearson’s correlation coefficients. The soft
thresholding power was determined by evaluating both scale
independence (R2) and mean connectivity. A threshold was selected
to ensure a scale independence (R2) value greater than 0.8 while
maintaining a sufficiently high mean connectivity, thereby preserving
biologically relevant information. Based on these criteria, β = 4 was
identified as the optimal value for our analysis. The adjacency matrix
was transformed into a topological overlap matrix (TOM) for gene
hierarchical cluster analysis to generate co-expression modules.
Similarly expressed genes were grouped into the same gene module.
Theminimummodule size was defined as 30 genes, andmodules with a
dissimilarity of <0.3 were merged. We finally mined the gene models
related to survival time and survival status.

Construction of an IMEm7G-related
gene signature

The survival-correlated gene models (including survival time
correlated or survival status correlated; p < 0.05) were obtained from
WGCNA analysis, and genes in these models were screened for
univariate Cox regression analysis. Meanwhile, a Kaplan-Meier (KM)
survival analysis was conducted among these genes to explore the effect
of each gene on AML survival.

To optimize the Cox model, we performed the least absolute
shrinkage and selection operator (LASSO) regression analysis by the
glmnet (Friedman et al., 2010) package in R. The selected genes were
later analyzed using multivariate Cox regression to establish an
IMEm7G-based gene signature. In the gene signature, an individual’s
risk score was calculated using the formulas: risk score = β1 *
Gene1 expression + β2 * Gene2 expression + . + βn * Genen
expression, in which β represents the regression coefficient of
each variable.

The median risk score was used to categorize patients into high-/low-
risk groups. The reliability of the gene signature for predicting the 1-, 2-, 3-,
4-, and 5-year survival was evaluated via the time-dependent receiver
operating characteristic (ROC) curve by survivalROC (https://cran.r-
project.org/package=survivalROC) package under R environment. The
survival (https://cran.r-project.org/package=survival) and survminer
(https://cran.r-project.org/package=survminer) packages were
implemented to perform the KM survival analysis and Cox models. A
p-value <0.05 was a significant statistical difference in survival prognosis.

Verification of the robustness of the
12-gene signature

Three additional cohorts of AML patients from Beat-AML,
GSE10358, and GSE71014 were used as validation cohorts. Based
on the gene signature, we calculated the risk score, overall survival
(OS) rates, and area under the curves (AUCs) values of the distinct
AML cohorts separately.

Functional analyses of the low- and
high-risk groups

The GSEA was performed on high- and low-risk groups to identify
enriched principal pathways (GSEA 4.1.0) (Subramanian et al., 2005).
The javaGSEA Desktop Application was downloaded from https://
www.gsea-msigdb.org/gsea/index.jsp. We used the Hallmark sets
(Liberzon et al., 2015) as reference sets. The analysis was carried out
via 1,000 permutations. The pathways with a |normalized enrichment
score (NES)| > 1, p-value (NOM p-value) < 5%, and q-value (FDR
q-value) < 25% were statistically significant. The enrichment pathways
for variations between subtypes were evaluated through Gene Set
Variation Analysis (GSVA) (Hänzelmann et al., 2013).

Deciphering the immune landscape of AML
patients via the ssGSEA algorithm

The single sample GSEA (ssGSEA) was adopted with the GSVA
package to depict the immune infiltration characteristics of distinct
immune cell infiltrations in AML samples.

Establishment of a nomogram with clinical
application

With the replot (https://CRAN.R-project.org/package=
regplot) package, the 12-gene signature was combined with
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clinical features, including age, cytogenetics, and transplantation
treatment, to establish a nomogram. We ran univariate and
multivariate Cox regression analyses for the Hazard ratios
(HR) of distinct factors in the nomogram. The AUC values,
decision curve analysis (DCA), concordance index (C-index),
and calibration curves were applied to evaluate the practicality of
the nomogram.

Drug prediction analysis

The “oncoPredict” R package was employed to identify the
therapeutic medicines for AML patients based on the genomics
of drug sensitivity in cancer (GDSC) database (https://www.
cancerrxgene.org/) (Maeser et al., 2021). We performed
molecular docking of the potential therapeutic ingredients and
the predicted targets with unfavorable events, including
PTP4A3, AHCYL1, TREML2, CBR1, and MPZL3. The protein
structures for these specific genes were retrieved from the PDB
database (http://www.rcsb.org/). The PubChem database was
utilized to obtain the chemical structures of distinct
medicines. The AutoDock tool was utilized to verify the
charge balance and identify the rotatable bonds of small
molecules (Morris et al., 2009). We performed molecular
docking between the targeted proteins and medications using
AutoDock Vina (Trott and Olson, 2010). The binding energy
obtained from molecular docking experiments served as
a docking score to evaluate the protein-ligand binding
potential. Combinations of targets and ligands with a
selection value of ≤ -5 were deemed to exhibit moderate to
strong binding potential. A lower binding energy indicates a
stronger interaction between the molecules. The docking results
were visualized using PyMol 2.4 software (Bramucci et al., 2012).

Patient samples

Bone marrow mononuclear cells were obtained from 50 newly
diagnosed AML patients at Fujian Medical University Union
Hospital (FMUUH), while peripheral blood samples were
collected from 20 healthy donors. This study was approved by
the FMUUH Ethics Committee and conducted in accordance
with the Declaration of Helsinki.

