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Background and objectives: Atrial fibrillation (AF) and heart failure (HF) are
common cardiovascular diseases associated with significant morbidity and
mortality in patients with both conditions. The objective of this research is to
enhance our understanding of the shared pathogenesis underlying the two
diseases and to identify novel therapeutic targets.

Materials andmethods:Differentially expressed genes (DEGs) in heart failure and
atrial fibrillation were obtained through the analysis and comparison of
transcriptional expression profiles from the Gene Expression Omnibus (GEO)
datasets. By integrating these datasets with the known ferroptosis-related genes
(FRGs) from GeneCards and PubMed, we identified ferroptosis-related
differentially expressed genes (FRDEGs). Functional enrichment and the
construction of the PPI network for key genes were conducted. The mRNA-
miRNA and mRNA-TF Regulatory Network were constructed via the ChIPBase
and TarBase databases. Receiver operating characteristic (ROC) was utilized to
screen out the FRDEGs and validate their diagnostic values. Gene expression
levels were detected by qPCR in patient serum samples.

Results: By analyzing the transcriptional expression profiles of the GEO datasets,
TFRC,CP, SAT1, STEAP3, AKR1C1 and LPCAT3were identified as FRDEGs in AF and
HF, which were revealed to be involved in iron ion transport, homeostasis, and
oxidoreductase activity. Further insights from Gene Set Enrichment Analysis
(GSEA) indicated that FRDEGs are primarily enriched in the IL-12 signaling
pathway in HF and significantly enriched in the collagen assembly pathway in
AF. The diagnostic efficacy of six genes in AF validation sets was good (AUC:TFRC
0.940, CP 0.920, SAT1 1.000, STEAP3 0.960, AKR1C1 0.900, LPCAT3 0.960, as
well as in the HF validation set (AUC: TFRC 0.842, CP 0.879, SAT1 0.865, STEAP3
0.787, AKR1C1 0.812, LPCAT3 0.696).Utilizing the GOSemSim package, we
conducted a functional similarity analysis on the five hub genes and
discovered their significant roles in disease, ranked as follows:
STEAP3>TFRC>CP>SAT1>LPCAT3. qRT-PCR verified the expression differences
of CP, STEAP3, and LPCAT3.
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Conclusion: Our findings provide a theoretical basis for the clinical diagnosis and
treatment of AF and HF. These results provide valuable insights into potential
biomarkers for diagnosis and targets for therapeutic intervention in AF and HF.
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1 Introduction

Atrial fibrillation (AF) and heart failure (HF) are prevalent
cardiovascular diseases that frequently co-occur, significantly
impacting patient morbidity and mortality worldwide. Krijthe
et al. (2013) estimate that there will be 17.9 million cases of AF
in Europe by 2060, based on predictions from 2010. Similarly,
Ambrosy et al. (2014) believe that HF is a global pandemic
affecting an estimated 26 million people worldwide and resulting
in over 1 million hospitalizations annually in both the United States
and Europe. Research indicates that over half of HF patients develop
AF either at onset or during follow-up, leading to higher
hospitalization rates, reduced quality of life, and increased
mortality (Reddy et al., 2022).

The complex causes of AF and HF remain largely unknown. In
patients with both AF andHF, the risks are significantly elevated. HF
could predispose individuals to AF due to increased atrial pressure
and volume overload, while AF could exacerbate HF by reducing
cardiac output and promoting poor ventricular remodeling
(Fauchier et al., 2023).

Current treatment strategies for AF and HF primarily consist of
pharmacological interventions, including anticoagulants, β-
blockers, and antiarrhythmic drugs, alongside non-
pharmacological methods such as catheter ablation and device
implantation (Kotecha et al., 2014; Chang et al., 2017; Lopes
et al., 2018; Marrouche et al., 2018). However, the long-term
efficacy and safety of these treatments in HF patients remain
uncertain and might lead to various side effects and
complications (Roy et al., 2008). These limitations highlight the
need for novel therapeutic targets and strategies to improve the
management of AF and HF.

Ferroptosis is an iron-dependent process that is
morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, and autophagy. Its mechanism involves
abnormal iron metabolism, lipid peroxidation, and antioxidant
system imbalance, ultimately leading to cell death (Dixon et al.,
2012). Ferroptosis plays a crucial role in various heart diseases,
including atherosclerosis, drug-induced HF, myocardial ischemia-
reperfusion injury (IRI), arrhythmia, and diabetic cardiomyopathy
(Fang et al., 2023). Several recent studies have confirmed that
ferroptosis is a potential therapeutic target for various
cardiovascular diseases (CVDs), including cardiomyopathy,
myocardial infarction (MI), myocardial IRI, and HF (Bai et al.,
2018; Fang et al., 2019; Kitakata et al., 2021).

