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Background: Absorption, distribution, metabolism, and excretion of drugs-
related genes (ADMERGs), pivotal in cancer occurrence, development, and
chemotherapy resistance, lack investigation in gastric cancer (GC). Thus, this
study aims to build a prognostic model for gastric cancer utilizing ADMERGs.
Methods: The GC-related datasets, including TCGA-GC, GSE62254,
GSE163558 and GSE13911, as well as 298 ADMERGs, were retrieved in this
study. Prognostic risk models associated with ADME were developed utilizing
univariate Cox analysis, followed by additional refinement using the least absolute
shrinkage and selection operator (LASSO). The entire pool of gastric cancer (GC)
patient samples was partitioned into high and low-risk categories, delineated by
the median value of their respective risk scores. Within these two distinct groups,
we conducted enrichment analysis, immune infiltration, and prognostic
evaluation of ADME-related prognostic genes to uncover their molecular
mechanisms in GC. The construction of ceRNA regulatory networks was
undertaken to analyse the prognostic gene regulatory mechanisms. We
analyzed single-cell data in GC to investigate the mechanisms driving its onset
and progression at the cellular level. Additionally, we validated the expression
trends of prognostic genes in clinical samples using RT-qPCR.
Results: A prognostic model for GC was established and validated, comprising
five genes (UGT1A1, ADH4, ADH1B, CYP19A1, and GPX3). The levels of infiltration
of 21 immune cells exhibited significant disparities between the two risk groups,
such as central memory CD4 T cells, activated B cells, andmast cells. There was a
notable positive correlation between the risk scores and mast cells and
plasmacytoid dendritic cells. In the high-risk group, the TIDE scores were
heightened. The single-cell dataset showed significant under-expression of
ADH1B, ADH4, CYP19A1, and GPX3 in tumor samples. Finally, RT-qPCR
showed that all the prognostic genes except for ADH4 were under-expressed
in tumor tissues.
Conclusion: We have developed and validated an innovative prognostic risk
model for GC, revealing that elevated ADMERGs risk scores are indicative of
unfavorable prognosis and diminished immunotherapy response. These findings
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furnish molecular evidence regarding the participation of ADMERGs in modulating
the immune microenvironment and therapeutic responsiveness in GC.
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1 Introduction

Gastric cancer (GC) is a significant worldwide health challenge,
being the fifth most prevalent form of cancer and the third leading
cause of cancer-related fatalities. The disease presents an urgent
threat to both public health and global economies due to its high
occurrence and death rates (De Martel et al., 2020; Rawla and
Barsouk, 2019). The GC is commonly correlated with
environmental variables such as infection by Helicobacter pylori,
dietary choices, and lifestyle, but the diffuse type tends to have a
more aggressive clinical progression and is typically associated with
genetic factors (Smyth et al., 2020). The clinical manifestation of GC
exhibits considerable heterogeneity, with symptoms that span from
vague dyspepsia to more severe indications, hence adding
complexity to the management and prognosis (Yang et al., 2021).
Advancements in the understanding of the development of GC have
resulted in better methods for diagnosis and treatment. However,
there are still considerable obstacles to overcome.

ADME, which stands for absorption, distribution, metabolism,
and excretion, encompasses the fundamental processes in
pharmacokinetics (Furuta et al., 2005). It outlines the path a
medication takes from its introduction into the body to its
removal. The latest progress in the research of ADME related
genes (ADMERGs) has emphasized their vital functions in the
regulation of drug-metabolizing enzymes, transport proteins, and
nuclear receptors, hence exerting a major impact on these
pharmacokinetic processes (Aitken et al., 2008; Fletcher et al.,
2010). ADMERGs have been found to have important roles in
the genesis and progression of GC. Genetic variations in specific
metabolic enzyme genes and transport protein genes can have an
influence on the way chemotherapeutic medications are metabolized
and distributed in the body. This, in turn, can have an impact on the
effectiveness of treatment and the development of drug resistance.
Furthermore, the presence of ADMERGs can impact the availability
and toxicity of drugs, ultimately affecting how patients respond to
treatment and their overall prognosis (Rodrigues, 2022). While
research has revealed certain functions of ADMERGs in GC, the
specific methods by which they operate are still not well understood.
Hence, it is imperative to do additional study on the correlation
between ADMERGs and the prognosis of GC to develop more
effective tailored treatments.

In this paper, differentially expressed genes (DEGs) associated
with ADME were found using the TCGA-GC dataset from the
TCGA database, and candidate genes were obtained by taking
intersections with ADEMRGs. Prognostic genes closely associated
with GC outcome were identified by univariate Cox regression
analysis and Least Absolute Shrinkage and Selection Operator
(LASSO) regression. Subsequently, a predictive risk model was
created using prognostic genes to classify patients based on risk
scores. In addition, a nomogram was created to accurately predict
the prognosis of GC patients. To investigate the biological
mechanisms of these prognostic genes, enrichment analysis,

immune infiltration, drug sensitivity analysis, ceRNA network
construction, and analysis of prognostic gene expression patterns
at the single-cell level were also performed. The findings will provide
novel insights into the molecular mechanisms behind GC and
propose prospective targets for therapeutic intervention, as well
as serve as a helpful reference for future research on the etiology and
treatment strategies of GC.

2 Materials and methods

2.1 Data sources

For the development of a predictive model for GC, we accessed
transcriptome data and corresponding clinical pathology data from
The Cancer Genome Atlas (TCGA, http://portal.gdc.cancer.gov/).
This dataset consists of 375 tumor samples and 32 normal samples
and serves as the foundational training set, of these, 350 tumor
samples had survival information. The datasets GSE62254 (GPL570)
including 300 tumor tissue samples and GSE13911 including
69 samples were used as the validation set (Cristescu et al., 2015;
Oh et al., 2018) and were obtained from Gene Expression Omnibus
database (GEO, https://www.ncbi.nlm.nih.gov/geo/). A collection of
298 ADMERGs was sourced from the PharmaADME Consortium
(http://www.pharmaadme.org) (Tang et al., 2022).

