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Background: The progression of gastric cancer (GC) is closely linked to
macrophage polarization and protein lactylation; however, its underlying
mechanisms remain poorly understood. This study aimed to elucidate the
molecular mechanisms of GC using transcriptomic analysis.

Methods: Candidate genes were identified by intersecting differentially expressed
genes with key module genes associated with protein lactylation and macrophage
polarization. Protein-protein interaction analysis was performed to uncover
interacting genes. Prognostic genes were determined using univariate Cox
regression and machine learning techniques, with model accuracy assessed via
training and validation datasets. Further, enrichment analysis, immune infiltration
profiling, gene mutation analysis, and drug sensitivity assessments were conducted
for high- and low-risk groups. Chromosomal localization, gene-gene interaction
network analysis, and expression validation of prognostic genes were also performed.

Results: Two prognostic genes, ERCC6L and MYB, were identified as significant
markers of prognosis through comprehensive analyses. A risk model based on these
genes accurately predicted survival in patients with GC. Enrichment analysis revealed
pathways such as the muscle myosin complex and adipogenesis as significantly
involved inGC. Immune infiltration analysis identified 13 immune cell types, including
monocytes, with strong associations to the prognostic genes. TTN, TP53, and
MUC16 exhibited the highest mutation rates in both risk groups. Drug sensitivity
analysis highlighted AZD.0530, CCT007093, DMOG, JNJ.26854165, and LFM.A13 as
promising therapeutic candidates. ERCC6L is located on chromosome X, while MYB
is located on chromosome 6. Gene-gene interaction network analysis revealed
interactions between prognostic genes and other key genes. In both datasets,
expression of prognostic genes was significantly higher in the GC cohort.

Conclusion: This study identified ERCC6L and MYB as key prognostic genes,
facilitating the development of a risk model that offers novel insights into
potential therapeutic strategies for GC.

KEYWORDS

gastric cancer, prognostic genes, macrophage polarization, protein lactylation,
bioinformatics analysis

OPEN ACCESS

EDITED BY

Lucia Natarelli,
LMU Munich University Hospital, Germany

REVIEWED BY

Andrija Tomovic,
Novartis, Bulgaria
Xindong Yin,
Affiliated Hospital of Nanjing University of
Chinese Medicine, China

*CORRESPONDENCE

Guomiao Su,
suguomiao@163.com

Guoqing Pan,
18895603413@163.com

†These authors have contributed equally to
this work

RECEIVED 20 December 2024
ACCEPTED 24 June 2025
PUBLISHED 02 July 2025

CITATION

Xu Z, Lei Z, Peng S, Li S, Kong D, Duan H,
Zhang M, Su G and Pan G (2025) Prognostic and
tumor microenvironmental features of gastric
cancer revealed by macrophage polarization
and protein lactylation-related genes.
Front. Genet. 16:1541489.
doi: 10.3389/fgene.2025.1541489

COPYRIGHT

© 2025 Xu, Lei, Peng, Li, Kong, Duan, Zhang, Su
and Pan. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 02 July 2025
DOI 10.3389/fgene.2025.1541489

https://www.frontiersin.org/articles/10.3389/fgene.2025.1541489/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1541489/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1541489/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1541489/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1541489/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1541489&domain=pdf&date_stamp=2025-07-02
mailto:suguomiao@163.com
mailto:suguomiao@163.com
mailto:18895603413@163.com
mailto:18895603413@163.com
https://doi.org/10.3389/fgene.2025.1541489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1541489


GRAPHICAL ABSTRACT

1 Introduction

Gastric cancer (GC) is a major global health concern, ranking as
the fifth most common malignancy and the third leading cause of
cancer-related deaths worldwide (Smyth et al., 2020). Despite

ongoing advances in treatment, the prognosis for patients with
GC remains poor, with a 5-year survival rate of under 10%
(Yang et al., 2020). GC is influenced by multiple factors,
including genetic predisposition, Helicobacter pylori infection,
dietary habits (such as high salt and fat intake), chronic gastritis,
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and acid reflux. These factors contribute to chronic gastric mucosal
damage, inflammation, gene mutations, and inactivation of tumor
suppressor genes (Zen et al., 2022). Conventional chemotherapy,
while a mainstay of treatment, offers limited efficacy and is often
associated with significant side effects. Although targeted therapies
and immunotherapies have shown promise, managing GC remains
a considerable challenge (Alsina et al., 2023). Therefore, the urgent
need for novel andmore effective therapeutic approaches to improve
patient outcomes is clear. Recent studies suggest that GC
pathogenesis is primarily driven by cellular metabolic dysfunction
(Zhao et al., 2022).

Lactic acid is a by-product of glucose metabolism under hypoxic
conditions, providing energy and regulating cell function, gene
expression and immune response (Zhang et al., 2022). Emerging
evidence highlights that it is not only a nutrient, but also a signal
molecule, promoting tumor growth, metastasis, drug resistance and
immunosuppressionlactic acid (Apostolova and Pearce, 2022).
Consequently, lactic acid is now recognized as a key signaling
molecule, reshaping the tumor microenvironment (TME) rather
than simply being metabolic waste (Zhou et al., 2022). Lactic acid
can also modify proteins post-translationally, affecting their
functionality (Wang et al., 2023). Similar to other post-
translational modifications, lactylation can alter histones, induce
conformational changes in chromatin, and regulate gene expression
(Qu et al., 2023; Yu et al., 2024). Numerous studies have shown that
lactylation plays a critical role in tumor progression and affects
therapeutic responses by regulating the physiological functions of
tumor cells, stem cells, and immune cells within the TME (Li et al.,
2024a; Yang et al., 2024a). Lactylation-driven gene expression
enhances GC progression and metastasis through the AKT-
mTOR-CXCL1 pathway (Zhao et al., 2024).

Macrophages are the predominant immune cell type within
the TME, exhibiting remarkable plasticity that enables them to
adopt different phenotypes. This process, known as macrophage
polarization, classifies macrophages into classically activated
M1 and alternatively activated M2 types based on their
activation state. M1 macrophages, activated by pro-
inflammatory agents like LPS and IFN-γ, produce cytokines
such as TNF-α, IL-6, and IL-12 to enhance inflammation and
pathogen removal, primarily through the NF-κB pathway via LPS
and TLR4 interaction (He et al., 2024; Yang et al., 2024b). In
contrast, M2 macrophages, induced by IL-4 and IL-13, release
anti-inflammatory cytokines like IL-10 and TGF-β, aiding in
tissue repair, immunosuppression, and tumor growth (Chaterjee
and Sur, 2023). They also secrete CHI3L1 protein, facilitating
gastric and breast cancer metastasis (Chen et al., 2017).
Additionally, gastric cancer cell-derived mesenchymal stem
cells (GC MSCs) can induce M2 polarization, promoting
gastric cancer spread and epithelial-mesenchymal transition
(EMT) (Li et al., 2019).