RNA isolation and quantitative real-time PCR

Total RNA was isolated using TRIzol reagent (TransGen
Biotech, China) following the manufacturer’s instructions.
Subsequently, 1 μg of total RNA was reverse-transcribed into
complementary DNA (cDNA) using a commercial reverse
transcription kit (Thermo Fisher Scientific, United States).
Quantitative real-time PCR (qPCR) analysis was conducted
using SYBR Green PCR Master Mix (Vazyme, China) on a
real-time PCR detection system. The relative gene expression
levels were determined using the comparative 2−ΔΔCT method
(Livak and Schmittgen, 2001). All primer sequences used in this
study are provided in Supplementary Table S1.

Cell counting kit-8 (CCK-8) assay and
treatment combination analysis

The cell viability was assessed by CCK-8 assay (APExBIO,
United States). The AML cells, including THP-1 (icellbioscience,
cat#iCell-h213, China), HL-60 ((icellbioscience, cat#iCell-h098,
China), and MOLM-13 (icellbioscience, cat#iCell-h423, China)
were seeded in 96-well plates with 100 μL volume per well,
following treatment with dactolisib or the combination of
dactolisib and doxorubicin for 48 h. For monotherapy, the
THP-1 cells were treated with increasing concentrations of
dactolisib at 0, 0.1, 0.25, 0.5, and 1 µM. HL-60 cells were
treated with dactolisib at 0, 0.1, 0.25, 0.5, 1, and 2 µM
concentrations. MOLM-13 cells were treated with dactolisib at
0, 0.05, 0.1, 0.25, and 0.5 µM concentrations.

For the combination treatment, AML cells were treated with the
increased concentrations of dactolisib, along with various
concentrations of doxorubicin: THP-1 cells received 0, 0.05, 0.1,
and 0.2 µM; HL-60 cells received 0, 0.01, 0.02, 0.05, 0.1, and 0.2 µM;
and MOLM-13 cells received 0, 0.005, 0.01, 0.02, and 0.05 µM. After
48 h, the cells were incubated with 10 µL of CCK-8 reagent per well
for 2 h at 37°C, away from light. The optical density (OD) of each
well at 450 nm was measured using a microplate reader (Bio Tek,
United States). Cell viability was calculated using the formula:
viability (%) = [(treated - blank)/(control - blank)] × 100%. The
combination effects and synergy scores of dactolisib and
doxorubicin were analyzed with the Synergyfinder, utilizing the
Bliss independence model (Ianevski et al., 2020).

Results

Clustering of AML patients based on immune
microenvironment (IME)- and
m7G-relevant genes

The procedure of our study was depicted in Figure 1. The
immune score, estimate score, and stromal score of each AML
patient were calculated using the ESTIMATE algorithm. The
Kaplan-Meier (KM) survival analysis indicated that patients with
low immune score had better OS than those with high immune score
(Figure 2A). We then divided the AML cases into two groups
according to the median immune score to investigate the IME-
relevant DEGs. In contrast with the low-immune score group, we
identified 645 upregulated genes and 273 downregulated genes in
the high-immune score group (Figure 2B). The GO and KEGG
analyses revealed that these DEGs were primarily enriched in
immune and inflammatory processes (Supplementary Figure S2A,
B). We subsequently used these DEGs to construct a risk model
employing uniCox, Lasso, and multiCox regression analyses. The
findings suggested that the model performed well with AUCs over
0.85 (Supplementary Figure S2C). However, we regretfully found
that the predictive model showed weak performance in the external
AML cohorts (Supplementary Figure S2D–F). Correspondingly, we
constructed the m7G-relevant model using 29 m7G-related genes,
while the AUCs for the model were less than 0.8 (Supplementary
Figure S2G). Meanwhile, the predictive model also revealed poor
performance in the external AML cohorts (Supplementary Figure
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S2H–J). We propose this discrepancy could stem from cross-cohort
variability and the exclusive focus on unimodal biomarkers (e.g.,
microenvironment or RNA modifications), potentially insufficient
to deconvolute the disease’s multifactorial nature while limiting
model generalizability.

The correlation between m7G and immunity has been reported
previously, while few studies have combined the two to optimize the
prognostic stratification in AML.We attempted to combine the IME
and m7G for modeling and performance evaluation. The IME-

related DEGs were used for the AML cluster with NMF analysis. The
results showed that AML patients in the TCGA cohort were
clustered into three subtypes (named IMEc1, IMEc2, and
IMEc3 respectively) (Figure 2C; Supplementary Figure S2K).
Patients in IMEc1 demonstrated superior OS rates compared to
IMEc2 and IMEc3 (Figure 2D). Meanwhile, we divided patients into
three clusters based on the 29 m7G-related genes (named m7Gc1,
m7Gc2, and m7Gc3 respectively) (Figure 2E; Supplementary Figure
S2L). Patients in m7Gc2 and m7Gc3 exhibited worse OS compared