2.2 Identification and enrichment analysis of
candidate genes

We employed the R package DESeq2 (version 1.34.0) to carry
out differential expression analysis between tumor and normal
samples within our training set. Genes that exhibited a |
log2FoldChange| > 2 and an adj.P-value <0.05 were identified as
significant and were selected based on these criteria (Love et al.,
2014). To obtain candidate genes, the intersecting set of DEGs and
ADMERGs was determined using the R package ggvenn (version
1.2.2). Enrichment analysis, which encompasses Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG),
was conducted using the R package clusterProfiler (version 3.18.1),
with an adjusted p-value threshold of less than 0.05 (Yu et al., 2012).
The Oncobox database was utilized to assess the KEGG pathway
activation level of candidate genes, adj.P < 0.05 was used as the
screening threshold.

2.3 A prognostic risk model linked to ADME
was constructed and validated

The candidate genes associated with prognosis were identified
using univariate Cox regression analyses, employing the glmnet
package (version 4.1-2) (HR ≠ 1 & P < 0.05), using 10-fold cross-
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validation, GC samples were randomly and equally divided into
10 subsets. In each iteration, one subset was selected as the validation
set, while the remaining nine subsets served as the training set. The
LASSO-Cox model was fitted using the training set, and the Cox
deviation of the model was evaluated on the validation set. After
10 iterations, the average deviations of all λ values on the validation
sets were compared, and λ.min, which minimized the cross-
validation error, was selected as the final regularization
parameter. Finally, the optimal λ value was determined, and the
final LASSO-Cox model was constructed using all training data to
screen out key prognostic gene features. The proportional hazards
(PH) assumption was then employed to verify these genes, using a
p-value threshold of greater than 0.05. Subsequently, we utilized
LASSO regression analysis from the R package glmnet to determine
the final prognostic genes (Friedman et al., 2010). Subsequently, a
risk score was calculated for each GC patient, which was based on
the expression (expr) and risk coefficients (coef) of these prognostic
genes, as follows:

Riskscore � ∑
n

i�1
coef genei( )pexpr genei( )

Patients with GC were categorized into either a high- or low-risk
groups based on themedian risk score. Additionally, KM curves (P <
0.05) were plotted according to the high and low risk groups using
survminer (version 0.4.9) (Liu et al., 2021) to determine the
difference in survival between the high and low risk groups. The
receiver operating characteristic (ROC) curves (2, 3, 4, 5, 6 years)
were generated utilizing the survival and survival ROC packages
(version 1.0.3.1) (Maeser et al., 2021) to assess the model’s accuracy
(AUC >0.6). In the validation set, the same method was employed.
Subsequently, the cor function from the R package “stats” was
employed to assess correlations between prognostic genes and
established GC (gastric cancer) prognostic markers, including
MSI (microsatellite instability), PD-L1 expression, and
HER2 status, using both Spearman and Pearson
correlation analyses.

2.4 Correlation between clinical features
and risk score

The utilization of theWilcoxon rank-sum test (P < 0.05) allowed
for the evaluation of variations in risk scores among distinct clinical
subgroups and the investigation of patient distribution into high and
low-risk groups across these subgroups, taking into account clinical
factors including Age, Gender, T/N/M stage, and Stage.

2.5 Establishment and validation of
a nomogram

Via univariate and multivariate Cox regression analyses utilizing
the R package survival (P > 0.05; HR≠1), identified independent
prognostic factors influencing GC, with the results confirmed by the
PH hypothesis test (P > 0.05). Subsequently, a prognostic
nomogram was developed employing the rms package (version
6.2-0) (Luo et al., 2024). This was followed by the generation of

decision curve analysis (DCA), calibration curves and ROC curves to
gauge the accuracy and reliability of the nomogram.

2.6 Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

Across risk groups, GSEA was executed via the R package
clusterProfiler, employing c2.cp.kegg.V7.0.symbols.gmt as the
reference gene set. Meanwhile, the analysis applied a stringent
significance threshold of P < 0.05 and a False Discovery Rate
(FDR) of <0.25 for the screening process. GSVA was performed
utilizing the R package “GSVA” (version 1.42.0) (Hänzelmann et al.,
2013). To solidify the findings, a Spearman correlation analysis
was meticulously conducted to elucidate the intricate
relationship between clinical manifestations, risk scores, and
biological pathways.

2.7 Immune cell infiltration analysis

In the training set, employing single-sample GSEA (ssGSEA) to
assess the abundance of 28 immune infiltrating cells and 2 stromal
cells. Following this, a stringent Wilcoxon test (with a significance
threshold of P < 0.05) was applied with a significance threshold of
P < 0.05 to identify significant differences in the abundance of
immune infiltrating cells between two groups. Furthermore, to delve
deeper into the association between risk score and differentially
infiltrating cells, a Spearman correlation analysis was conducted
(with |R| > 0.4 and P < 0.05). Next, the cor function from the R
package stats was used to perform Pearson correlation analysis
between prognostic genes and differentially infiltrated immune
cell subsets.

2.8 Immunotherapy and prediction of
chemotherapy response

We assessed the varying expression of 15m6ARNAmethylation
genes and 24 immune checkpoint genes between two risk groups,
aiming to forecast the potential effectiveness of immune checkpoint
blockade (ICB) in patients with different risk levels (P < 0.05).
Additionally, we calculated the Tumor Immune Dysfunction and
Exclusion (TIDE) score for each GC patient using the TIDE database
(http://tide.dfci.harvard.edu/). To further predict the clinical
response to chemotherapy, we evaluated the sensitivity of drugs
using the R package pRRophetic (version 0.5) (Geeleher et al., 2014)
(P < 0.05). Next, the cor function and cor.test significance test built
into R language were used, and the Spearman correlation analysis
method was adopted to calculate the correlation between prognostic
genes and immune checkpoint genes (p < 0.05).