Ferroptosis Related Genes (FRGs) are involved in a variety of
pathological processes, such as oxidative stress, inflammation, and
cell death, which are also key features of AF (Heijman et al., 2021)
and HF (Zhang et al., 2023). However, the potential pathogenesis
and biomarkers of AF and HF have not been fully elucidated, and
there are still many related genes to be identified.

Understanding the differential expression of genes associated
with ferroptosis in AF and HF could provide new insights into the
molecular mechanisms of these conditions and identify potential
therapeutic targets.

This study aims to analyze the differential expression of FRGs in
AF and HF. By revealing their common biological functions and
mechanisms, we can gain insights into the molecular mechanisms of
FRGs in AF and HF. In addition, this study seeks to identify
potential targets for therapeutic intervention.

2 Materials and methods

2.1 Data acquisition and preprocessing

We used the GEOquery (Davis and Meltzer, 2007) (Version
2.70.0) package from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) to download gene expression data for the AF-related
dataset GSE2240 (Barth et al., 2005) and the HF-related dataset
GSE21610 (Schwientek et al., 2010). Both datasets were from Homo
sapiens. GSE2240 contained 35 samples: 10 from AF patients
(designated as group: AF), 5 from healthy controls (designated as
group: Control), and 20 from patients in sinus rhythm. For the
current analysis, only the AF patient samples and control samples
were included (n = 15). The data platform used was GPL96. The data
platform used for the GSE21610 dataset was GPL570. It contains a
total of 68 samples: 30 samples from HF patients (designated as
group: HF), eight samples from control subjects (designated as
group: Control), and 30 samples from HF patients supported by
mechanical circulatory assist devices. For the current analysis, only
the HF patient samples and control samples were included (total n =
38). The specific data set information is shown in
Supplementary Table 1.

The GSE2240 (AF_Dataset) and GSE21610 (HF_Dataset)
datasets were standardized by R package limma (Ritchie et al.,
2015) (Version 3.58.1), and the annotation probes were
standardized and normalized.

The GeneCards (Stelzer et al., 2016) database (https://www.
genecards.org/) is an integrative database of human gene
information. We used the term “Ferroptosis” as a search keyword
and kept only FRGs with “Protein Coding” and “Relevance Score >
2,” and “Ferroptosis” was used as a keyword on the Pubmed website
(https://pubmed.ncbi.nlm.nih.gov/) in the published literature on
60 FRG sets (Xiao et al., 2022), with the 119 FRGs received.

2.2 Differentially expressed gene analysis

To identify differentially expressed genes (DEGs) between the
AF and HF groups, we analyzed the expression profile data from the
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AF_Dataset and HF_Dataset using the limma package in R. DEGs
were defined as genes with |logFC| > 0.5 and p-value < 0.05. Genes
with logFC > 0.5 and p-value < 0.05 were classified as upregulated
DEGs. Genes with logFC < −0.5 and p-value < 0.05 were classified as
downregulated DEGs.

To identify the ferroptosis-related differentially expressed genes
(FRDEGs), we intersected the DEGs with the curated list of
ferroptosis-related genes (FRGs). A Venn diagram was then
created to visualize the overlap between these gene sets. The
results of the differential analysis were used to create a volcano
plot using the R package ggplot2 (Version 3.4.4). A heatmap was
generated using the R package pheatmap (Version 1.0.12).

2.3 Gene Ontology and pathway
enrichment analysis

We performed Gene Ontology (GO) and pathway (KEGG)
enrichment analysis on FRDEGs using the clusterProfiler package
(Version 4.10.0) in R (Yu et al., 2012). A significance threshold p-
value of 0.05 and FDR value (adjusted p-value) < 0.25 was applied.