FIGURE 1
Workflow diagram illustrating the analysis process for the development of a prognostic model associated with IME and m7G.
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FIGURE 2
Classification of AML patients via NMF analysis. (A) KM curves for OS in the high and low immune score groups. (B) Volcanomap of DEGs in the high
and low immune score groups. (C) Heatmap of sample clustering when k = 3 based on the IME NMF analysis. (D) KM curves of Cluster1, Cluster2, and
Cluster3 in the TCGA AML dataset based on the IME NMF analysis. (E) Heatmap of sample clustering when k = 3 based on the m7G NMF analysis. (F) KM
curves of Cluster1, Cluster2, and Cluster3 in the TCGA AML dataset based on them7GNMF analysis. (G) Analysis of the scale-free fit index for various
soft-thresholding powers (β). (H) Analysis of the mean connectivity for various soft-thresholding powers. (I) The cluster dendrogram of genes in TCGA is
depicted here. Each branch in the figure represented a single gene, while each color below corresponded to a co-expression module. (J)Heatmap of the
correlation between module eigengenes and the survival (including survival time and survival status) of AML.
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FIGURE 3
Development of the IME and m7G (IMEm7G) related signature in AML. (A) Lambda trajectory of DEGs. (B) Confidence interval under lambda. (C)
Twelve geneswere selected for constructing a gene signature using themultivariate Cox regressionmodel. (D) KM survival curves of themodel predicting
the prognostic rate of OS between low- and high-risk groups. (E) Scatter plot of the model in the TCGA AML set dividing the samples into high-risk and
low-risk groups. (F) KM survival curves of the model predicting the prognostic rate of EFS between low- and high-risk groups. (G) The expression of
TREML2, MPZL3, and KBTBD8 was considered the independent EFS index. (H) ROC curves of the risk model for predicting 1-, 2-, 3-, 4-, and 5-year
survival in the TCGA AML cohort. (I) The top ten gene mutations in the high-risk group. (J) The top ten gene mutations in the low-risk group.
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to m7Gc1 (Figure 2F). Interestingly, we found that patients in the
m7Gc2 and m7Gc3 showed similar survival probabilities over
1–3 years compared to patients in the IMEc2 and IMEc3.
Additionally, we discovered that the m7Gc2 and
m7Gc3 exhibited higher immune score when compared to
m7Gc1 (Supplementary Figure S2M). This suggested that patients
in m7Gc2 and m7Gc3 were characterized by more immune
infiltrating cells to impact the OS. We compared the sample
information between IMEc1 and m7Gc1 and identified
12 patients who consistently exhibited a favorable prognosis
when classified by both methodologies (designated as the FF
group). Similarly, 99 patients were consistently classified as
having a poorer prognosis by both approaches (designated as the
WW group). The comprehensive baseline characteristics of both
cohorts are summarized in Supplementary Table S2.

Then, the DEGs between the FF groups and WW groups were
identified with an adjusted p-value <0.05 and | log2 FC | > 0.5 as the
cutoff criteria, resulting in the screening of 2,429 DEGs for inclusion
in WGCNA analysis. Based on the gene expression profiles of
individual patients, we defined a threshold value of 10,000, which
led to the identification and subsequent exclusion of two outlier
samples (Supplementary Figure S2N). A scale-free co-expression
network was constructed with a soft threshold power β = 4 (Figures
2G,H). These DEGs were categorized into ten models along with
survival time and status (Figures 2I,J). Most gene models were
correlated with survival time or survival status with a screening
threshold of p < 0.05. In these models, 623 genes were predictive
about survival (survival time or survival status) with a p-value <0.05
(Supplementary Table S3).

Development of the IME and m7G (IMEm7G)
related signature for prognostic
classification of AML patients

The prognosis-related 623 DEGs screened from WGCNA were
subjected to univariate Cox proportional hazard regression analysis.
The result showed that 579 of 623 genes were highly significant with
p-value < 0.05 (Supplementary Table S4). These genes were
subsequently incorporated into the LASSO regression analysis to
avoid overfitting, and 26 genes were obtained (Figures 3A,B). Using
multivariate Cox regression analysis for the 26 genes, 12 prognostic
genes for the gene signature were identified. In these genes, MPZL3,
TREML2, PTP4A3, AHCYL1, and CBR1 were positively related to
poor prognosis (HR > 1 and p < 0.05), whereas REEP5, PPM1H, and
WDFY3 were negatively correlated (HR < 1 and p < 0.05)
(Figure 3C). Multicollinearity was evaluated using variance
inflation factor (VIF) (threshold ≥2 indicating multicollinearity),
and all genes showed VIF <2 (Supplementary Table S5). The PH
assumption was satisfied for all variables in the Cox model, as
confirmed by the global Schoenfeld test (Supplementary Table S6).
We subsequently calculated a risk score for each patient using these
genes’ expression and multivariate Cox regression coefficients. The
risk score was determined by the following formula: Risk score =
(−0.2722 * LAMC3 expression) + (−0.1964 * KCTD1 expression) +
(−0.1468 * PPM1H expression) + (−0.1097* WDFY3 expression) +
(−0.0485 * REEP5 expression) + 0.0054 * DDIT4 expression +0.0319
* PTP4A3 expression +0.0539 * AHCYL1 expression +0.0670 *

TREML2 expression +0.1265* KBTBD8 expression +0.1418 *
CBR1 expression +0.1814 * MPZL3 expression. The KM analysis
indicated that patients in the high-risk group showed poorer clinical
outcomes than those in the low-risk group (Figure 3D). As the risk
score increased, the survival time for patients decreased (Figure 3E).
Additionally, patients with high-risk score showed worse event-free
survival (EFS) as well (2 patients who lacked the EFS information
were excluded) (Figure 3F). With the multiCox analysis, the
expression of TREML2, MPZL3, and KBTBD8 was considered
the independent EFS index (Figure 3G).