2.9 The ceRNA regulatory network analysis

To investigate the molecular regulatory mechanisms between
high-risk and low-risk groups, in the training set, utilizing
DESeq2 (v.1.34.0) (Love et al., 2014) to identify differentially
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expressed miRNAs (miRNA1), and lncRNAs (lncRNA1) between
GC high-risk group and low-risk group (|log2FoldChange|>1 and
adj.P.value<0.05). Additionally, miRDB (http://www.mirdb.org/
miRDB/policy.html) databases were utilized to predict
prognostic genes miRNAs (miRNA2). Key miRNAs were
obtained by intersecting miRNA1 and miRNA2 using the
package ggvenn. Furthermore, upstream lncRNAs (lncRNA2)
of key miRNAs were predicted using the miRNet(https://www.
mirnet.ca) databases. Key lncRNAs were obtained by intersecting
lncRNA1 and lncRNA2 with the ggvenn package. Finally, we
constructed a ceRNA regulatory network using these
key molecules.

2.10 The scRNA-seq data analysis

The scRNA-seq data underwent quality control measures
implemented through the R package Seurat (version 4.1.0) (Hao
et al., 2021). Exclusion criteria as follows: cells with less than
200 genes expressed, genes detected in fewer than 3 cells, and
cells with a mitochondrial gene proportion above 20%.
Additionally, cells expressing less than 101 or more than
6000 genes were filtered out. Subsequently, the Seurat package’s
integrated was then performed to correct for batch effects. To reduce
dimensionality and cluster cells, we used the RunPCA function with
the t-SNE algorithm. Following clustering, we used the
FindAllMarkers function and the singleR package (Aran et al.,
2019) to annotate each cell. After annotation to obtain the cell
types, a bar stacking plot was drawn to show the distribution of
different cell types in tumor and normal samples, as well as
UMAP plots and prognostic genes in each cell type distribution
and expression in each cell type. Finally, the Wilcoxon test was
used to compare the differences in the expression of prognostic
genes between gastric cancer tumor tissue samples and normal
samples, as well as the expression of biomarkers in annotated
cell types.

2.11 Reverse transcription quantitative PCR
(RT-qPCR)

From the Department of gastrointestinal surgery in First
Hospital of Shanxi Medical University, we collected the tumor
(n = 5) and para-carcinoma tissues (n = 5) of patients with GC.
All donor patients provided and signed off on the informed
consent, which was approved by the Ethics Committee of
our hospital (Ethics Review No:KYLL-2024-075). The total
RNA of all samples was isolated in terms of TRIzol Reagent
(Ambion, Shanghai, China). Subsequently, total RNA was used
to reverse transcription via the SweScript First Strand cDNA
synthesis kit (Servicebio, Wuhan, China). Then, the primers of
prognostic genes were shown in Supplementary Table S1. The
qPCR was proceeded using the Universal Blue SYBR
Green qPCR Master Mix (Servicebio, Wuhan, China) on the
CFX96TM PCR System (BIO-RAD, U.S.A.). The relative
expression of these prognostic genes was calculated based on
the 2−ΔΔCT method (Rao et al., 2013), with an endogenous
control GAPDH.

2.12 Statistical analysis

All bioinformatics analyses were performed using the R
language (version 4.2.2). P < 0.05 was considered meaningful and
significant.

3 Results

3.1 Identification and enrichment analysis of
candidate genes

A total of 1,492 DEGs were identified, with 683 upregulated and
809 downregulated in the GC patients (Figures 1a,b). Moreover,
59 candidate gene were obtained by intersecting ADMERGs and
DEGs using a Venn diagram (Figure 1c). Following this, candidate
genes GO enrichment analysis results showed, the enriched
biological process categories included cellular hormone metabolic
process, cellular response to xenobiotic stimulus, hormone
metabolic process, xenobiotic metabolic process, and steroid
metabolic process. The primary enriched cellular component
categories included brush border membrane, sarcoplasmic
reticulum, brush border, sarcoplasm, cluster of actin-based cell
projections. The primary enriched molecular function categories
included monooxygenase activity, tetrapyrrole binding, and so on
(Figure 1d). The results of the KEGG enrichment analysis indicated
that the candidate genes were predominantly enriched in metabolic
pathways, metabolism of xenobiotics by chemical carcinogenesis-
DNA adducts, drug metabolism-cytochrome P450, retinol
metabolism, and steroid hormone biosynthesis (Figure 1e).
Pathway activation level analysis showed that six pathways
exhibited significant activation in GC samples, include vitamin,
transport of organic anions, recycling of bile acids and salts,
mineralocorticoid biosynthesis, cysteine and methionine
metabolism main pathway. And three pathways were significantly
inhibited, including detoxification of reactive oxygen species,
glycolysis gluconeogenesis, glutathione metabolism main
pathway (Figure 1f).

3.2 Construction of a prognostic models
related to ADME

To obtain genes associated with GC prognosis in the training set,
using the univariate Cox regression analysis and verified by the PH
hypothesis test, resulting in the screening out of 5 genes associated
with survival (Figure 2a). Subsequently, we utilized the LASSO for
further refinement, resulting in the identification of 5 prognostic
genes: UGT1A1, ADH4, ADH1B, CYP19A1, GPX3 (Figures 2b,c).
Analyze the correlation between these prognostic genes and known
GC prognostic markers such as MSI, PD-L1, HER2. The results
showed that UGT1A1, ADH4 were significantly negatively
correlated with PD-L1, and UGT1A1, GPX3, ADH1B were
significantly correlated with HER2 (Supplementary Figure S1).
Among them, UGT1A1 was significantly positively correlated
with HER2, GPX3, ADH1B were significantly negatively
correlated with HER2, and GPX3, ADH1B, ADH4 were
significantly negatively correlated with MSI. The ADMERGs
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plays a dual role in metabolic reprogramming and immune
microenvironment regulation, significantly affecting key
prognostic markers of gastric cancer (PD-L1, HER2, MSI).
UGT1A1, GPX3, ADH1B, and ADH4 can serve as cross pathway
regulatory nodes and can be integrated into a “metabolic immune
prognostic model” in the future to optimize precision treatment
strategies for gastric cancer.