Lactate metabolism and histone lactation in TME drive
macrophage polarization and tumor progression (Gao et al.,
2025). As an energy source and signal molecule, lactic acid
induces M2 polarization through erk/stat3, which promotes
tumor growth through anti-inflammatory and angiogenic
functions (Zhang et al., 2023; Shi et al., 2022). Tumor cells
release lactate, which is absorbed by tumor-associated
macrophages (TAMs), enhancing M2 polarization and creating a

cycle that promotes tumor growth (Chaterjee and Sur, 2023).
Histone lactylation, such as lysine lactylation (KLA), influences
gene expression linked to macrophage polarization (Gao et al.,
2024). Lactic acid induces histone lactylation at M2-specific gene
promoters (e.g., Arg-1), activating transcription and driving
macrophage transition from M1 to M2 (Qu et al., 2023). Zhao
et al. discovered histone lactylation modification in human breast
cancer cells and macrophages from melanoma and lung tumor
mouse models. This modification correlates with the carcinogenic
potential of M2 macrophages (Zhang et al., 2019). Lactate
metabolism and histone lactylation modification together
influence macrophage polarization and tumor progression. This
study aims to identify prognostic genes related to lactylation and
macrophage polarization in gastric cancer to improve treatment
and prognosis.

This study is the first to integrate macrophage polarization
and lactylation genes, using bioinformatics and machine
learning to identify prognostic genes in gastric cancer (GC). A
risk model including ERCC6L, MYB was developed, considering
immune infiltration and clinical recurrence data. Single-cell
sequencing and functional experiments confirmed the
biological function, offering new insights for personalized
GC treatment.

2 Materials and methods

2.1 Data mining

Transcriptomic data for GC were obtained from The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/).
The TCGA-GC dataset, comprising 350 tumor and 31 normal gastric
tissue samples, was designated as the training set. GSE66229
(GPL570 platform), which includes 300 GC samples and
100 normal samples from GEO, served as the validation set. The
single-cell dataset GSE163558 (GPL24676 platform) included 3 GC
and one normal sample. Thirty-five macrophage polarization-related
genes (MPRGs) were retrieved from the Molecular Signatures
Database (MsigDB) (https://www.gsea-msigdb.org/gsea/msigdb)
(Zhao et al., 2021). Protein lactylation-related genes (PLRGs),
including HDAC1, HDAC2, HDAC3, LRG1, VEGFA, IL10,
EP300, SIRT1, LDHA, LDHB, KAT2A, and GCN5, were collected
from published literature sources (Zhang et al., 2019; Moreno-Yruela
et al., 2022; Wang et al., 2022a; Yu et al., 2021). All data were
downloaded on 2 July 2024.

2.2 Differential expression analysis

Differentially expressed genes (DEGs) between tumor and
normal samples in TCGA-GC were identified using the
DESeq2 package (v1.38.0) (Love et al., 2014), with thresholds set
at adjusted p-value <0.05 and |log2 fold change (FC)| > 1.
Visualization was conducted using the ggplot2 (v3.4.4)
(Gustavsson et al., 2022) and ComplexHeatmap (v2.14.0) (Gu
and Hubschmann, 2022) packages for volcano plots and
heatmaps, respectively.
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2.3 Weighted gene co-expression network
analysis (WGCNA)

GSVA scores for MPRGs and PLRGs were computed using
the GSVA package (v1.46.0) (Hanzelmann et al., 2013). The
Wilcoxon test was applied to assess score differences between
tumor and normal samples (p < 0.05). Gene co-expression
network analysis was performed using the WGCNA package
(v1.7.1) (Langfelder and Horvath, 2008). Sample clustering via
Euclidean distance enabled the exclusion of outliers. A soft-
thresholding power yielding an R2 > 0.9 and near-zero mean
connectivity was selected. Gene adjacency was calculated to
estimate topological similarity, and modules were constructed
using dynamic tree cutting (minimum module size = 100; merge
cut height = 0.3). Modules exhibiting the strongest Spearman
correlation with GSVA scores of PLRGs and MPRGs were
selected. Genes within these modules (|correlation
coefficient| > 0.3, p < 0.05) were defined as key module genes
(Modgenes) for downstream analysis.

2.4 Identification and analysis of
candidate genes

The VennDiagram package (v1.7.3) (Chen and Boutros, 2011)
was used to identify overlapping genes between DEGs and
Modgenes. Functional enrichment of overlapping genes was
performed using the clusterProfiler package (v4.7.1.003) (Wu
et al., 2021), with significance set at p < 0.05. Enrichment results
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were visualized using the GOplot
package (v1.0.2) (Walter et al., 2015). A high-confidence
protein–protein interaction (PPI) network (interaction score =
0.9) was constructed using STRING (https://string-db.org), and
visualized in Cytoscape (v3.8.2) (Liu et al., 2020) following
outlier removal.

2.5 Construction of a risk model

Prognostic relevance of protein-interaction genes was
assessed using univariate Cox regression via the survival
package (v3.5–3) (Lei et al., 2023) (p < 0.01), with results
visualized in a forest plot. The proportional hazards (PH)
assumption was verified prior to LASSO regression analysis
using the glmnet package (v4.1–4) (Li et al., 2022), which was
then used to identify prognostic gene signatures. To clarify the
association between prognostic genes and patient survival,
samples were divided into high and low expression groups
based on the optimal cutoff value of each gene in the training
set. Kaplan-Meier survival curves were plotted using the
survminer package (v 0.4.9) (Liu et al., 2021) to evaluate the
survival differences between the two groups, with a significance
threshold set at p < 0.05. These signatures were incorporated into
a risk model constructed using the formula:
risk score � ∑n

i�1coef (genei) × expr (genei), where β represents
the regression coefficient and x denotes the expression level of the
corresponding gene in each sample.