The AUCs of the risk signature for predicting 1-, 2-, 3-, 4-, and 5-
year survival were 0.895, 0.899, 0.886, 0.910, and 0.925, respectively
(Figure 3H). Furthermore, we found that patients in the high-risk group
were characterized as elderly cohorts with intermediate or poor
cytogenetics and less transplantation treatment (Supplementary Table
S7). The molecular abnormalities were prevalent in AML, and
numerous genetic mutations were associated with poorer prognosis
for patients. For profiling the mutation landscape in high- and low-risk
groups, we employed the “maftools” and discovered that individuals in
the high-risk group exhibited more gene mutations (Figures 3I,J). The
top ten mutated genes in the high-risk group were DNMT3A, NPM1,
TP53, RUNX1, IDH2, FLT3, KRAS, NRAS, WT1, and HNRNPK. The
top ten mutated genes in the low-risk group were KIT, TTN, WT1,
FLT3, IDH1, MUC16, NPM1, AHNAK, DNMT3A, and MUC17.

The performance of the 12-gene signature in
the external AML cohorts

The Beat-AML cohorts, GSE71014 and GSE10358 were used as
testing groups. The AUCs in the Beat-AML for predicting 1-, 2, 3-,
4-, and 5-year survival was 0.606, 0.654, 0.753, 0.653, and 0.640,
respectively (Figure 4A). The AUCs in the GSE71014 for predicting
1-, 2, 3-, 4-, and 5-year survival were 0.627, 0.674, 0.677, 0.656, and
0.745, respectively (Figure 4B). For GSE10358, the AUCs indices for
1-,2, 3-, and 4-year survival were 0.669, 0.618, 0.680, and 0.642,
respectively (Figure 4C). As well, patients with high-risk score
experienced worse clinical outcomes (Figures 4D–F). The
relationship between characteristics of AML patients from
different datasets and low- and high-risk score were displayed in
the Supplementary Table S7. The results confirmed the effectiveness
of the 12-gene signature in prognosis prediction. To test the
predictive power of the 12-gene expression signature, we
employed multiple outstanding models constructed by other
researchers for comparison. They are Li’s 24-gene model
(Li et al., 2013), Ng’s 17-gene model correlated with leukemia
hematopoietic stem cells (LSC) (Ng et al., 2016), Elsayed’s 5-gene
model (Elsayed et al., 2024), Fu’s 8-gene model (Fu et al., 2021), and
Chen’s 4-gene model (Chen et al., 2021). The result noted that the
12-gene signature had the highest C-index for the ROC curves
compared to other predictive models in the TCGA AML cohort,
indicating the effectiveness of the IMEm7G risk model (Figure 4G).
To further identify the role of the gene signature in other cancers, we
tested its role using the GEPIA2 online tools (http://gepia2.cancer-
pku.cn/) (Tang et al., 2019). The results indicated that the 12-gene
signature was predictive of OS in adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), mesothelioma (MESO), uveal
melanoma (UVM), and kidney renal clear cell carcinoma (KIRC)
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(Supplementary Figure S2A–E). Additionally, the risk model was
predictive of disease-free survival (DFS) in ACC, BLCA, lower-grade
glioma (LGG), and thyroid carcinoma (THCA) (Supplementary Figure
S2F–I). In contrast, for other malignancies profiled in the
GEPIA2 database - including head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), diffuse large B-cell lymphoma
(DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme
(GBM), kidney renal papillary cell carcinoma (KIRP), lower-grade

glioma (LGG), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), and additional tumor types - no
statistically significant survival differences were observed between
high- and low-risk subgroups (Supplementary Table S8).

The 12-gene signature impacted the
immunological features in AML

The GSEA and GSVA enrichment analyses were carried out
utilizing the Hallmark set to clarify the fundamental mechanisms

FIGURE 4
The performance of the 12-gene signature in the external AML cohorts. (A)ROC curves of the riskmodel for predicting 1-, 2-, 3-, 4-, and 5-year OS in
the Beat-AML cohort. (B) ROC curves of the risk model for predicting 1-, 2-, 3-, 4-, and 5-year OS in the GSE71014 AML cohort. (C) ROC curves of the risk
model for predicting 1-, 2-, 3-, and 4-year OS in the GSE10358 AML cohort. (D) KM survival curves of the model predicting the prognostic rate of OS
between low- and high-risk groups in the Beat-AML cohort. (E) KM survival curves of the model predicting the prognostic rate of OS between low-
and high-risk groups in the GSE71014 AML cohort. (F) KM survival curves of the model predicting the prognostic rate of OS between low- and high-risk
groups in the GSE10358 AML cohort. (G) The C-index of the distinct models for the TCGA AML cohort.
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FIGURE 5
Functional analysis and immune profiles between the low- and high-risk groups. (A) GSEA for the high-risk subgroup. (B) Heatmaps of the top
10 remarkably different pathways between low- and high-risk groups by GSVA analysis. (C) The discrepancies in immune score between high- and low-
risk groups. (D) The discrepancies in estimate score between high- and low-risk groups. (E) The discrepancies in stromal score between high- and low-
risk groups. (F) The boxplot for immune infiltrating cells among AML patients from different risk groups. (G) Comparison of the expression of HLA
families in different riskgroups. (H) Comparison of the expression of immune checkpoints relevant genes in different risk groups. *p < 0.05; **p < 0.01;
***p < 0.001.
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underlying relevant biological processes. The results demonstrated
that immune-related processes, including IL6_Jak_stat3_signaling,
interferon gamma response, interferon alpha response,
inflammatory response, TNF-α signaling via NFkB, and KRAS
signaling were significantly upregulated in the high-risk group
compared to the low-risk group (Figures 5A,B). These function
enrichment analyses collectively indicated that the high-risk score
was strongly associated with immune disorders, which may be a key
factor affecting the prognosis of AML patients.