3.3 Assessment of prognostic characteristics

Risk scores were computed for all patient samples in the training
set, leading to their classification into either a high-risk or low-risk
group, rested on the median value. The high-risk group exhibited
decreased survival rates and less survival times in contrast to the
low-risk group. Additionally, a notable rise in the number of deaths

FIGURE 1
Identification and enrichment analysis of candidate genes. (a,b) Volcano and heat maps of differentially expressed genes (c) Venn diagram of
candidate genes (d) GO enrichment results of candidate genes (e) KEGG enrichment results (f) Activation level analysis of KEGG pathway. The green
color of the graph represents the activation pathway and the red color represents the inhibition pathway.
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was observed with increasing risk scores among the samples (Figures
3a,b). Afterward, KM curve showed significantly lower survival in
the high-risk group than in the low-risk group, as illustrated in
Figure 3c (P < 0.005). In the training set, the area under curve (AUC)
values for the risk score were 0.64, 0.63, 0.69, 0.69, and 0.77 at 2, 3, 4,
5, and 6 years, respectively, as presented in Figure 3d. The same
method was employed to verify the model’s accuracy and
applicability in the test set, with the risk survival status of GC
patients was also displayed (Figures 3e–g). The AUC values were
0.59, 0.62, 0.62, 0.63, and 0.64 at 2, 3, 4, 5 and 6 years, in the test set
(Figure 3h), suggesting that the risk model has good
predictive power.

3.4 Correlation of risk score and other
clinicopathological features

To investigate the involvement of risk score in GC, we
assessed their association with clinical characteristics. Utilizing
the clinical data obtained from TCGA, GC patients were
categorized into distinct subgroups. Our analysis unveiled
noteworthy disparities in risk scores between the M0 and
M1 groups (Figures 4a–c).

3.5 The nomogram was constructed
and validated

Risk score, age, and stage were significant independent
predictors of patient outcome (P < 0.05) (Figures 5a–c). We
created a nomogram based on these independent prognostic
factors (Figure 5d). Figure 5e exhibits the calibration curves
for the nomogram, illustrating the probability of Overall
Survival (OS) at 2, 3, 4, 5, and 6 years. In addition, the ROC
and DCA curve was generated to evaluate the nomogram’s
accuracy (Figures 5f,g). The AUC values for the nomogram
surpassed 0.6 across 2, 3, 4, 5, and 6 years, suggesting a
positive predictive performance. All AUC values were greater
than 0.6 and the decision curve of the nomogram was higher than
any of the independent prognostic factors, suggesting that a
nomogram combining risk scores with clinical aspects is
valuable for the diagnosis of GC.

3.6 GSEA and GSVA analysis

In this study, we identified 48 pathways that were noticeably
abundant between the two groups. The high-risk group exhibited

FIGURE 2
Construction of a prognostic models related to ADME. (a) Forest plot of one-way Cox regression analysis (b) Cross-validation of prognostic gene
LASSO regression analysis (c) prognostic gene LASSO regression analysis.
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significant enrichment in pathways such as the calcium signaling
pathway and complement and coagulation cascade. Conversely, the
low-risk group showed significant enrichment in pathways
including DNA replication, spliceosome, ribosome, nucleotide
excision repair, and the cell cycle, (Figure 6a). Figure 6b
illustrates the correlation among risk scores, clinical features, and
typical biological pathways. This finding suggested a substantial
positive correlation between the risk score and the type II interferon
response, as shown in Figure 6c.

3.7 Immune microenvironment analysis

The findings revealed significant differences in abundance for
21 immune cells and 2 stromal cells (fibroblasts and endothelial
cells) between the two risk groups, for instance effector memory
CD8 T cell, activated B cell, central memory CD4 T cell, central
memory CD8 T cell, etc., (Figure 7a). In addition, a positive
relationship was found between the risk score and the abundance of
cell types including mast cells, plasmacytoid dendritic cells, and effector

FIGURE 3
Assessment of prognostic characteristics. (a,b) Risk profiles of the training set GC patients in high and low risk subgroups will and scatter plots. (c)
Prognostic gene K-M survival analysis. The horizontal axis is the total survival time (days) and the vertical axis is the survival probability; red color
represents the high-risk group and blue color represents the low-risk group. (d) ROC curves of training set GC patients at 2, 3, 4, 5, and 6 years (e,f) Risk
curves and scatter plots of high- and low-risk subgroups of validation set GSE62254 samples. (g) K-M survival analysis of high- and low-risk
subgroups of validation set GSE62254 samples (h) ROC curves of validation set GSE62254 patients at 2, 3, 4, 5, and 6 years.
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memory CD4T cells (Figure 7b). Subsequently, correlation analysis was
conducted between prognostic genes and differential immune cells. The
results showed that ADH1B, GPX3, and most immune cells had strong
positive correlations, while UGT1A1, ADH4, CYP19A1 had weak
correlations with some immune cells (Supplementary Figure S2).

Figure 7c demonstrates substantial variances in the expression
levels of 24 immune checkpoints among the two risk groups, and
overexpressed in the high-risk group. Comparing m6A-related genes
(m6A-RGs), 15 differentially expressed genes were identified. Except for
FTO and IGF2BP1, the rest of the differential m6A genes had increased
expression in the low-risk group (Figure 7d). Subsequently, we analyzed
correlations between prognostic and immune checkpoint genes. Results

showed: UGT1A1 was significantly negatively correlated with PDCD1,
CD274, PDCD1LG2, CTLA4, and LAG3; ADH4 was significantly
negatively correlated with CD274; ADH1B was significantly
positively correlated with TIGIT and PDCD1LG2, negatively with
CD274; CYP19A1 was significantly positively correlated with
HAVCR2, negatively with LAG3; GPX3 was significantly positively
correlated with HAVCR2, LAG3, PDCD1LG2, and PDCD1
(Supplementary Figure S3). This indicates that these prognostic
genes are deeply involved in the balance between the activity and
inhibition of the immune microenvironment, providing new strategies
for precise stratification and targeted metabolic sensitization in tumor
immunotherapy.