2.4 Gene Set Enrichment Analysis (GSEA)

In this study, we first sorted the genes from the AF_Dataset and
HF_Dataset by logFC. Subsequently, we used the clusterProfiler
package to perform Gene Set Enrichment Analysis (GSEA) on all
genes related to the differential analysis. The parameters used in the
GSEA enrichment analysis were as follows: The seed was 2022, the
number of calculations was 5000, and the minimum and maximum
number of genes per set was 10 and 500, respectively. Gene sets were
obtained from the MSigDB (Liberzon et al., 2015) database (“c2. All.
V2022.1. Hs. Symbols. GMT [all Canonical Pathways] (3050)”),
focusing on Homo sapiens. The screening criteria for significant
enrichment were p-value < 0.05 and FDR value (adjusted
p-value) < 0.25.

2.5 Protein–protein interaction network and
functional similarity analysis

We employed the STRING (Szklarczyk et al., 2019) database to
identify interacting proteins for our hub genes. We set the biological
species asHomo sapiens and used a minimum correlation coefficient
greater than 0.400 as the standard for interaction. The resulting
protein–protein interaction (PPI) network was visualized using
Cytoscape software (Shannon et al., 2003).

The GO semantic similarity of hub genes was calculated using
the GOSemSim (Yu et al., 2010) package (Version 2.28.0). The
geometric mean of the similarity scores at the biological process
(BP), cellular component (CC), and molecular function (MF) levels
were used to obtain a final score for each hub gene. Finally, the
ggplot package (Version 3.4.4) was used to visualize the functional
similarity analysis results. In addition, we utilized the GeneMANIA
(Franz et al., 2018) online website to identify genes with functional
similarity to our hub genes. We also downloaded the corresponding
interaction network from GeneMANIA.

2.6 mRNA–TF and mRNA–miRNA
interaction network construction

We searched the CHIPBase (Zhou et al., 2017) database (version
3.0) to identify transcription factors (TFS) that bind to our hub
genes. Interaction pairs were selected based on the criteria of having
a sum of the “number of samples found (upstream)” and “number of
samples found (downstream)” greater than 10. The mRNA–TF
interaction network was then visualized using Cytoscape software.

To analyze the relationships between hub genes and miRNAs,
we searched three databases: TarBase (Vlachos et al., 2015) (http://
www.microrna.gr/tarbase), miRDB database (Chen and Wang,
2020) (https://mirdb.org/), and StarBase V3.0 database (Li et al.,
2014) (https://starbase.sysu.edu.cn/). The identified
mRNA–miRNA regulatory network was then visualized as a
network using Cytoscape software.

2.7 Differential expression analysis and ROC
curve analysis of FRDEGs

To explore the expression patterns of FRDEGs within the AF_
Dataset and HF_Dataset, we generated group comparison maps
based on their expression levels. In addition, we employed the pROC
package in R (Version 1.18.5) to generate ROC curves for the
FRDEGs. The Area Under the Curve (AUC) value was calculated
for each ROC curve to evaluate the diagnostic potential of FRDEG
expression levels in distinguishing between disease states.

2.8 Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from serum samples using TRIzol®

(Invitrogen, USA). RNA concentration was measured using a
spectrophotometer (BioTek, USA). cDNA synthesis was performed
using the Servicebio® RT First-Strand cDNA Synthesis Kit (product
number G3330) according to the manufacturer’s instructions. Briefly,
reverse transcription was carried out at 42°C for 60 min, followed by
enzyme inactivation at 70°C for 5 min. qRT-PCR was performed on
the Light Cycler® 4800 system (Roche Diagnostics) using a specific set
of primers designed to amplify the genes of interest. The thermal
cycling conditions used were as follows: 95°C for 15 s, followed by
60°C for 60 s (for a total of 30 cycles). β-actin was used as an
endogenous control for normalization. The relative quantification
was calculated using the ΔΔCt method. Specific primer sequences are
listed in Supplementary Table 2.

2.9 Technology roadmap

The workflow of this study was presented in Figure 1. To remove
batch effects in the dataset, we first used the limma R package to
perform standardized correction on the datasets GSE2240 (AF_
Dataset) and GSE21610 (HF_Dataset) and compared the datasets
before and after correction through the distribution boxplot (Figures
2A–D). The results of the distribution boxplot showed that the batch
effects of the dataset were removed.
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2.10 Statistical analysis

The data processing and analysis for this paper were conducted
using R software (Version 4.2.2). To compare continuous variables
between two groups, the statistical significance of normally
distributed variables was estimated using the independent
samples t-test. The Mann–Whitney U test (Wilcoxon rank sum
test) was used to analyze the differences between variables that were
not normally distributed. For comparisons involving more than
three groups, the Kruskal–Wallis test was employed. The chi-square
test or Fisher’s exact test was used to compare and analyze statistical
significance between the two groups of categorical variables.
Spearman correlation analysis was used to calculate the

correlation coefficient between different molecules. During the
processing of qRT-PCR data, one-way ANOVA was performed
to compare the groups. All statistical p-values are two-sided
unless otherwise specified. A p-value of less than 0.05 was
considered to indicate statistical significance.