The immune score and estimate score of samples in the high-
risk group were significantly higher than those in the low-risk group;
in contrast, no significant differences in stromal score were
identified between the two groups (Figures 5C–E). To profile the
immune infiltrating cells in AML, we conducted the ssGSEA
algorithm in the 151 AML samples. Our analysis demonstrated
elevated infiltration of 14 out of 28 immune cell subtypes in high-
risk patients, most notably myeloid-derived suppressor cells
(MDSCs), a key immunosuppressive population that drives
tumor progression through promoting immune evasion
mechanisms (Tesi, 2019) (Figure 5F). Comparative correlation
analysis revealed that MDSCs exhibited significantly stronger
associations with immune score than antitumor immune cell
populations, underscoring their pivotal role in shaping the
immunosuppressive microenvironment of AML patients
(Supplementary Figure S5A). We further demonstrated that
18 HLA family genes were significantly differentially expressed
between the high-risk and low-risk groups, with most factors
being upregulated in the high-risk group (Figure 5G). In
addition, we evaluated the expression of 48 immune checkpoint
relevant genes. We found that 17 immunomodulators were
obviously expressed in the high-risk group compared to the low-
risk group, including CD274 (encoding PD-L1), PDCD1 (encoding
PD-1), and CTLA4 (Figure 5H).

Consistent positive correlative relationships were identified
between m7G regulators and MDSCs infiltration (Supplementary
Figure S5B). Risk score and m7G regulators correlation profiling
further identified 13 genes with significant associations, and most of
which showed distinct expression in the high- and low-risk group
(Supplementary Figure S5C,D). Moreover, Notably, NUDT16,
LARP1, EIF4E3, and DCPS emerged as significant prognostic
indicators for AML survival (Supplementary Figure S5E–H).

Nomogram deduction by integrating gene
expression with clinical indicators

We further developed a nomogram to predict the OS of AML
patients at 1, 3, and 5 years. This nomogram incorporated risk score
along with several clinical variables, including age, cytogenetic risk
as defined under the National Comprehensive Cancer Network
(NCCN) 2011 guidelines (O’Donnell et al., 2012), and
transplantation treatment (Figure 6A). In the univariate and
multivariate Cox regression analyses, the 12-gene signature
revealed a substantial prognostic value for AML (Supplementary
Tables S9, S10). We also calculated additional AUC values for the
risk score and individual clinical parameters. Our findings indicated
that the risk score had the highest AUC compared to the other
clinical factors (Figures 6B–D). The DCA showed obvious net

benefits, confirming that the prediction model had better
accuracy than the one constructed solely from clinical
characteristics, including age, cytogenetic risk, and
transplantation (Figure 6E). Additionally, we found that the
C-index values for the nomogram were higher than those for
models based solely on clinical characteristics, including age,
cytogenetics, and transplantation (Figure 6F). Furthermore, the
calibration plot demonstrated an excellent alignment with the
ideal model (Figures 6G–I).

Analysis of individual mRNA expression for
the 12 prognostic genes and identification of
effective therapeutics in high-risk
AML patients

We carried out qPCR to validate our bioinformatic results.
The result of qPCR illustrated that in comparison with healthy
donors, the expression of WDFY3, PPM1H, and REEP5 was
significantly lower, while that of PTP4A3, AHCYL1, CBR1,
MPZL3, TREML2, and KBTBD8 was higher in AML patients
(Figures 7A–L). The “oncoPredict” R project was utilized to
predict the half maximal inhibitory concentration (IC50) of each
drug for AML patients between high and low-risk groups using
the GDSC2 database (https://www.cancerrxgene.org/). As
illustrated in Figures 8A–E, the five drugs with the highest
sensitivity for high-risk patients, compared to the low-risk
group, were dactolisib, GNE-317, gemcitabine, camptothecin,
and vinblastine. Dactolisib and GNE-317 are PI3K/mTOR
inhibitors known for their promising clinical utility. Notably,
dactolisib exhibited vital antitumor activity and the potential to
augment immune response (Hu et al., 2021; Tehranian et al.,
2022). The other three drugs, gemcitabine, camptothecin, and
vinblastine, are chemotoxic agents used in chemotherapy for
various tumors (Wander et al., 2020; Li et al., 2021b; Wang et al.,
2023b). We further conducted molecular docking analyses of
these drugs with proteins associated with unfavorable prognoses,
including PTP4A3, AHCYL1, TREML2, CBR1, and
MPZL3 using the AutoDock software. The findings
demonstrated that all of these pharmaceuticals displayed a
binding affinity for the specified therapeutic targets
(Figure 8F), implying that the mechanism through which
these drugs treat AML was probably by the interactions with
these critical targets. Due to the heterogeneity of AML, the
effectiveness of conventional chemotherapy regimens has been
limited. As a result, targeted therapies are increasingly being
utilized in both newly diagnosed and relapsed/refractory (R/R)
AML cases (Kantarjian et al., 2021). Dactolisib was the targeted
drug with the strongest interaction among these molecules,
characterized by the lowest binding energy. Additionally, it
demonstrated tumor-killing effects in various solid tumors,
while its role in AML remains to be explored. We further
explored the role of dactolisib in AML. As shown in Figures
8G–K, all therapeutic agents exhibited interactions with
dactolisib at specific binding regions. We then treated AML
cells with dactolisib as a monotherapy and detected the
viability of AML cells. As the concentration of dactolisib
increased, the viability of AML cells decreased (Figures
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FIGURE 6
Establishment of a nomogram. (A) The nomogramwith prognosis forecasting constructed by the gene signature and clinical characters. (B)ROC curves
of risk score, age, cytogenetic risk, and transplantation treatment for predicting 1-year OS in TCGA cohort. (C) ROC curves of risk score, age, cytogenetic risk,
and transplantation treatment for predicting 3-year OS in TCGA cohort. (D) ROC curves of risk score,age, cytogenetic risk, and transplantation treatment for
predicting 5-yearOS in TCGAcohort. (E) Evaluationsof the prediction performance byDCA. “Clinical”means themodel constructedby age, cytogenetic
risk, and transplantation. (F) Evaluations of the prediction performance by time-dependent C-index. “Clinical” means the model constructed by age,
cytogenetic risk, and transplantation. (G) Evaluations of the 1-year OS prediction performance by calibration curves. (H) Evaluations of the 3-year OS
prediction performance by calibration curves. (I) Evaluations of the 5-year OS prediction performance by calibration curves. **p < 0.01; ***p < 0.001.
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8L–N). Doxorubicin has been a first-line treatment for newly
diagnosed AML patients for decades; however, its effectiveness is
often limited due to the development of resistance. Combining
doxorubicin with targeted agents might improve the
chemosensitivity of doxorubicin in the clinic (Leung et al.,
2020; Gui et al., 2021). To investigate whether dactolisib and
doxorubicin have a synergistic effect, we treated AML cells with
both drugs in combination. Using the SynergyFinder tool, we
found that dactolisib and doxorubicin exhibited significant
synergy (Figures 8O–Q), suggesting a novel therapeutic option
for AML treatment. Further studies are needed to elucidate the
underlying mechanism of this combination effect.