2.6 Evaluation and validation of prognostic
risk model

In the TCGA-GC dataset, individual risk scores were computed for
each patient to evaluate the prognostic model, with patients stratified
into high- and low-risk groups based on the median score. Risk
distribution and survival status were visualized accordingly.
Kaplan–Meier survival analysis, performed using the survminer
package (v0.4.9) (Liu et al., 2021), compared survival outcomes
between groups. Predictive performance was assessed via time-
dependent ROC curves and corresponding AUC values at 1, 2, and
3 years, generated using the survivalROC package (v1.0.3.1) (Heagerty
et al., 2000). To further evaluate model accuracy, risk plots, survival
status charts, K–Mcurves, and ROC curves were also constructed based
on the risk scores in the validation set GSE66229. Additionally, the
characteristic genes from the studies of Sun et al. (2024) and Yang et al.
(2023) were introduced, and K-M curves and ROC curves were plotted
in both the TCGA-GC dataset and the validation set GSE66229. By
comparing with the model performance of published literature, the
effectiveness and reliability of the prognostic model of this study were
evaluated more comprehensively.

2.7 Independent prognostic analysis and
relationship between risk score and GC
recurrence

A prognostic model for overall survival in patients with GC was
developed by integrating risk scores with clinical variables.
Univariate Cox regression identified seven significant predictors
(p < 0.01), all of which met the PH assumption (p > 0.05). These
variables were subsequently subjected to multivariate Cox regression
to identify independent prognostic factors. A nomogram and
calibration curves were generated using the rms package (v6.5-0)
(Sachs, 2017), while the timeROC package (v0.4) (Blanche et al.,
2013) was used to plot ROC curves at 1, 2, and 3 years. Decision
curve analysis (DCA), conducted with the ggDCA package (v1.2),
further assessed clinical utility (https://www.rdocumentation.org/
packages/ggDCA/versions/). Cancer recurrence was analyzed by
comparing recurrence rates between high- and low-risk groups,
with statistical significance determined using the chi-square test.

2.8 Immune infiltration analysis and
mutation analysis

To investigate differences in the TME, the estimate package
(v1.0.13) (Yoshihara et al., 2013) was employed to compute stromal,
immune, and combined ESTIMATE scores. Intergroup differences
were evaluated via the Wilcoxon test (p < 0.05). Immune cell
infiltration across 22 cell types was assessed using the IOBR
package (v0.99.9) (Zeng et al., 2021) and the CIBERSORT
algorithm (Wang et al., 2022b). Immune cells with significantly
different infiltration levels between risk groups (p < 0.05) were
visualized using box plots. Correlations between prognostic gene
expression and differential immune cell populations were examined
using Spearman correlation analysis (|cor| > 0.30, p < 0.05) via the
psych package (v3.4.4) (Correction to Lancet Psych, 2022, 2023).
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Genomic alterations across risk groups were profiled using the
maftools package (v2.14.0) (Mayakonda et al., 2018). Mutation data
were visualized with waterfall plots depicting the top 20 most
frequently mutated genes in each group.

2.9 Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

To explore gene expression differences between risk groups,
differential expression analysis was conducted using DESeq2
(v1.38.0), with genes ranked by descending log2 FC. Gene set
enrichment analysis (GSEA) was performed via clusterProfiler,
using the c5. go.v7.4. symbols gene set from MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb), applying thresholds of
|NES| > 1 and p < 0.05. Hallmark pathway activity scores for
each sample were computed using the GSVA package (v1.46.0)
(Hanzelmann et al., 2013), with intergroup comparisons evaluated
using the Wilcoxon test (p < 0.05). The psych package (v3.4.4) was
used for Spearman correlation analysis to link prognostic gene
expression to enriched GSVA pathways (|cor| > 0.30, p < 0.05).

2.10 Drug sensitivity analysis

To further investigate chemotherapeutic responses across risk
groups, the pRRophetic package (v0.5) (Geeleher et al., 2014) was
employed to estimate the half-maximal inhibitory concentration (IC50)
values for 138 commonly used chemotherapeutic and targeted agents in
TCGA-GC patient samples. In the high-risk group, the five compounds
exhibiting the most elevated IC50 values and the five with the most
reduced IC50 values were identified. Group-wise differences were
visualized using box plots. Additionally, the ComplexHeatmap
package (v2.14.0) was used to depict the expression patterns of the
top 20 DEGs between risk groups. Chemical structures of the
aforementioned 10 compounds were retrieved from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) for visualization.

2.11 Tumor-related scores analysis

Scores representing angiogenesis, epithelial-mesenchymal
transition (EMT), tumorigenic cytokine activity, and stemness
were obtained from previously published research (Zhang et al.,
2024) and calculated using single-sample gene set enrichment
analysis (ssGSEA). Group differences were evaluated via the
Wilcoxon test, and associations between these indicators and the
risk score were assessed using Spearman correlation analysis.

2.12 Chromosome localization, construction
of gene-gene interaction (GGI) network, and
the expression of prognostic genes

Genomic localization of prognostic genes was analyzed with the
RCircos package (v1.2.2) (Zhang et al., 2013). A gene–gene
interaction (GGI) network was constructed to illustrate
interactions among prognostic genes and their associated

partners. Expression levels of prognostic genes were compared
between tumor and normal tissues in both the TCGA-GC and
GSE66229 datasets using the Wilcoxon test (p < 0.05), providing
robust cross-cohort validation.

2.13 Single-cell RNA sequencing analysis

In order to explore the expression of key genes at the single-cell
level, based on the GSE163558 single-cell sequencing data set, Seurat
package (v 5.2.99.9006) (Butler et al., 2018) was used to integrate and
strictly filter the original data: (1) Cells with the number of
genes <200 or the proportion of mitochondrial genes >10% were
removed; (2) Genes with the number of covered cells <3 were
removed; (3) The capping method was applied to remove
outliers, and abnormal cells with the gene count per cell between
200 and 3,000 and total counts ≥10,000 were retained; (4) Cells with
the proportion of mitochondrial genes >10% were removed. After
data normalization, the “FindVariableFeatures” function was used
to extract 2,000 highly variable genes with the largest variation to
reduce the amount of calculation. PCA analysis was performed on
different samples, and they were sorted according to the variance
percentage of principal components; the JackStrawPlot function was
used to compare the p-value distribution of each PC through the
permutation test method based on the zero distribution, and the first
20 principal components (dims = 20) with p < 0.05 were selected for
subsequent analysis. The FindNeighbors and FindClusters functions
in the Seurat package (v 5.2.99.9006) (Butler et al., 2018) were used
to perform unsupervised clustering analysis on cells, with the
resolution set to 0.4, and the UMAP clustering method was used
to visualize the results. In order to further explore the cell types
specifically contained in each cell cluster, marker genes were
obtained from the reference (Jin et al., 2021) to annotate the cell
clusters, cells in different groups were clustered and the expression
of core genes was presented, and cells with significant differential
expression were regarded as key cells.