3 Results

3.1 Analysis of differentially expressed genes

To identify DEGs between AF and HF groups, we analyzed the
AF_Dataset and HF_Dataset using the limma R package. The

FIGURE 1
Flow chart of methodologies applied in the study. AF, Atrial fibrillation; HF, Heart failure; FRGs, Ferroptosis Related Genes; FRDEGs, Ferroptosis
Related Differentially Expressed Genes; DEGs, Differentially expressed genes; GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene-set enrichment Analysis; ROC, Receiver Operating Characteristic Curve; PPI,
Protein-protein interaction network; TF, Transcription factors.
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analysis revealed that the AF_Dataset contained 1003 genes meeting
the criteria of |logFC| > 0.5 and p-value < 0.05, including
555 upregulated genes (logFC > 0.5) and 448 downregulated
genes (logFC < −0.5). A volcano plot was generated based on the
differential analysis results of this dataset (Figure 3A). The HF_
Dataset included a total of 2108 genes that met the thresholds of |
logFC| > 0.5 and p-value < 0.05. Among these, 1139 genes were
upregulated (logFC > 0.5) and 969 were downregulated
(logFC < −0.5). The corresponding volcano plot is shown in
Figure 3B. The full results of the DGE analysis are presented in
Supplementary Tables 3 and 4.

To obtain the FRDEGs, we analyzed the AF_Dataset and HF_
Dataset. Next, we intersected all DEGs with FRGs that met the
criteria (|logFC| > 0.5 and p-value < 0.05). Then, a Venn diagram
was created to illustrate the results (Figure 3C). In total, we
identified six FRDEGs: TFRC, CP, SAT1, STEAP3, AKR1C1, and
LPCAT3. According to the intersection results, the expression
differences of FRDEGs between different sample groups in the
dataset AF_Dataset (Figure 3D) and HF_Dataset (Figure 3E) were
analyzed, and the pheatmap package in R was used to visualize
the results.

3.2 Functional enrichment analysis and
pathway enrichment analysis

To further explore the BP, CC, MF, and biological pathways
(KEGG) associated with the six FRDEGs (TFRC, CP, SAT1, STEAP3,
AKR1C1, and LPCAT3), we conducted enrichment analyses.
Detailed results are presented in Supplementary Table 5. The
results indicated that these six FRDEGs were primarily enriched
in the following categories: biological processes such as iron ion
transport, iron ion homeostasis, and transition metal ion transport;
cellular components, including blood microparticles, multivesicular
bodies, and clathrin-coated pits; and molecular functions, such as

FRAGE receptor binding, Toll-like receptor binding, and calcium-
dependent protein binding. In addition, KEGG enrichment analysis
revealed significant enrichment of these FRDEGs in oxidoreductase
activity, metal ion interaction, and chaperone binding. The results of
the GO and KEGG enrichment analysis are visualized in bar plots
(Figure 4A) and bubble plots (Figure 4B). We also created networks
for BP (Figure 4C), MF (Figure 4D), CC (Figure 4E), and KEGG
pathways (Figure 4F) based on the enrichment analysis results. In
these plots, lines represent corresponding molecules and their
annotations, while larger nodes indicate a higher number of
associated molecules.

3.3 Gene Set Enrichment Analysis

To determine the effect of all gene expression levels in the AF_
Dataset on disease, GSEAwas used to study the relationship between
the expression of all genes in the AF Dataset and the biological
processes involved, the cellular components affected, and the
molecular functions played (Figure 5A). Detailed results are
presented in Supplementary Table 6. The results showed that all
genes in the AFDataset were significantly enriched in collagen fibrils
(Figure 5B), glycosaminoglycans metabolism (Figure 5C),
inflammatory response pathway (Figure 5D), met pathway
(Figure 5E), and other biologically related functions and
signaling pathways.