Discussion

Initially, we attempted to build the predictive model using either
m7G-related or IME-related genes separately. However, regarding
prediction performance, either the IME-related model or the m7G-
related model exhibited obvious demerits. The role of combining
m7G methylation and IME for risk stratification and therapy
guidance is still obscure in AML. On that account, our study
investigated IME and m7G-related DEGs, aiming to uncover
their joint roles and contribute to new prognostic models and
treatment strategies for AML patients. By examining the distinct
categories and subclasses of AML patients via IME- and m7G-
associated DEGs, we discovered that individuals in the m7G-related
cluster2 and cluster3 had comparable survival rates throughout
1–3 years when compared to those in the IME-related cluster
2 and cluster3. Not only that, there were significant differences in
immune score among the distinct m7G-relevant clusters. Patients in
cluster3 and cluster2 showed higher immune score than those in
cluster1. These findings suggested a correlation between m7G and

IME, indicating that distinct classifications based on m7G revealed
variations in IME and AML survival. Additionally, they imply that
m7G may interact with IME to influence treatment strategies.
Currently, the IME and m7G-related model is rarely used in
tumor prognosis and has not been reported in the context of AML.

Our model performed excellently in predicting the prognosis of
AML. Based on their risk score, we were able to distinguish AML
patients into two risk groups, with the low-risk group exhibiting
better survival rates. The risk score demonstrated a strong ability to
independently predict OS. In the high-risk group, there were a
greater proportion of elderly patients, as well as a higher percentage
of individuals with intermediate or poor cytogenetic stratification
and those who had not undergone transplantation. The prognostic
scoring model comprised 12 characteristic genes, including MPZL3,
TREML2, PTP4A3, AHCYL1, CBR1, REEP5, PPM1H, WDFY3,
LAMC3, KCTD1, DDIT4, and KBTBD8. The 12 genes were taken as
a whole in this study to determine risk stratification, IME
characteristics, and responsiveness to anticancer pharmacological
agents within the AML cohort. Among these genes, the MPZL3 gene
encodes a membrane protein that is crucial for several biological
processes, including epidermal differentiation (Bhaduri et al., 2015),
mitochondrial dysfunction (Wikramanayake et al., 2022), and
immune infiltrating (Guo et al., 2024). Abnormal expression of
MPZL3 is involved in the development of lung carcinoma (Stern
et al., 2022). However, the role of MPZL3 in AML is limited.
TREML2 is known to influence inflammatory responses by
modulating the microglia polarization and the NLRP3
inflammasome (Wang et al., 2023a). Current studies suggest that
overexpression of PTP4A3 may stimulate the AKT and WNT/β-
catenin signaling pathways, enhancing the viability of AML cells
(Zhou et al., 2018). AHCYL1 plays a dual role in tumors; it acts as a
tumor suppressor in gastric, ovarian, and breast cancers while
promoting chemotherapy resistance in malignant melanoma