FIGURE 4
Correlation of risk score and other clinicopathological features. (a) Boxplot of differences in risk scores between clinical subgroups. Differences in
the distribution of patients in the high risk groups (b) and low risk groups (c) between clinical subgroups.
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3.8 Immunotherapy and prediction of
chemotherapy response

This research aimed to explore the utility of the risk score in
informing treatment strategy decisions for patients. We found that

the low-risk group demonstrated enhanced responsiveness to the
drugs QS11 and ABT.888, whereas the high-risk category showed
increased sensitivity for DMOG and VX.702 (P < 0.05) (Figures
8a–c). The Spearman association analysis demonstrated a positive
correlation between BIBW2992 and the risk score, as well as a

FIGURE 5
The nomogram was constructed and validated. (a,b) One-way Cox Analysis and PH Hypothesis Test (c) Results of Multifactor Cox Analysis (d)
Nomogram Columns (e) Columns 2, 3, 4, 5, and 6 Years Calibration Curves. (f,g) Columns 2, 3, 4, 5, and 6 Years ROC and DCA Curves.
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FIGURE 6
GSEA and GSVA analysis. (a) GSEA enrichment analysis of differential genes in high and low risk groups (b) ssGSEA biological pathway analysis (c)
Correlation analysis of risk scores and biological pathways.
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negative correlation with DMOG, Imatinib, AP.24534, and VX.702.
(Figure 8d). Besides, patients in the high-risk group revealed
significantly higher Dysfunction and TIDE scores compared to
those in the low-risk group (Figure 8e).

3.9 The ceRNA regulatory network analysis

In the training set, DESeq2 identified differentially
expressed miRNA1 and lncRNA1 between GC high-risk

FIGURE 7
Immune microenvironment analysis. (a) Differential violin plots of immune infiltrating cells in samples from high and low risk groups (b) Correlation
analysis between risk scores and differential immune cells (c)Differential violin plots of immune checkpoints in samples from high and low risk groups (d)
Differential violin plots of m6A-related genes in samples from high and low risk groups.
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group and low-risk group (Figures 9a–d). Using miRDB
databases were predicted miRNA2, the Venn diagram
illustrated the identification of four key miRNAs, mir590,

mir7152, mir4420 and mir5000 were obtained (Figure 9e).
The lncRNA2 of the key miRNAs was predicted using the
miRNet databases, lncRNA1 and lncRNA2 were intersected

FIGURE 8
Immunotherapy and prediction of chemotherapy response. (a)Drug sensitivity analysis of patients in the high and low risk groups (b,c)Differences in
top5 positive and negative correlation drug IC50 (d) Correlation analysis of drug IC50 values with risk scores (e) Differences in T-cell dysfunction and
exclusion scores and TIDE scores of patients in the high and low risk groups.
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to obtain a key lncRNA (MIR100HG) (Figure 9f). Among them,
mir590, mir7152, mir4420 and mir5000 were significantly
upregulated in the GC high-risk group (P < 0.05).
Additionally, MIR100HG lncRNA was also significantly
upregulated in the GC high-risk group (P < 0.05)
(Supplementary Tables S2, S3).

3.10 scRNA-seq analysis

The scRNA-seq data were processed using the R package
“Seurat” for filtering. Then calculated nFeature-RNA, nCount-
RNA and percent.mt (Figure 10a). The top 50 principal
components with statistical significance from the PCA analysis

FIGURE 9
The ceRNA regulatory network analysis. (a–d) Volcano and heat maps of differentially expressed miRNAs and lnRNAs (e,f) Identification of targeted
miRNAs, targeted lncRNAs.

Frontiers in Genetics frontiersin.org13

Zhang et al. 10.3389/fgene.2025.1541401

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1541401


FIGURE 10
scRNA-seq analysis. (a) Results after QC of single-cell data (b,c) PCA principal component and fragmentation plots (d) UMAP clustering plots (e)
Expression status of specific highly expressed genes in each cell population (f) Cellular annotation analysis (g) Expression levels of marker genes in each
cell population obtained by the annotation (h,i) Gene distribution of prognostic genes in each cell type and bar stacking plots (j) Prognostic gene
expression in training set gene expression in the training set.
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were chosen for further analysis using UMAP the clustering analysis
identified 15 distinct cell clusters (Figures 10b–d). We annotated
9 cell clusters based on marker genes from the CellMarker database
and the R package “singleR”: T cells (CD3D, CD3E, LCK, CD2,
CD3G, CD7), B cells (identified by SingleR auxiliary comments),
Monocytes, NK cells, intermediate granule cells, endothelial cells,
fibroblastic vascular cells, epithelial cells and mast cells (TPSAB1)
(Figures 10e–g).

Subsequently, we conducted an analysis of each cell type
proportion in the GC samples, as illustrated in Figures 10h,i.
The T cells proportion was the largest in both tumor and control
groups, while fibroblasts had the lowest proportion. In tumor
tissues, neutrophil proportion was higher and B cells and T cells
were lower compared to normal cells. The levels of expression for
ADH1B, ADH4, CYP19A1, and GPX3 were notably decreased in
tumor samples from the single-cell dataset, as depicted in
Figure 10j. Subsequently, the expression levels of prognostic
genes were compared and validated using the
GSE13911 dataset, and the results showed that the expression
trends of four prognostic genes, ADH1B, ADH4, CYP19A1, and
GPX3, were consistent with them (Supplementary Figure S4).
The Wilcoxon test was used to compare the expression of
prognostic genes between GC tumor tissues and control
samples in the TCGA training set and GSE13911 dataset.
Results showed that four prognostic genes (ADH1B, ADH4,
UGT1A1, and GPX3) exhibited significantly lower expression
in tumor samples compared to normal samples (Supplementary
Figure S5a). However, CYP19A1 showed upregulated expression
in the TCGA training set but downregulated expression in the
GSE13911 validation set, which might be attributed to differences
in dataset characteristics or sample heterogeneity
(Supplementary Figure S5b). Additionally, we analyzed the
differential expression of prognostic genes across distinct cell
types. As shown in Supplementary Figures S5a,b, GPX3 and
ADH1B were more highly expressed in Stromal cells
compared to other cell types. The Wilcoxon test was used to
compare the differential expression of prognostic genes in
annotated cell types between disease and normal physiological
conditions. UGT1A1 showed significant expression differences
between disease and normal conditions in T cells and Monocytes;
ADH4 exhibited significant differences in Monocytes, B cells,
Epithelial_cells, and Stromal cells; GPX3 showed significant
variations in T_cells, Plasma, Epithelial_cells, and Stromal
cells; ADH1B had significant differences in Plasma, Stromal
cells, and Epithelial_cells; and CYP19A1 displayed significant
expression differences in Stromal cells between disease and
normal conditions. (Supplementary Figures S5c–g).