In addition, we used GSEA to study the relationship between the
expression of all genes in the HF_Dataset and the biological
processes, cellular components, and their molecular functions
(Figure 6A). Detailed results are presented in Supplementary
Table 7. The results showed that all genes in the HF_Dataset
were significantly enriched in the IL12 pathway (Figure 6B),
NO2IL12 pathway (Figure 6C), Wnt/β-catenin pathway
(Figure 6D), BIOCARTA_IL12 pathway (Figure 6E), and other
biologically related functions and signaling pathways.

FIGURE 2
Dataset correction. (A) Boxplot of the GSE2240 dataset before correction. (B) Boxplot plot of the corrected GSE2240 dataset. (C) Boxplot plot of the
GSE21610 dataset before correction. (D) Boxplot plot of the corrected GSE21610 dataset. Yellow is the Control group, and brown is the AF and HF groups.
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3.4 PPI interaction network and functional
similarity analysis

We conducted a PPI analysis (PPI network, with a low required
interaction score set at medium confidence (0.400)) on six FRDEGs
(TFRC, CP, SAT1, STEAP3, AKR1C1, LPCAT3) utilizing the
STRING database. After filtering to retain only those genes that
demonstrated connections with other nodes and designated them as
hub genes for subsequent analysis, we constructed a PPI network
comprising five hub genes (TFRC, CP, SAT1, STEAP3, and LPCAT3)
and visualized this network using Cytoscape software (Figure 7A).

Afterward, we performed functional similarity analysis of the five
hub genes utilizing the GOSemSim package, and the results are
presented by boxplot (Figure 7B). The results showed that the
genes played an important role in the disease, in the order of
STEAP3 > TFRC > CP > SAT1 > LPCAT3. Finally, the interaction
network of five hub genes and their functionally similar genes was
constructed by GeneMANIA website prediction (Figure 7C). The
lines with different colors represent the co-expression, shared protein
domains, co-localization, predicted, pathway, and other information.

3.5 Construction of mRNA–TF and
mRNA–miRNA interaction network

First, we retrieved the transcription factors (TFs) that bind to the
hub genes from the ChIPBase database to construct an mRNA–TF
regulatory network. This network was then visualized using
Cytoscape software (Figure 8A). Among them, there were 5 hub
genes and 30 transcription factors (TFS).

Subsequently, the miRNAs related to the hub genes were
obtained through the TarBase database (StarBase database/
miRDB database), The mRNA–miRNA regulatory network was
constructed and visualized by Cytoscape software (Figure 8B).
There were 5 hub genes and 44 miRNAs.

3.6 Differential expression analysis and ROC
analysis of FRDEGs

We utilized the Wilcoxon rank sum test to analyze the six
FRDEGs (TFRC, CP, SAT1, STEAP3, AKR1C1, and LPCAT3) in the

FIGURE 3
Analysis of differentially expressed genes. (A) Volcano plot of the results of differential analysis between AF and Control groups in the AF_Dataset. (B)
Volcano plot of difference analysis results between HF and Control groups in HF_Dataset. (C) The Venn diagram showing the intersection between the
FRGs and the DEGs in AF_Dataset and HF_Dataset. (D) Differential expression heatmap of FRDEGs in AF_Dataset. (E) Heat map of differential expression
of FRDEGs in HF_Dataset. Yellow is the Control group, and brown is the AF and HF groups. Green represents low expression and orange represents
high expression in the heat map.
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FIGURE 4
Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis. (A,B) Gene Ontology (GO) and pathway (KEGG) enrichment analysis
results of differentially expressed genes related to ferroptosis bar graph (A) and bubble plot (B) show the biological process (BP), cell component (CC) and
biological pathway (KEGG). GO terms and KEGG terms are shown on the ordinate. (C–F) Gene Ontology (GO) and pathway (KEGG) enrichment analysis
results of FRDEGs: BP (C), CC (D), MF (E), and KEGG (F). Pink dots represent specific pathways, and blue dots represent specific genes. GO, Gene
Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes. In the bubble
diagram, the size of the bubble represents the number of genes, and the color of the bubble represents the size of the p-value. The redder the color, the
smaller the p-value, and the bluer the color, the larger the p-value. The screening criteria for Gene Ontology (GO) and pathway (KEGG) enrichment
analysis were p-value < 0.05 and FDR value (p-value) < 0.25.
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AF group and control group of the AF_Dataset (Figure 9A). The
results showed that in the AF_Dataset, the expression of six FRDEGs
was significantly different between the AF group and the Control
group (P < 0.05). Subsequently, the ROC curve was drawn based on
the expression of these six FRDEGs in the AF_Dataset (Figures
9C–E). As shown in the figure, the expression of TFRC (AUC =
0.940, Figure 9C), CP (AUC = 0.920, Figure 9C), SAT1 (AUC =
1.000, Figure 9D), STEAP3 (AUC = 0.960, Figure 9D), AKR1C1
(AUC = 0.900, Figure 9E), and LPCAT3 (AUC = 0.960, Figure 9E) all
had high accuracy in the diagnosis of the disease.