FIGURE 7
The relative mRNA expression of the 12 prognostic genes. The expression of (A)WDFY3, (B) PPM1H, (C) PTP4A3, (D) AHCYL1, (E) LAMC3, (F) REEP5,
(G) CBR1, (H) KCTD1, (I) MPZL3, (J) TREML2, (K) KBTKD8, and (L) DDIT4 in AML patients (n = 50) and healthy donors (n = 20).
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FIGURE 8
Drug analysis for targeted therapy. (A) Dactolisib, (B) GNE-317, (C) Gemcitabine, (D) Camptothecin, and (E) Vinblastine were the top 5 predicted
sensitive drugs in the high-risk group. (F) The binding energy of critical compounds and targets (kcal/mol). Themolecular docking betweenDactolisib and
(G) AHCYL1, (H)CBR1, (I)MPZL3, (J) PTP4A3, and (K) TREML2 encoded proteins. The increased concentration of Dactolisib decreased the viability of AML
cells, including (L) THP-1, (M) HL-60, and (N)MOLM-13. Synergism was calculated for the drug combinations of Dactolisib with Doxorubicin in (O)
THP-1, (P) HL-60, and (Q) MOLM-13 cells. The synergy score was computed using the Bliss Independence Model and depicted as a heatmap. Positive
Bliss Scores are indicative of synergism. **p < 0.01; ***p < 0.001.
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(Nakazawa et al., 2019; Jeong et al., 2012; Chen et al., 2024; Wittig
et al., 2002). The increased expression of CBR1 in adipocytes may
metabolize daunorubicin, thereby reducing the effectiveness of the
therapy (Sheng et al., 2017). By regulating reactive oxygen species
production, elevated expression of CBR1 is able to safeguard
leukemia cells against As2O3. Conversely, the loss of
CBR1 significantly increases the cells’ susceptibility to
As2O3(Jang et al., 2012). REEP5 has been recognized as a
binding partner of CXCR1, subsequently triggering the IL-8-
CXCR1/2 signaling pathway and facilitating the growth and
metastasis of diverse tumor cell types (Fan et al., 2022). PPM1H
is regarded as a tumor suppressor across various malignancies. Loss
of PPM1H confers trastuzumab resistance by reducing the protein
levels of the tumor suppressor p27 in breast cancer (Lee-Hoeflich
et al., 2011). Low expression level of PPM1H is associated with worse
outcomes in hepatocellular carcinoma, colorectal cancer, and
pancreatic cancer (Iyer et al., 2023; Xu et al., 2019; Zhu et al.,
2016). WDFY3 interacts with PML-RARA, promoting the
autophagy-mediated degradation of PML-RARA (Du et al.,
2021). WDFY3 also engages with GABARAP to facilitate the
degradation of apoptotic cellular components, thereby supporting
the maintenance of tissue homeostasis (Shi et al., 2022). The roles of
LAMC3 and KCTD1 are essential in the development and
differentiation of the nervous system (Zhu et al., 2024; Liao and
Muntean, 2024), while recent studies on its involvement in
carcinoma have yet to be sufficient. Overexpression of
DDIT4 induced by serum starvation inhibits the transcription
activity of mTORC1, thereby abrogating the oncogenic potential
of melanoma cells (Hwang et al., 2024). DDIT4 has also been
discovered as a downstream target of phenformin, which
promotes autophagic and apoptotic cell death to suppress the
growth of oral squamous cell carcinoma (Zhuang et al., 2024).
KBTBD8 is served as a critical regulator of cell-fate
determination (Werner et al., 2015). In summary, existing
research indicates that most of the genes identified in this model
have yet to be elucidated regarding their functions and mechanisms
in AML.While many of these genes show a significant impact on OS
or EFS in the TCGA AML cohort, further investigations are needed
to clarify the roles and mechanisms of genes such as MPZL3,
TREML2, and AHCYL1 in the context of AML. This will provide
a stronger theoretical foundation for prognostic evaluation and
assist in identifying novel therapeutic targets for AML treatment.

Genetic mutations play a crucial role in leukemogenesis and the
development of drug resistance. We characterized the tumor
mutation landscape in high-risk and low-risk groups, revealing a
significant distinction between these categories. The mutation
frequency in the high-risk group was notably higher than in the
low-risk group, particularly for mutations in genes such as
DNMT3A, NPM1, and TP53. Previous studies have shown that
clonal mutations in DNMT3A, NPM1, and TP53 are linked to
treatment resistance. Additionally, research indicates that DNMT3A
mutations contribute to anthracycline resistance by impairing
nucleosome remodeling in AML (Guryanova et al., 2016).
NPM1 mutations are prevalent in AML, and patients with
NPM1 mutations respond well to conventional chemotherapy
(Falini et al., 2021). However, around 50% of these patients
eventually experience disease progression, particularly those with
additional mutations (Ranieri et al., 2022). DNMT3A or

FLT3 mutations alongside NPM1 are associated with inferior
survival outcomes (Yao et al., 2024). TP53 mutations are
frequently linked to unfavorable outcomes and diminished
therapeutic response (Kadia et al., 2016). Vadakekolathu et al.
pointed out that TP53 mutation was correlated with enhanced
immune infiltration, high levels of PD-L1, and the upregulated
intermediates involved in PI3K-Akt signaling, NF-κB pathway,
JAK/STAT signaling, and IFN-γ pathway (Vadakekolathu et al.,
2020). These further strengthens the prognostic credibility of the
risk score assessment.

Through comprehensive GSEA and GSVA analyses of enriched
pathways and biological functions, we discovered that most of the
differences were primarily related to immune responses. Notable
pathways activated in the high-risk group included IL6/JAK/
STAT3 signaling, interferon gamma and alpha responses, TNF-α
signaling via NF-kB, and KRAS signaling. Previous research has
shown that these pathways exhibit aberrant hyperactivation across
various cancer types. The abnormal activation of these pathways
may contribute to tumorigenesis, progression, and therapy
resistance by altering the immune microenvironment (Johnson
et al., 2018; Litak et al., 2019; De Simone et al., 2015; Hu et al.,
2023). This finding aligns with our observations that patients in the
high-risk group have relatively poor clinical outcomes compared to
those in the low-risk group. However, the interplay between these
aberrantly activated processes and m7G modification has rarely
been explored to date.