In order to understand the biological functions in which the
annotated cells were involved, ReactomeGSA package (v 1.16.1)
(Griss et al., 2020) was used to explore the function enrichment of
each cell in GC samples and control samples and explore the biological
pathways. Subsequently, based on the single-cell data, the R package
CellChat package (2.2.0) (Jiang et al., 2022) was used to analyze the
expression and pairing of cell receptors and ligands and infer the cell-
cell interactions. Finally, based on the key cell clusters, re-dimensionality
reduction and clustering were carried out (dim = 20, resolution = 0.4),
and theMonocle package (2.30.1) (Cao et al., 2019) was used to perform
pseudo-time-series analysis on the key cells and present the expression
of key genes at different time stages.

2.14 Cell culture and quantitative real-time
PCR (qRT-PCR) assay

Human GC cell lines HGC-27, AGS and normal gastricepithelial
cell line GES-1 were obtained from Procell Life Sciences and Suzhou
Hysigen Biotechnology, respectively. HGC-27 and AGS were
cultured in RPMI 1640 medium (Gibco). GES-1 was cultured in
DMEM with high glucose medium (Gibco). The medium all
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FIGURE 1
Candidate gene identification. (A) Volcano plot illustrating the differential expression of DEGs. Each point in the plot represented a gene, where gray
points indicated genes with no significant expression, blue points represented significantly downregulated genes, and red points denoted significantly
upregulated genes; the top 10 upregulated and downregulated genes were labeled. (B) Heatmap displaying expression profiles of DEGs. The lower part
showed the expression heatmap of the top 10 upregulated and downregulated genes across samples, with the horizontal axis representing samples
and the vertical axis representing genes. The blue color above indicated normal samples, and the yellow color represented GC patient samples; within the
plot, yellow indicated high gene expression, and blue indicated low gene expression. The upper part was a density heatmap of the expression levels of the
top 10 upregulated and downregulated genes in samples, displaying lines for the five quantiles and themean. (C) Violin plot comparing PLRGs andMPRGs
between groups. (D, E) Samples clustered into two distinct subtypes with significant divergence; all clusters were retained for downstream analysis. (F)
Determination of optimal soft-thresholding power. (G) Gene dendrogram with corresponding module assignment. The upper part was a hierarchical

(Continued )
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contained 10% fetal bovine serum (Procell) and 1% penicillin-
streptomycin (Solarbio).

RNA was extracted using Trizol (Takara), and cDNA was
synthesized with the RevertAid RT Kit (Thermo Scientific).
Following the instructions, 5 μg of RNA were converted into
10 μL of cDNA. RT-qPCR began with a 15-min pre-denaturation
at 95°C, followed by 30 s at 95°C and 60 cycles at 60°C. The
dissociation and dissolution curves were both conducted at 95°C.
The BIO-RAD CFX96 system performed qRT-PCR, using β-actin as
a reference. Primer sequences are listed in Supplementary Table S1.
RNA expression was analyzed using the 2−ΔΔCT method.

2.15 Tumor samples collection

From September 2022 to April 2024, formalin-fixed paraffin-
embedded tissue samples were collected from 48 GC and adjacent
non-tumor specimens at the First Affiliated Hospital of Kunming
Medical University. All patients underwent radical gastrectomy and
had received no prior anticancer treatments such as targeted therapy
or radiotherapy. Complete clinical data were available for all cases.

2.16 Immunohistochemistry (IHC) analysis

IHCwas performed using anti-ERCC6L (Proteintech, #15688-1-
AP), anti-L-lactyl lysine (PTM-1401RM), and anti-MYB (Bioss, #bs-
5978R) antibodies, following standard protocols (Pan et al., 2021).
Two independent pathologists, blinded to clinical outcomes, scored
the IHC results. Staining intensity was graded as 0 (negative), 1
(weak), 2 (moderate), or 3 (strong), while the proportion of
positively stained cells was scored as 0 (1%–5%), 1 (6%–25%), 2
(26%–50%), 3 (51%–75%), or 4 (76%–100%). The final IHC score
was calculated as the product of intensity and proportion scores.

2.17 Statistical analysis

All statistical analyses were conducted using R software (v4.2.3).
Group differences were assessed using the Wilcoxon test, while RT-
qPCR results were evaluated via ANOVA. A p-value <0.05 was
considered statistically significant.

3 Results

3.1 Identification of candidate genes

Differential expression analysis identified 4,486 DEGs
between GC and normal samples, including 2,117 upregulated

and 2,369 downregulated genes in GC (p < 0.05) (Figures 1A,B).
PLRGs scores were elevated, while MPRGs scores were reduced
in the GC cohort (Figure 1C). WGCNA, performed using a soft
threshold of 6, detected no outliers and constructed a hierarchical
clustering of MPRGs and PLRGs scores (Figures 1D–F), revealing
seven gene modules (Figure 1G). Among these, the MEblue
module demonstrated the strongest correlation with PLRGs
(cor = 0.55, p < 0.05) and MPRGs (cor = −0.491, p < 0.05),
comprising 947 module-related genes (Modgenes) (Figure 1H).
Intersecting the 4,486 DEGs with these Modgenes yielded
428 candidate genes (Figure 1I).

3.2 Functional analysis of candidate genes

Functional enrichment analysis highlighted key biological
processes, pathways, and molecular interactions implicated in
disease mechanisms. Analysis of the candidate genes revealed
430 GO terms—341 biological processes, 63 cellular components,
and 26 molecular functions—including nuclear division,
chromosomal region, and ATP hydrolysis activity (Figure 2A).
Additionally, 199 KEGG pathways were enriched, notably the cell
cycle (Figure 2B). The PPI network constructed from these
candidates comprised 215 nodes and 1,432 edges, resulting in
215 high-confidence protein interaction genes after
filtering (Figure 2C).