3.11 Expression level verification of
prognostic genes

To explore the expression differences of prognostic genes in the
clinic samples, the tumors and para-carcinoma tissues were collected
for RT-qPCR. Interestingly, all the prognostic genes except for
ADH4 were under-expressed in tumors (P < 0.05), and there was
no significant expression difference of ADH4 between the tumors
and para-carcinoma tissues (Figures 11a–e).

4 Discussion

GC is a leading cause of cancer deaths worldwide, and
ADMERGs are increasingly implicated in its progression and
therapy. Studying ADMERGs effect on GC can help predict
patient prognosis and therapy options. This study found
differentially expressed ADMERGs in combination with the
TCGA-GC dataset. Five prognostic genes (UGT1A1, ADH4,
ADH1B, CYP19A1, and GPX3) were then identified using
univariate Cox regression and LASSO regression. Subsequently,
Risk scores for GC patients were then obtained based on the
prognostic genes and combined with a clinically created
nomogram. In recent years, numerous studies have attempted to
construct prognostic models for gastric cancer (GC) based on multi-
omics features, covering multiple research dimensions such as
immune-related genes, m6A modifications, metabolic regulation,
and ferroptosis mechanisms. For example, Ma et al. developed a
model based on differentially expressed immune-related genes
(DEIRGs) to predict overall survival in GC patients and assess
immune infiltration levels, though it did not account for the
influence of metabolic or drug response pathways (Ma et al.,
2024). Similarly, Peng et al. established a prognostic model for
the GC tumor microenvironment based on m6A regulator-related
genes (Peng et al., 2024). Feng et al. analyzed six tumor-associated
metabolic pathways. Wen et al. developed a gastric cancer (GC)
model based on ferroptosis-related genes (comprising six genes),
which demonstrated prognostic value for patient survival but lacked
in-depth investigation into immune phenotypes. Additionally, some
studies have constructed models based on different cancer stages.
For instance, Liu et al. developed prognostic models for early- and
late-stage cancers. Compared to these models, the prognostic model
constructed in this study based on five ADME-related genes not only
more accurately predicts patient survival by incorporating covariates
such as age and clinical stage (T, N, M), thereby providing a basis for
developing personalized treatment strategies for gastric cancer (GC)
at different stages, but also explores differences in genomic variation,
immune microenvironment, and drug sensitivity, investigates the
molecular regulatory mechanisms of prognostic genes, and observes
the distribution and expression patterns of these genes in single-cell
datasets, offering new reference evidence and theoretical support for
GC treatment.

UDP glucuronosyltransferase family 1 member A1(UGT1A1)
helps detoxify and eliminate toxins from the body and outside
sources by glucuronidation. Chemical degradation associated to
UGT1A1 expression alterations causes digestive tract cancer.
Several studies suggested that UGT1A1 glucuronidases cancer-
causing compounds to make them water-soluble and excretable.
Chemicals that cause stomach lining cancer are broken down by
UGT1A1. And UGT1A1 expression or activity may alter stomach
lining cancer-causing material elimination and GC risk. Chemical
accumulation from UGT1A1 dysfunction promotes DNA damage
and tumor risk, while genetic variations in UGT1A1 can affect GC
risk via modifying the enzyme’s chemical elimination (Pereira et al.,
2022). Additionally, the detoxification function of UGT1A1 has
been confirmed to be closely associated with the risk of digestive
system tumors. In this study, it showed significant correlations with
PD-L1 andHER2, suggesting its potential important role in immune
regulation (Tomono et al., 2023; Sathe et al., 2024). Alcohol
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dehydrogenase 4 (Class II, ADH4) and alcohol dehydrogenase 1B
(Class I, ADH1B), as key enzymes in ethanol metabolism, play a
central role in liver ethanol detoxification by catalyzing the
oxidation of alcohol to acetaldehyde. Notably, the ADH4-
mediated conversion of ethanol to acetaldehyde is an essential
step in liver detoxification (PMID: 16801720). However, excessive
alcohol consumption significantly increases the risk of gastric cancer
(GC), which is closely related to ADH4 (Freedman et al., 2007). The
acetaldehyde produced by ADH4 catalysis exhibits high reactivity.
On one hand, it can bind to DNA to form adducts, directly inducing
gene mutations and compromising the stability of genetic material
(Wang et al., 2023). On the other hand, acetaldehyde generated by
ADH4 metabolism in gastric tissue can also disrupt the gastric
mucosal barrier, creating pathological conditions for carcinogenesis
(Nieminen and Salaspuro, 2018). Additionally, polymorphisms in
the ADH1B gene significantly influence alcohol metabolism
efficiency. Individuals carrying specific variants exhibit reduced
acetaldehyde clearance capacity, leading to increased acetaldehyde
accumulation during heavy drinking and thereby further elevating
the risk of gastric cancer (GC) (Aida et al., 2013; Cui et al., 2009).
However, in this study, ADH4 did not show significant
downregulation in tumor tissues, suggesting that its expression
may be subject to more complex regulatory mechanisms - a
phenomenon that has not been adequately discussed in existing
research. The aromatase gene cytochrome P450 family 19 subfamily
A member 1(CYP19A1) can convert androgens into estrogens, and
reproductive tissue growth and function depend on estrogens (Mo
et al., 2013). The hormone-sensitive pathways of estrogen signaling

are connected to stomach cancer. The estrogen produced by
CYP19A1 activates estrogen receptors in gastric tissue, altering
cell growth and death. Our study further reveals its low
expression in GC tissues, complementing previous literature
reporting that its variants may disrupt hormone signaling
pathways and thereby promote tumor growth (Frycz et al., 2017).
At the level of genetic variation, genetic differences in the
CYP19A1 gene can affect aromatase activity, which can affect
estrogen levels and gastric epithelial cell hormonal control
(Miyoshi et al., 2003). Glutathione peroxidase 3(GPX3), an
antioxidant enzyme, reduces hydrogen peroxide and organic
hydroperoxides to protect cells. GC tissues show
GPX3 downregulation, which increases oxidative stress and
tumor development (Chen et al., 2011). Hypermethylation of the
GPX3 promoter in GC decreases the output of this protective
enzyme, leading to loss of GPX3 activity and causing oxidative
damage and malignancy in gastric epithelial cells. Also, an increase
in reactive oxygen species (ROS) can damage DNA and lead to
cancer, so GPX3 is needed to counteract ROS (Lan et al., 2017). Due
to their roles in carcinogen detoxification (UGT1A1), alcohol
metabolism and acetaldehyde production (ADH4, ADH1B),
hormonal regulation (CYP19A1), and oxidative stress protection
(GPX3), these five genes affect GC development. These gene
abnormalities can increase GC risk by causing DNA damage,
inflammation, metabolic abnormalities and aberrant cell
proliferation. These key genes (UGT1A1, ADH4, ADH1B,
CYP19A1, and GPX3) are crucial for the construction of our
gastric cancer (GC) prognostic model. However, based on the