In addition, we used the same method to analyze the six
FRDEGs (TFRC, CP, SAT1, STEAP3, AKR1C1, LPCAT3) in the
HF group and Control group of the HF_Dataset (Figure 9B). The
five FRDEGs had statistically significant differences in expression
between the HF group and the Control group (p < 0.05).
Subsequently, we drew the ROC curve based on the expression of
these six FRDEGs in the HF_Dataset (Figures 9F–H). As shown in
the figure, the expression of TFRC (AUC = 0.842, Figure 9F), CP
(AUC = 0.879, Figure 9F), SAT1 (AUC = 0.865, Figure 9G), STEAP3
(AUC = 0.787, Figure 9G), and AKR1C1 (AUC = 0.812, Figure 9H)
had certain accuracy in the diagnosis of the disease. LPCAT3

expression demonstrated low diagnostic accuracy for heart failure
(AUC = 0.696; Figure 9H).

3.7 Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

To evaluate the relationship between five hub genes (TFRC, CP,
SAT1, STEAP3, LPCAT3) and HF and AF, we collected serum
samples from 27 patients (9 healthy, 9 with HF, and 9 with
AF) at Huangshan Shoukang Hospital in Anhui Province,
China. The case information of all the samples is listed in
Supplementary Table 8.

We subsequently performed a qRT-PCR experiment to analyze
the expression levels of the five hub genes in the serum samples.
Figure 10 illustrates that compared with the CON group, LPCAT3
(Figure 10B), STEAP3 (Figure 10C) and TFRC (Figure 10D) were
significantly downregulated in the plasma samples of HF patients (p-
value < 0.05), while CP (Figure 10A) showed a significant increase
(p-value < 0.05). These findings align with the results of the
bioinformatics analysis. The expression of SAT1 (Figure 10E) did

FIGURE 5
GSEA of the AF dataset. (A) Mountain map of four main biological functions by GSEA enrichment analysis of the AF Dataset. B–E. Genes in the AF
Dataset were significantly enriched in collagen fibrils (B), glycosaminoglycans metabolism (C), inflammatory response pathway (D), and met pathway (E).
The screening criteria for GSEA were p-value < 0.05 and FDR value (p-value) < 0.25.
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not differ significantly between HF and CON. In AF patients,
LPCAT3 (Figure 10B) and STEAP3 (Figure 10C) were
significantly downregulated in plasma samples compared with
the CON group (p-value < 0.05). Conversely, CP (Figure 10A)
was significantly increased (p-value < 0.05), consistent with the
bioinformatics analysis. No significant differences were observed in
the expression of TFRC (Figure 10D) and SAT1 (Figure 10E)
between AF and CON.

4 Discussion

HF and AF are complex biological processes with multiple
contributing factors and stages. Recent advancements in
biomarker discovery have significantly improved early
diagnosis, research on pathological mechanisms, and drug
target identification for these conditions (Koniari et al., 2021).
Ferroptosis, an iron-dependent regulated cell death pathway, is
now recognized as a critical driver in the pathogenesis and
progression of multiple CVDs. The study demonstrated that

development of persistent AF may be prevented by
intervention with exosomal miRNAs to reduce oxidative stress
injury and ferroptosis (Liu et al., 2022). Iron deficiency or
overload perturbs cardiomyocyte iron homeostasis, thereby
contributing to HF (Fang et al., 2023). MiR-375-3p Promotes
Cardiac Fibrosis by Regulating the Ferroptosis Mediated by GPX4
(Zhuang et al., 2022). However, existing markers provide a limited
understanding of the underlying biological and genetic
mechanisms of AF and HF, highlighting the need for further
investigation.