3.3 Construction, assessment, and validation
of prognostic risk model

A prognostic risk model was developed to stratify patients with
GC based on multi-omics profiles, facilitating precision medicine
through targeted interventions in high-risk groups. Univariate Cox
regression analysis identified two prognostic genes, MYB and
ERCC6L, both satisfying the PH assumption and retaining
significance in LASSO regression (Figures 3A,B). Further analysis
showed that the optimal expression cutoff value for ERCC6L was
1.256032, based on which the samples were divided into a low-
expression group (164 cases) and a high-expression group
(186 cases). The optimal cutoff value for MYB was 2.973839,
corresponding to a low-expression group (255 cases) and a high-
expression group (95 cases). Kaplan-Meier survival curves indicated
that patients with high expression of ERCC6L and MYB had
significantly longer survival than those with low expression (P <
0.05) (Supplementary Figure S1), suggesting that high expression of
these two genes may be associated with improved prognosis in
gastric cancer patients. The risk score was calculated as: Risk score =
(−0.1602052) × MYB expression + (−0.2663049) × ERCC6L
expression. Samples were stratified by median risk score

FIGURE 1 (Continued)

clustering dendrogram of genes, and the lower part showed gene modules, i.e., network modules. (H) Correlation heatmap between modules and
phenotypes. The color blocks on the far left represented modules, and the color bar on the far right indicated the correlation range. In the central
heatmap, darker colors indicated higher correlation, with red representing positive correlation and blue representing negative correlation; the numbers in
each cell indicated the correlation coefficient and significance. (I) Venn diagram indicating the intersection and quantity of candidate genes.
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(−0.7115388) into high/low-risk groups (175 cases each)
(Figure 3C), with the high-risk group showing poorer survival
(p < 0.05) (Figure 3D). The model yielded AUC values of 0.61 at
1, 2, and 3 years, indicating moderate predictive performance
(Figure 3E). In the validation cohort, 150 GC samples were
similarly stratified (Figure 3F), with survival trends consistent
with the training set (Figure 3G) and AUCs of 0.63, 0.63, and
0.64 at 1, 2, and 3 years, respectively, supporting the model’s
robustness (Figure 3H).In the model comparison analysis
(Supplementary Table S2), Sun et al.’s three-gene model
(COL4A1, SLC16A7, IRAK1) and the two-gene model developed
in this study exhibited comparable predictive performance. In the
TCGA-GC training cohort (Supplementary Figures S2A–S2B),
Sun’s model achieved a C-index of 0.60, with 1, 2, and 3 years
AUC values of 0.65, 0.62, and 0.62, respectively. In the GSE66229
(Supplementary Figures S2C–S2D), Sun’s model maintained a
C-index of 0.60, accompanied by 1, 2, and 3 years AUC values of
0.62, 0.61, and 0.63. Although Yang et al.’s lactylation scoring model
was not directly compared due to methodological differences, the
comparative analysis between Sun’s model and our model revealed
minimal differences in C-index and time-dependent AUC values.
These findings indicated that while maintaining similar predictive
efficacy, our two-gene model potentially offered a more streamlined
clinical application advantage by utilizing fewer genes.

3.4 Clinical characteristics and the
assessment of GC recurrence analysis

Survival analysis using Cox regression was employed to identify
prognostic determinants in GC. Risk score, age, recurrence status,
and M and T stages demonstrated significant associations with
overall survival (Figure 4A). However, recurrence and M stage
violated the PH assumption, limiting their utility in multivariate
modeling. After adjusting for confounders, multivariate Cox
analysis identified risk score, age, and T stage as independent
predictors of overall survival (Figure 4B). A nomogram
incorporating these variables was constructed to evaluate their
cumulative impact on prognosis (Figure 4C), with calibration
curves aligning closely with the diagonal line, indicating high
predictive accuracy (Figure 4D). The nomogram achieved AUC
values of 0.67, 0.70, and 0.66 at 1, 2, and 3 years, respectively,
demonstrating strong predictive performance (Figure 4E). DCA
further confirmed that the nomogram provided greater net
clinical benefit than either the treat-all or treat-none strategies
(Figure 4F). Notably, cancer recurrence rates were significantly
higher in the high-risk group relative to the low-risk
group (Figure 4G).

3.5 Immune infiltration and
mutation analysis

Immune infiltration analysis underscored its pivotal role in GC
progression and prognosis, offering insights into immune-related
therapeutic opportunities. The high-risk group exhibited

FIGURE 2
Functional enrichment analysis of candidate genes. (A, B)GOand
KEGG pathway analyses of candidate genes. Genes were on the left,
and pathways were on the right, with pathway names displayed below.
(C) PPI network construction to explore gene–gene interactions
among candidates. The redder the color was, the higher the
connectivity was.
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significantly elevated immune, stromal, and estimate scores,
suggesting increased immune cell infiltration and TME
complexity (Figure 5A). The composition of 22 immune cell
types was profiled across risk groups, revealing distinct
immunological landscapes (Figure 5B). Significant differences in
immune cell proportions (p < 0.05) were observed between groups,
with 13 immune cell types showing differential abundance,
including regulatory T cells (Tregs) (Figure 5C). Several immune
cell types displayed strong associations with prognostic genes.
ERCC6L expression was negatively correlated with Tregs and
positively correlated with resting NK cells (|cor| > 0.3, p < 0.001)
(Figure 5D), while MYB showed a negative correlation with

monocytes (cor = −0.323, p < 0.001) and a positive correlation
with activated CD4 memory T cells (cor = 0.302, p < 0.001)
(Supplementary Table S3). Gene mutations are critical drivers of
GC pathogenesis, providing mechanistic insights and informing the
development of targeted and personalized therapeutic strategies.
TTN, TP53, and MUC16 represent the most frequently mutated
genes across both risk groups, with missense mutations
predominating (Figures 5E,F). Notably, the high-risk group
exhibited significantly elevated immune and stromal scores,
accompanied by distinct immune cell infiltration patterns and
notable associations between prognostic gene expression and
specific immune cell subsets.