FIGURE 11
Expression of prognostic genes in clinical samples. (a) ADH1B, (b) ADH4, (c) CYP19A1, (d) GPX3, (e) UGT1A1.
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risk scores derived from the prognostic genes and combined with
clinical data, the nomogram analysis revealed that the current
model’s AUC values ranged between 0.59 and 0.77, failing to
exceed 0.8. Nevertheless, existing literature reports that the AUC
values of GC-related models vary from 0.560 to 0.989 (Xu et al.,
2024), indicating that our newly developed model possesses a certain
ability to distinguish between favorable and poor prognoses in
patients and holds some clinical guidance significance. However,
its accuracy may still be relatively low. Further optimization by
incorporating additional clinical information is necessary to
enhance its predictive accuracy and generalizability, thereby
facilitating more personalized treatment strategies.

Similar to the findings of previous studies, the findings of this
research demonstrate the complex correlation between the
prognostic gene profile linked to ADME activities and the
immune microenvironment in GC (Avolio et al., 2025; Li et al.,
2024). The results emphasize notable disparities in the prevalence of
immunological and stromal cells among the two indicated risk
groups, with specific focus on immune cells such as Effector
memory CD8 T cells, Activated B cells, and Central memory
T cells. The presence of these differences highlights the potential
impact of the immune landscape on the prognosis of patients with
GC and the processes that drive tumor growth. The presence of a
positive association between the risk score and the quantity of cell
types such mast cells, plasmacytoid dendritic cells, and effector
memory CD4 T cells indicates that the high-risk group may have a
milieu that suppresses the immune system to a greater extent (Lazăr
et al., 2018). This could exacerbate the unfavorable outcome
reported in these individuals, as such an environment may
enhance tumor evasion from immune monitoring and promote
cancer development and spread (Yang et al., 2021). The significant
variations in the levels of expression of 24 immunological
checkpoints, such as the increased expression of BTLA, CD200,
and CD40LG in the high-risk group, provide additional evidence
that immune evasion mechanisms are more active in patients with
higher risk scores. Therefore, utilizing personalized patient risk
scores to tailor more effective immunotherapies may represent a
promising direction, and future studies could incorporate clinical
data from immunotherapy treatments to validate the predictive
capability of TIDE scores in real-world therapeutic applications.

Furthermore, the contrasting expression of m6A-RGs in the two
risk groups indicates that RNA methylation may have a crucial
impact on regulating the immune response and affecting the clinical
outcomes of patients with GC. The excessive production of m6A-
RGs in the high-risk group may likely cause the disruption of
immune-related pathways, leading to the observed changes in
immune cell infiltration and checkpoint expression (Zhang et al.,
2016). The medication sensitivity assessments offer useful insights
into prospective therapy methods for various risk groups. Our
research suggested that patients classified as low-risk are more
prone to positive responses to medications such as QS11 and
ABT.888. These treatments specifically target hypoxia pathways
and inflammatory signaling, respectively. On the other hand, the
high-risk group was more sensitive to drugs such as DMOG and
VX.702. The Spearman association study provides more evidence,
indicating a positive correlation between the risk score and
sensitivity to BIBW2992, which is an EGFR inhibitor. Conversely,
there is a negative correlation between the risk score and the drugs

DMOG, Imatinib, AP.24534, and VX.702. The findings indicate that
the prognostic gene signature not only has the ability to predict
patient outcomes, but also has the potential to inform treatment
decisions in clinical practice. Patients categorized as high-risk may
get advantages from treatments that specifically target
immunological checkpoints or EGFR signaling, and individuals in
the high-risk group may also respond better to medicines that target
hypoxia and inflammatory pathways. ESCC is characterized by
mutations in the p53 gene, which enhance the production of the
AGAP1 protein. This protein, in turn, increases the synthesis of
exosomes, leading to the accelerated growth and spread of cancer
cells (Feng et al., 2023). According to a study, QS11 has the ability to
hinder the activity of AGAP1, which in turn reduces the growth and
spread of ESCC cells. Furthermore, research has identified somatic
(P53) mutations in GC as well (Han et al., 2024). The study found
that low-risk patients showed considerable enrichment in pathways
such as DNA replication and nucleotide excision repair. It is
hypothesized that patients with a low risk profile may have a
higher likelihood of seeing positive outcomes from gene- and
protein-level therapy.

The integration of differential expression analysis, mRNA-
miRNA-lncRNA interaction prediction, and scRNA-seq provides
a comprehensive view of the molecular and cellular heterogeneity in
GC (Li et al., 2025; Wan et al., 2015). Significant differences in
miRNAs (e.g., mir590, mir7152, mir4420, mir5000) were identified
between the high-risk and low-risk gastric cancer (GC) groups.
These miRNAs exhibited significantly upregulated expression in the
high-risk group, suggesting their potential role in suppressing
oncogenic pathways to inhibit GC tumor growth, which aligns
with existing literature. Similarly, the lncRNA (MIR100HG) was
also markedly upregulated in the high-risk group. Previous studies
have demonstrated that MIR100HG serves as a reliable prognostic
biomarker associated with GC cell proliferation, migration, and
invasion. The differentially expressed miRNAs and lncRNAs
uncovered in this study may play pivotal roles in GC
progression. They hold promise as prognostic markers and could
provide novel therapeutic avenues for GC treatment.