In this study, we employed various statistical approaches including
differential expression analysis, functional enrichment analysis, PPI
network construction, interaction network analysis, and qRT-PCR.
This comprehensive approach offers deeper insights into the role of
FRG compared with previous studies (Ibrahim and Januzzi, 2018;
Oikonomou et al., 2019). Notably, recent studies have indicated the
critical role of ferroptosis in cardiomyopathy (He et al., 2021; Ta et al.,
2022;Wang et al., 2022). Our analysis of gene expression data fromAF
and HF datasets revealed significant differences in the expression of
FRGs. Fang et al. (2024) reviewed the specific role of ferroptosis in AF

FIGURE 6
GSEA enrichment analysis of HF_Dataset. (A) Mountain map of four main biological functions in GSEA enrichment analysis of HF_Dataset. B–E.
Genes in HF_Dataset were significantly enriched in PID_IL12_2 pathway (B), BIOCARTA_NO2IL12 pathway (C), Wnt/β-catenin pathway (D), and
IL12 pathway (E) GSEA, Gene Set Enrichment Analysis. The screening criteria for GSEA were p-value < 0.05 and FDR value (p-value) < 0.25.
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and HF, emphasizing its involvement in iron regulation, metabolic
mechanisms, and lipid peroxidation.

In our analysis, we identified five FRDEGs: TFRC, CP, SAT1,
STEAP3, and LPCAT3. Their dysregulation suggests that iron
metabolism disturbances may contribute to the pathogenesis of
these conditions.

TFRC (Transferrin receptor C) is a transmembrane glycoprotein
expressed on the cell membrane that mediates cellular iron uptake.
While previous studies have linked TFRC in cardiomyocytes to HF
progression through macrophage infiltration (Pan et al., 2023), our
study showed significantly lower TFRC expression in both AF and
HF datasets. However, qRT-PCR results revealed a significant
reduction only in the HF group. As a potential therapeutic target,
the role of TFRC in the pathogenesis of HF deserves
further attention.

CP (Ceruloplasmin) is an acute-phase reactant that is
synthesized and secreted by the liver as well as monocytes/

macrophages. It participates in both iron and copper metabolism
(Fox et al., 2000; Pan et al., 2023). Lazar-Poloczek et al. (2021)
identified a correlation between high CP and increased mortality in
HF patients (Hammadah et al., 2014). In patients with AF, the CP
gene promoter was strongly associated with increased levels of
plasma ceruloplasmin and increased AF risk (Adamsson Eryd
et al., 2014). This shows that higher CP concentrations were
associated with increased AF risk (Arenas de Larriva et al., 2017).
Our study revealed thatCP levels were significantly higher in HF and
AF patients, suggesting its potential involvement in the progression
of these diseases. Thus, CP could be a new therapeutic target for
patients with HF and AF.

LPCAT3 (Lysophosphatidylcholine acyltransferase 3) plays a
role in promoting ferroptosis. The lack of LPCAT3 leads to a
marked reduction in membrane arachidonate levels during
ferroptosis (Lin et al., 2024). Unlike previous studies (Gawargi
and Mishra, 2024), in our study, we found that LPCAT3 levels

FIGURE 7
PPI interaction network and functional similarity analysis. (A) PPI network of hub genes calculated by the STRING database. (B) Box plots of functional
similarity of hub genes. (C)GeneMANIA website predicts the interaction network of hub genes with similar functions. The circles show the hub genes and
the genes with similar functions, and the colors corresponding to the lines represent the interconnected functions.
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were significantly reduced in both HF and AF. However, its accuracy
in diagnosing HF (AUC = 0.696) is relatively low, potentially
diminishing its predictive utility.

STEAP3 (six-transmembrane epithelial antigen of the prostate
3) is a member of the STEAP family and is essential for iron and
copper uptake. STEAP3mRNA is highly expressed in the liver, bone

FIGURE 8
mRNA–TF and mRNA–miRNA interaction network. (A) mRNA–TF regulatory network of hub genes. (B) mRNA–miRNA regulatory network of hub
genes. Orange represents mRNA, pink represents TF, and green represents miRNA.
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marrow, placenta, skeletal muscle, and heart (Ohgami et al., 2005).
Our study revealed a significant reduction of STEAP3 in both HF
and AF, corroborating the results of earlier studies linking it to the
negative regulation of pathological cardiac hypertrophy (Li et al.,

2020). This suggests STEAP3 may become a new therapeutic target
for patients with coexisting HF and AF.