FIGURE 3
Risk model development and validation. (A) Forest plot of prognostic genes, with 95% confidence intervals for hazard ratios; genes with HR > 1 and p
< 0.05 identified as adverse prognostic markers. (B) LASSO regression used to construct a two-gene signature at the optimal λ value. Left panel: LASSO
coefficient spectrum plot. The abscissa was the logarithmof lambdas, and the ordinate was the variable coefficient, with each line representing a gene. As
lambdas increased, the variable coefficients of the genes approached zero. When the optimal lambda was reached, variables with coefficients equal
to zero were excluded. Right panel: Tenfold cross-validation for adjusting parameters in the LASSO analysis. The abscissa was the logarithm of lambdas,
and the ordinate was the model error. (C, F) The risk score of the training and verification sets, respectively. In the upper graph, the abscissa represented
patients, and the ordinate represented risk scores. The risk scores of patients increased from left to right, with yellow dots indicating high-risk patients and
blue dots indicating low-risk patients. In the lower graph, the abscissa represented patients, and the ordinate represented survival time, with yellow dots
indicating deceased patients and blue dots indicating surviving patients. (D, G) Kaplan–Meier survival curves comparing overall survival between groups in
the TCGA and GSE66229 cohorts. (E, H) Receiver operating characteristic (ROC) curves assessing the discriminatory performance of the model in
both datasets.
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FIGURE 4
Forest plots from univariate and multivariate Cox regression analyses, together with nomograms and calibration curves, generated using clinical
parameters and risk scores. (A) Forest plot from univariate Cox regression analysis. (B) Forest plot from multivariate Cox regression analysis. (C)
Nomogram developed using the TCGA cohort. (D) Calibration curves for 1-, 2-, and 3-year survival probabilities. (E) Time-dependent ROC curves at 1, 2,
and 3 years evaluating model predictive accuracy. (F) DCA curves illustrating the clinical utility of the model. (G) Recurrence status comparison
between high- and low-risk patient groups.
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3.6 GSEA and GSVA

GSEA and GSVA are analytical strategies for interrogating
gene expression data, with GSEA identifying statistically
enriched pathways among differentially expressed genes, and
GSVA quantifying gene set activity across individual samples.
These approaches reveal intricate transcriptional signatures,
deepening mechanistic insights into disease biology and
supporting the development of more precise diagnostic and
therapeutic interventions. GSEA revealed 118 enriched
pathways, with the top-ranked including the muscle myosin
complex, elastic fiber assembly, and structural molecule

activity associated with elasticity. In contrast, pathways such
as the DNA replication preinitiation complex, chaperonin-
containing T-complex, and double-strand break repair via
break-induced replication exhibited the lowest enrichment
scores (p < 0.05) (Figure 6A). GSVA identified 18 significantly
altered Hallmark pathways between groups, including
adipogenesis, allograft rejection, and angiogenesis (Figure 6B).
Correlation analysis showed strong positive associations between
ERCC6L (cor = 0.632, p < 0.05) and MYB (cor = 0.314, p < 0.05)
with the mitotic spindle pathway, alongside marked negative
correlations with other signaling cascades (Figure 6C;
Supplementary Table S4).

FIGURE 5
Immune infiltration andmutation differences between groups. (A) The immunescore of high-risk group was significantly lower than that of low-risk
group. (B) Immune cell infiltration in GC patient samples. (C) Differential analysis of immune cells. “ns” represented no significance, “*” represented P <
0.05, and “**” represented p < 0.01, “***” represented p < 0.001, and “****” represented p < 0.0001. (D) Correlations between prognostic genes and
differentially infiltrated immune cells. Red indicated positive correlation, and blue indicated negative correlation. “****” represented p < 0.0001. (E, F)
Waterfall plots illustrating somatic mutation distributions in high-risk (E) and low-risk (F) subgroups.
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3.7 Drug sensitivity

Drug sensitivity testing enables individualized cancer therapy by
aligning pharmacological responses with tumor-specific genetic
profiles, thereby enhancing therapeutic efficacy and safety while
reducing adverse effects. In GC, small-molecule agents are of

FIGURE 6
GSEA and GSVA in high- and low-risk patients. (A) GSEA
enrichment analysis in high/low risk group. At the top was a line chart
of enrichment scores, where each line represented a pathway, and the
peak of each line was the enrichment score of that pathway. The
genes before the peak were the core genes under the gene set of this
pathway. A peak in the upper left corner indicated that the core genes
were mainly upregulated genes based on the differential analysis
between high and low risk groups, while a peak in the lower right
corner indicated that the core genes were mainly downregulated
genes based on the differential analysis between high and low risk
groups. The second part marked the genes located in the gene set
with lines. The third part was the distribution map of rank values for all
genes. (B) GSVA pathway results in high/low risk group. The abscissa
represented samples, and the ordinate represented signaling
pathways. The blue color above indicated the high-risk group, and the
pink color represented the low-risk group. (C) Correlation analysis
revealed associations between prognostic gene expression and
pathway-level alterations. Red indicated positive correlation, and blue
indicated negative correlation. “****” represented p < 0.0001.

FIGURE 7
Chemotherapeutic sensitivity across risk groups. (A, B)
Comparative analysis of chemotherapeutic response demonstrated
differential drug sensitivity profiles between high- and low-risk
groups. “****” represented p < 0.0001. (C) Differential gene
expression analysis between the two risk categories. (D) Three-
dimensional molecular structures of eight candidate therapeutic
compounds identified via the cMap database.
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particular therapeutic significance. A comparative analysis of IC50

values for 138 compounds in two patients with GC identified
92 drugs with statistically significant differences (p < 0.05)
(Supplementary Table S5). Among these, 43 compounds
exhibited elevated IC50 values and 49 demonstrated reduced IC50

values in the high-risk cohort. Notably, AZD.0530, CCT007093,
DMOG, JNJ.26854165, and LFM. A13 showed decreased IC50

values, whereas BI.2536, Epothilone. B, GSK.650394,
GW843682X, and QS11 displayed increased IC50 values in this
group (Figures 7A,B). Expression profiles of the top 40 DEGs
were visualized using a heatmap across risk stratifications

(Figure 7C). Additionally, chemical structures for 10 selected
compounds were retrieved from PubChem (Figure 7D).

3.8 Tumor-related scores analysis

The functional analysis focused on four tumor-associated
biological processes in relation to risk status. Angiogenic activity,
mesenchymal EMT, stemness indices, and tumorigenic cytokine
signatures were markedly elevated in the high-risk group (Figures
8A–D). Angiogenic activity exhibited a significant inverse
association with the risk score (cor = −0.56, p < 0.05), whereas
mesenchymal EMT was positively correlated (cor = 0.44, p < 0.05)
(Figures 8E,F). In contrast, stemness indices and tumorigenic
cytokine levels demonstrated no significant correlation with risk
scores (|cor| < 0.3, p < 0.05) (Figures 8G,H).