Notably, our analyses revealed that high-risk patients exhibited
significantly enriched MDSCs and monocyte infiltration compared
to low-risk counterparts. Concurrently, this cohort demonstrated
upregulation of key immune checkpoint molecules, including PD-1,
PD-L1, and CTLA-4, which are closely associated with immune
suppression (Bronte et al., 2016; Zhang et al., 2021). Paradoxically,
despite elevated natural killer (NK) cell levels were critical mediators
of immune surveillance (Huntington et al., 2020), these cells
exhibited functional impairment via MDSC-mediated crosstalk
(Joshi and Sharabi, 2022; Neo et al., 2024). Human leukocyte
antigen (HLA) dysregulation further contributed to immune
evasion in high-risk patients. Liu et al. indicated that
overexpression of HLA-E in circulating tumor cells (CTC)
engaged CD94-NKG2A inhibitory receptors on NK cells,
blunting antitumor responses (Liu et al., 2023). The HLA-G
expression is upregulated in various tumor cells and is rarely
observed in healthy tissues (Loustau et al., 2020). The tolerogenic
HLA-G molecule mediates tumor immune evasion by binding to
inhibitory receptors on the surface of immune effector cells (Wang
et al., 2024). These findings indicated that the high-risk cohort was
characterized by immune suppressive factors facilitating immune
evasion. Integrative analysis identified strong correlations between
MDSC abundance and m7G regulators expression. We posited that
these m7G-associated effectors may drive AML progression through
coordinated regulation of MDSCs recruitment/activation and
immunosuppressive niche formation, ultimately governing disease
progression and therapeutic resistance. This suggested that
immunotherapeutic agents targeting these factors may be
effective for individuals with elevated risk score.

In addition, we established a nomogram integrating risk score
with clinical features to explore clinical application values further.
According to the analyses of ROC, DCA, calibration curves, and
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C-index, the nomogram that includes the risk score still has unique
advantages that are far superior to the conventional clinical factors.

Our model not only focused on risk stratification and
immunotherapy studies but also provided insights into sensitivity
to certain anticancer drugs. The most sensitive predictive drugs for
high-risk groups are dactolisib, GNE-317, camptothecin,
gemcitabine, and vinblastine. Among these pharmaceuticals,
dactolisib functions as a dual ATP-competitive inhibitor targeting
PI3K and mTOR signaling pathways, exhibiting substantial
antitumor efficacy and remarkable synergistic effects with other
agents in preclinical investigations (Deng et al., 2023; Çetin et al.,
2023; Li et al., 2021a; Liu et al., 2022). Not only that, the
administration of dactolisib was able to remodel the tumor
microenvironment (TME) by enhancing the prevalence of anti-
tumor immune cells, including T-CD4 cells and M1 macrophages,
while simultaneously reducing the population of immune
suppressive cells, including MDSCs and also M2 macrophages
(Taghiloo et al., 2023; Li et al., 2020). Our in vitro study
indicated that the monotherapy of dactolisib effectively
eradicated leukemia cells. Furthermore, combing dactolisib with
doxorubicin exhibited synergistic efficacy in AML cells.

Conclusion

In summary, our study integrated IME and m7G to develop a 12-
gene prognostic model demonstrating robust predictive capability.
Moreover, the potential targeted medication, dactolisib, was predicted
for the high-risk group and revealed antileukemic activity as
monotherapy and synergetic effect combined with doxorubicin, an
agent included in the first-line “3 + 7” strategy.
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Glossary
AML Acute myeloid leukemia

OS Overall survival

EFS Event-free survival

DFS disease-free survival

TME Tumor microenvironment

TIME Tumor immune microenvironment

IME Immune microenvironment

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

DEGs Differentially expressed genes

GSEA Gene set enrichment analysis

HSCT Hematopoietic stem cell transplantation

OD optical density

ESTIMATE The Estimation of Stromal and Immune cells in Malignant
Tumour tissues using Expression data

NMF Non-negative matrix factorization

WGCNA Weighted correlation network analysis

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

FDR False discovery rate

KM Kaplan-Meier

LASSO
regression

Least absolute shrinkage and selection operator regression

ROC Receiver operating characteristic

AUCs Area under the curve

DCA Decision curve analysis

C-index Concordance index

qPCR quantitative real-time PCR

IC50 Half maximal inhibitory concentration

NES Normalized enrichment score

HR Hazard ratio

NCCN National Comprehensive Cancer Network

FC Fold change

TOM Topological overlap matrix

PDCD1 Programmed cell death 1

CD274 cluster of differentiation 274

CTLA4 Cytotoxic T-lymphocyte associated protein 4

MDSC myeloid-derived suppressor cells

NK cells Natural killer cells

CTC Circulating tumor cells

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

MESO Mesothelioma

UVM Uveal melanoma

KIRC Kidney renal clear cell carcinoma

LGG Lower-grade glioma

THCA Thyroid carcinoma

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Diffuse large B-cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

KIRP Kidney renal papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LAMC3 Laminin subunit gamma 3

KCTD1 Potassium channel tetramerization domain containing 1

PPM1H Protein phosphatase, Mg2+/Mn2+ dependent 1H

WDFY3 WD repeat and FYVE domain containing 3

REEP5 Receptor accessory protein 5

DDIT4 DNA damage inducible transcript 4

PTP4A3 Protein tyrosine phosphatase 4A3

AHCYL1 Adenosylhomocysteinase like 1

TREML2 Triggering receptor expressed on myeloid cells like 2

KBTBD8 Kelch repeat and BTB domain containing 8

CBR1 carbonyl reductase 1

MPZL3 Myelin protein zero like 3
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