SAT1 (spermidine/spermine N1-acetyltransferase 1) is an
important regulator in polyamine metabolism. SAT1 depletion

FIGURE 9
Differential expression analysis and ROC analysis of FRDEGs. (A) Group comparison plot of FRDEGs in AF and Control groups in the AF_Dataset
dataset. (C–E) ROC curves of FRDEGs: TFRC and CP (C), SAT1 and STEAP3 (D), AKR1C1 and LPCAT3 (E) between different groups of AF_Dataset (AF/
Control). (B)Group comparison plot of FRDEGs in HF and Control groups in HF_Dataset. F–H. ROC curves of FRDEGs: TFRC andCP (F), SAT1 and STEAP3
(G), and AKR1C1 and LPCAT3 (H) between different groups of HF_Dataset (HF/Control). The symbol * is equivalent to p-value < 0.05, which is
statistically significant. The symbol ** is equivalent to p-value < 0.01, which is highly statistically significant; The symbol *** is equivalent to p < 0.001 and
highly statistically significant. The closer the AUC in the ROC curve to 1, the better the diagnostic effect. When AUCwas between 0.5 and 0.7, the accuracy
was low. When AUC was 0.7–0.9, it had a certain accuracy. AUC > 0.9 had high accuracy. Group comparison plots are yellow for the Control group and
brown for the AF and HF groups.
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also inhibits p53-induced ferroptosis (Ou et al., 2016). Although our
research indicated high diagnostic accuracy of SAT1 in both
conditions, qRT-PCR results did not show a significant difference
in its expression levels. Further studies are required to elucidate the
roles of SAT1 in AF and HF development.

Functional enrichment analysis indicated that these FRDEGs are
involved in key biological processes, such as iron ion transport and
homeostasis, as well as in molecular functions, such as receptor and
protein binding. GSEA enrichment analysis further supported their
involvement in collagen assembly, glycosaminoglycan metabolism,
and inflammatory responses, processes known to play roles in
structural and functional remodeling of the heart in AF and HF
(Liu et al., 2023). Notably, STEAP3 emerged as a critical node within
the PPI network, indicating its central role in protein interactions
relevant to AF and HF. The ROC curve demonstrated its diagnostic
value for both conditions, further validated by the subsequent PCR
assay. In addition, we identified several key TFs and miRNAs that

interact with hub genes. For instance, the mRNA–TF network
revealed interactions involving TFs such as Hobx13, which is
known to regulate cardiomyocyte maturation and proliferation
(Liao et al., 2010). Similarly, the mRNA–miRNA network
identified miRNAs like hsa-miR-129-5p, which exhibits high
sensitivity and specificity in detecting patients with heart failure
with reduced ejection fraction (HFrEF) (Chen et al., 2022). These
networks offer valuable insights into how transcriptional and post-
transcriptional mechanisms may drive the pathophysiology of
AF and HF.

In summary, our findings revealed five significant genes: CP,
STEAP3, SAT1, TFRC, and LPCAT3. Among them, CP and STEAP3
might be used as highly correlated biomarkers of AF and HF,
providing new insights into their common pathogenesis and
offering therapeutic targets for patients with coexisting AF and
HF. However, our study has limitations, First, the number of cases
we studied was relatively small. The result based on the relatively

FIGURE 10
Relative mRNA expression of FRDEGs. Serum samples from patients in HF, AF, and control (CON) groups were analyzed to verify the expression of
five hub genes (TFRC, CP, SAT1, STEAP3, LPCAT3) using quantitative real-time reverse transcription PCR (qRT-PCR). Data are presented as mean ±
standard deviation (SD) with a sample size of n = 9. Statistical significance is indicated by the symbol *, representing p-value < 0.05; ** denotes a highly
significant result, corresponding to p-value < 0.01; and ns indicates no statistical significance (p-value ≥ 0.05).
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small number of cases needs to be validated in a larger clinical
sample. Secondly, we only studied the mRNA expression levels of
the hub genes in serum. Further validation in cardiac tissues and
in vitro models is required to investigate alterations of these hub
genes and their underlying mechanisms during the progression of
atrial fibrillation and heart failure. Nevertheless, our findings may
provide novel marker genes for the prognosis and underlying
mechanisms of atrial fibrillation and heart failure (AF/HF).
Furthermore, this work may lay the theoretical foundation for
further investigations.

5 Conclusion

We identified two ferroptosis genes that are highly correlated
with AF and HF: CP and STEAP3. Our findings provide a theoretical
basis for the clinical diagnosis and treatment of AF and HF. These
results provide valuable insights into potential biomarkers for
diagnosis and targets for therapeutic intervention in AF and HF.
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