3.9 Chromosome localization, GGI network,
and expression validation of
prognostic genes

Chromosomal localization analysis facilitates accurate gene
mapping and detection of genomic clusters and abnormalities
and offers critical insights into evolutionary trajectories and gene
regulation. This approach supports the identification of therapeutic
targets, the advancement of personalized medicine, and the
discovery of diagnostic or prognostic biomarkers. ERCC6L is
located on the X chromosome, while MYB is mapped to
chromosome 6 (Figure 9A). Analysis of GGI networks uncovers
functional associations that illuminate key regulatory pathways and
disease mechanisms. The GGI network identified functional
interactions among prognostic genes, including TP53, HIPK2,
SIM2, ACACA, SIN3A, NLK, RAG2, PLK1, PPID, DHRS2,
BEND3, CDK1, CREBBP, PAX5, MAD1L1, TRHR, MAT2A,
KDSR, CSDE1, and ANPEP, primarily implicating them in the
mitotic cell cycle checkpoint (Figure 9B). Differential expression
analysis revealed consistent overexpression of these genes in GC
samples relative to normal tissues in both TCGA and
GSE66229 datasets (Figures 9C,D).

3.10 The expression of MYB and ERCC6L in
key cell T cells

During the single-cell RNA sequencing analysis, quality control
was carried out on the GSE163558 data set. After data filtering, the
number of cells was 10,418, and the number of genes was 24,162
(Supplementary Figure S3A). After downscaling, the top
2,000 highly variable genes were selected (Figure 10A). PCA
determined the top 20 components for subsequent analysis
(Figure 10B; Supplementary Figure S3B). Through UMAP
clustering, the filtered cells were divided into 19 clusters
(Figure 10C) and annotated as eight cell types, namely Stromal
cell, Epithelial cell, T cell, Mast cell, B cells, Proliferative cell, NK cell,
and myeloid cells (Figure 10D; Supplementary Figure S3C). Among
them, both ERCC6L and MYB had significant differences in T cells
(Figure 10E; Supplementary Figure S3D).

FIGURE 8
Tumor-related scores analysis. (A–D) Significant disparities in
angiogenesis, mesenchymal transition (EMT), tumorigenic cytokine
profiles, and stemness signatures observed between high- and low-
risk patients. “**” represented p < 0.01, and “****” represented p <
0.0001. (E–H) Correlation assessments indicated strong associations
between risk scores and tumor-promoting molecular features,
including angiogenic activity, EMT, cytokine production, and
stemness potential.
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Cell-cell communication mediated by ligand-receptor
complexes is crucial for coordinating various biological processes
such as development, differentiation, and inflammation. Cell
communication analysis showed that in the control group, the
Proliferative cell-NK cell interaction was dominant, while in the
GC group, the Stromal cell-NK cell interaction was the strongest. It
is worth noting that in both groups, the number of T cells was
relatively large (Figures 11A,B). In the training set, ERCC6L and
MYB were significantly positively correlated with T cells
CD4 memory activated; and in the single-cell data, both ERCC6L
and MYB had significant differences in T cells, so we selected T cells
as the key cells. Clustering analysis of the top 20 principal
components in T cells revealed 12 subgroups (Supplementary

Figure S4), and their cell differentiation trajectories are shown in
Figure 11C. With the development of time, the expression of the
MYB gene first decreased, then increased and then decreased again,
and fewer cells expressed the ERCC6L gene in T cells (Figure 11D).

3.11 Verification of gene expression from
cells and tissues

Immunohistochemical analysis showed intensified staining
of ERCC6L, MYB, and Kla in GC tissues relative to adjacent
normal tissues, as depicted in representative images (scale bar:
200 μm) (Figures 12A,B). Quantitative evaluation using staining

FIGURE 9
Chromosomemapping, GGI network, and expression validation of prognostic genes. (A)Genomicmapping illustrating chromosomal distribution of
prognostic genes. (B) GGI network delineating interrelationships among prognostic candidates. (C, D) Expression levels of these genes assessed in the
TCGA-GC cohort (C) and validated in the GSE66229 dataset (D). “****” represented p < 0.0001.
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scores (range: 0–12) confirmed significantly higher protein
expression levels in GC specimens compared to matched non-
tumor controls (n = 48, p < 0.001) (Figure 12C). Correlation
analysis revealed a positive association between ERCC6L and Kla,
as well as between MYB and Kla (Figure 12D). We conducted a
qPCR experiment on 7 pairs of cancerous and adjacent tissues,
finding that ERCC6L and MYB expression was significantly
higher in gastric cancer tissues (Figure 12E). In vitro
experiments demonstrated elevated mRNA expression of
ERCC6L and MYB in human gastric adenocarcinoma AGS
and HGC-27 cells compared to normal gastric epithelial GES-
1 cells (Figure 12F).

4 Discussion

GC remains a significant global health burden, driven by a
multifactorial etiology involving dietary patterns,H. pylori infection,
and environmental exposures (Smyth et al., 2020). Emerging
evidence suggests that tumor-derived metabolites modulate
peripheral immune cell function, thereby impairing antitumor
immunity. In particular, lactic acid metabolism has garnered
attention for its role in tumor bioenergetics and immune evasion
(Yang et al., 2022). Protein lactylation, a modification mediated by
lactic acid, facilitates the polarization of macrophages toward the
immunosuppressive M2 phenotype, thereby dampening antitumor

FIGURE 10
Quality control of single-cell data and cell annotation to identify key genes. (A) Screening of highly variable genes. Red dots represented highly
variable genes, and the names of the top 10 genes were labeled. (B) Result graph of principal component analysis. The left side was the JackStraw graph,
and the right side was the principal component inflection point graph. (C) Cell UMAP clustering graph. Different colors represented different clusters. (D)
Cell-annotation UMAP graph. Each color represented a type of cell. (E, F) Expression of core genes in different cells. “ns” represented no significance,
“*” represented p < 0.05, and “**” represented p < 0.01.
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immune responses within the TME (Fan et al., 2023; Piao et al.,
2022). Although individual studies have explored macrophage
polarization and protein lactylation in cancer, no prior research
has integrated these pathways using bioinformatic approaches to
identify prognostic genes in GC. Addressing this gap may provide a
theoretical framework for future clinical applications.

This study leveraged GC transcriptomic data from TCGA to
identify 428 genes linked to both protein lactylation and
macrophage polarization, distinguishing expression profiles
between tumor and normal tissues. Through univariate Cox
regression and machine learning algorithms, MYB and ERCC6L
were identified as prognostically relevant genes. A predictive model
was subsequently constructed to evaluate their clinical utility,

offering novel insights into risk stratification and therapeutic
response prediction in GC.