ScRNA-seq data from GC tissues showed significant cell
diversity using Seurat R package. ScRNA-seq data also showed
significant differences in the expression levels of key prognostic
genes such ADH1B, ADH4, CYP19A1, and GPX3 across cell types.
The lower expression of these genes in tumor tissues suggests a role
in GC onset and progression. For instance, decreased ADH1B and
ADH4 expression in tumor cells can lead to acetaldehyde
accumulation, which can promote cancer, DNA damage, and
tumor growth. Decreased GPX3 may increase oxidative stress,
which promotes gastric epithelial cell malignancy (Ren et al., 2021).

GC development’s molecular mechanisms can be understood by
studying miRNA-lncRNA interactions and single-cell data. The
identified miRNAs, lncRNAs, and target genes may be GC
biomarkers. Additionally, they could be targeted for new
therapeutic methods. Customized treatment techniques that
account for tumors’ diverse cell and molecular profiles are crucial
because GC tissues contain distinct types of cells. ADME-related
prognostic genes vary in expression in different cell types, suggesting
that they can affect the metabolic milieu of the tumor
microenvironment (TME) and targeted therapeutic efficacy (Gu
et al., 2015).
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Regarding the limitations of current GC diagnostic methods
(such as gastroscopy and tumor marker detection) in terms of
sensitivity and specificity, this study identified five ADME-related
prognostic genes (UGT1A1, ADH4, ADH1B, CYP19A1, and GPX3)
that exhibit unique expression patterns in tumor tissues (UGT1A1,
ADH1B, CYP19A1, and GPX3 show significant downregulation).
These findings hold potential for developing new tools and strategies
to improve GC diagnosis and treatment. First, a multiplex gene
quantification assay based on minimally invasive samples
(peripheral blood, gastric juice, exfoliated cells) could be
developed for early screening of high-risk populations (e.g.,
individuals with family history or chronic H. pylori infection).
This tool could compensate for the limitations of gastroscopy,
reduce missed diagnoses, and improve early detection rates.
Second, detecting ADME gene expression (e.g., downregulation
of UGT1A1, ADH1B, GPX3) in gastroscopically suspicious
lesions could enhance diagnostic accuracy through combined
assessment, guide further examinations, and reduce false-negative
results. Additionally, an ADME risk score could effectively stratify
GC patients into high-risk and low-risk groups. Significant
differences were observed between the two groups regarding
immune microenvironment, drug sensitivity, and prognosis. The
high-risk group (with poorer prognosis) requires aggressive
treatment strategies, including neoadjuvant chemotherapy
combined with targeted therapy (e.g., EGFR inhibitors), radical
surgery, and adjuvant therapy, to reduce recurrence risk. In
contrast, the low-risk group (with better prognosis) should avoid
overtreatment, with surgical intervention or low-toxicity adjuvant
chemotherapy being preferred options, along with intensified
postoperative surveillance. These findings provide valuable
guidance for developing precision medicine strategies.

Due to the relatively limited sample size in the training,
validation and scRNA-seq datasets, particularly the scarcity of
clinically normal tissue samples—our study may be susceptible to
batch effects or population bias. This constraint likely hindered the
model’s ability to fully capture the comprehensive features and
distribution patterns of the data, partially compromising the
stability and reliability of the results (AUC >0.6 but <0.8) and
limiting the generalizability of findings to broader populations.
Similarly, the inconsistent results between RT-qPCR and single-
cell data are likely attributable to insufficient sample size and sample
heterogeneity. Furthermore, insufficient sample resources led to an
extremely small clinical validation cohort (n = 5 for tumor/adjacent
tissues), and the regulatory mechanisms of the ceRNA network
relied solely on bioinformatic predictions without experimental
validation, weakening the robustness of conclusions. Moving
forward, we will further investigate the differential activity of
these genes in specific cell populations. This will involve
experimental validation of the ceRNA network’s regulatory
mechanisms through approaches such as RNA interference
(RNAi), overexpression assays, constructing animal models, and
gene knockout experiments. These studies aim to elucidate the
precise role of the ceRNA network in gastric cancer (GC)
initiation and progression, as well as its potential crosstalk with
other regulatory pathways. Finally, we will attempt to obtain
additional single-cell sample data for analysis and collect extra
clinical samples to validate our research findings via qPCR.
Meanwhile, we will specifically measure the relationship between

TIDE scores in the high-risk group and actual immune therapy
responses to further verify the predictive value of TIDE scores. These
efforts are expected to provide more reliable and actionable insights
for improving GC treatment strategies.

This work concludes by offering a thorough investigation of the
correlation between ADME-related prognostic genes and the
immunological microenvironment in GC. The recognition of
unique immunological profiles and medication sensitivities linked
to various risk groups emphasizes the possibility of tailored
treatment approaches in GC. Additional investigation is
necessary to examine the fundamental mechanisms that cause
these connections and to confirm these discoveries in medical
environments, with the ultimate objective of enhancing patient
outcomes through customized therapy methods. Our research
helps us grasp GC’s complex molecular and cellular networks.
The found miRNAs, lncRNAs, and prognostic genes offer
promising potential for further research and therapeutic
applications, such as targeted medicines and personalized
GC treatment.

5 Conclusion

This study effectively discovered predictive genes associated to
ADME in GC by thorough bioinformatics analysis of data from the
TCGA and GEO databases. The results provide useful knowledge on
the genetic basis of GC and emphasize the potential of these genes as
biomarkers for the detection, prediction of outcome, and targets for
treatment. Through the integration of differential expression
analysis, miRNA-lncRNA interaction prediction, and single-cell
RNA sequencing data, we have discovered noteworthy
connections between these prognostic genes, the tumor
microenvironment, and cellular heterogeneity in GC.

The identified genes and their regulatory networks serve as a
new reference framework for future study in GC, namely in
comprehending the disease’s course and in formulating tailored
treatment methods. In order to further understand how these
prognostic genes, contribute to the development of GC, it is
necessary to conduct additional experimental research to uncover
the exact mechanisms involved. Moreover, the practical
implementation of these discoveries, which involves creating
specific treatments, shows potential for enhancing the
identification and management of patients with GC.
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