This study using the ssGSEA algorithm found that gastric cancer
tissues exhibit a high PLRGs score and low MPRGs score,
highlighting a synergy between metabolism and immune
regulation. The elevated GSVA score for lactylation-related genes
suggests these genes are upregulated in gastric cancer, indicating
lactylation’s potential role in the disease’s progression (Sun et al.,
2024). Additionally, the low macrophage score in gastric cancer
implies a decrease in anti-tumorM1macrophages and an increase in
tumor-promoting M2 macrophages (Ge and Wu, 2023). Elevated
lactate levels indicate increased glycolytic metabolism in tumor cells,
promoting gastric cancer progression through two mechanisms.

FIGURE 11
Cell communication and pseudotime-sequence analysis. (A)Cell communication analysis in the normal group. The left side was plotted by number,
and the right side was plotted by weight. Different colors represented different cell types. The thickness of the lines represented the number/intensity of
cell-cell interactions. The thicker the line, the more/stronger the cell-cell interactions. (B) Cell communication analysis in the tumor group. (C) Cell
differentiation trajectory graph. Each dot in the graph represented a cell. The numbers in the black circles represented the nodes for determining
different cell states in the trajectory analysis, and the color shade was used to represent the order of pseudotime. (D) Dynamic expression profiles of key
genes in T-cells.
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First, lactate acts as a metabolic signal, activating cancer-promoting
genes like MYC via histone lactylation modification and enhancing
DNA repair gene expression, leading to chemoradiotherapy
resistance (Zhang et al., 2019; Sun et al., 2025). Second, lactate
induces macrophages to polarize to the M2 phenotype via the ERK/
STAT3 pathway (Mu et al., 2018). M2 macrophages express factors
like arginase-1 and VEGFA, promoting angiogenesis,
immunosuppression, and metastasis, while reducing the
proportion of anti-tumor M1 macrophages (Ge and Wu, 2023).
The abnormal activation of the “metabolism-appearance-
immunity” axis creates a vicious cycle in the gastric cancer
microenvironment, where high lactylation boosts
M2 polarization, which in turn sustains metabolic abnormalities.
The ERCC6L and MYB genes could serve as prognostic markers by
strengthening the link between lactylation modification and
M2 polarization, offering a new target for anti-tumor strategies
aimed at the “lactate metabolism-macrophage polarization” axis.

In this study, MYB and ERCC6L were identified as prognostic
genes. ERCC6L, which encodes an ATP-dependent DNA helicase, is
involved in DNA tension sensing and Holliday junction branch
migration (Baumann et al., 2007; Biebricher et al., 2013). It has
cancer promoting activity in a variety of cancers, such as promoting
the progression of hepatocellular carcinoma by activating PI3K/Akt
and NF-κB signaling pathways (Chen et al., 2020). It is noteworthy
that the activation of PI3K/Akt pathway can reshape the glucose
metabolism state of cells (Wang et al., 2024), and its end product
lactic acid can mediate histone lactation modification, and then

regulate gene expression (Liberti and Locasale, 2020), which
suggests that ERCC6L may indirectly affect histone lactation level
through PI3K/Akt metabolic reprogramming axis, and then reshape
the tumor microenvironment. In addition, the NF-κB pathway
activated by ERCC6L may promote the polarization of pro-
inflammatory M1 macrophages (Li et al., 2023). On the other
hand, it may indirectly induce M1/M2 polarization of
macrophages by affecting the metabolism and cytokine secretion
of tumor cells (Shen et al., 2023). However, it is worth noting that the
univariate Cox regression analysis of this study showed that its high
expression was associated with the longer survival time of patients
(HR = 0.664), suggesting that it has both cancer promoting and
tumor inhibiting functions, similar to the “double-sided” genes such
as SPDEF (Ye et al., 2020; Shen et al., 2018). At the same time, the
expression analysis results of ERCC6L in the training set and
validation set were consistent with the results of RT-qPCR, and
the expression level was high in tumor cells, which further verified
the reliability of the results, and its dual role also suggested that
ERCC6L might become a potential target. In conclusion, the
functional contradiction of ERCC6L gene in tumorigenesis and
development needs to be further explored in order to develop
treatment strategies.

MYB is a transcription regulator crucial for hematopoietic
regulation and is classified as an oncogene due to its link to
leukemia and lymphoma. It regulates the proliferation and
differentiation of hematopoietic progenitor cells. The CD36-
BATF2/MYB trait predicts anti-PD-1 response in gastric cancer

FIGURE 12
Validation of gene expression from cells and tissues. (A) Immunohistochemical analysis of Kla, MYB, and ERCC6L protein expression in gastric
carcinoma samples. (B, C) Comparative immunohistochemistry of gastric cancer tissues and matched adjacent non-tumorous tissues, including
representative images and statistical summaries (n = 48). “****” represented p < 0.0001. (D) Linear regression and Pearson correlation analyses evaluating
the relationship between Kla and MYB/ERCC6L expression in tumor tissues. (E) qPCR detection of ERCC6L and MYB expression in gastric cancer
samples (n = 7), the results showed that the expression in gastric cancer tissues (T) was higher than that in normal tissues (N). ***p < 0.001. (F) RT-qPCR
results confirming MYB and ERCC6L transcript levels in AGS, HGC-27 and GES-1 cell lines. “**” represented p < 0.01, and “****” represented p < 0.0001.
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(GC) (Jiang et al., 2023; Ducka et al., 2021). This study found high
MYB expression in GC tissues, with poor prognosis linked to low
expression, similar to breast cancer. However, MYB’s specific role in
GC, particularly regarding cell proliferation, metastasis, and
immune escape, remains unclear and requires further research
(Knopfova et al., 2018). Overall, ERCC6L and MYB have
significant biological and clinical roles in various tumors, but
their expression and prognostic value differ by tumor type.
Studying their mechanisms in various tumors and interactions
with genes and pathways is crucial for advancing tumor
diagnosis and treatment strategies.

The dual gene risk model based on ERCC6L and MYB showed
significant prognostic stratification ability in the training set
(TCGA-GC) and validation set (GSE66229). This model only
needs to calculate the risk score through the expression level of
two genes. Compared with polygene panel or whole transcriptome
analysis, it may have higher economic benefits and certain clinical
transformation potential. The high expression of ERCC6L andMYB
may be associated with the improvement of patients’ survival,
suggesting that ERCC6L and MYB may play a potential
protective role by inhibiting tumor progression or enhancing
treatment sensitivity. This hypothetical biological mechanism has
also been preliminarily verified in the experiment: the expression
levels of the two genes may be related to lactate metabolism in the
tumor microenvironment (verified by Kla modification) and
M2 macrophage polarization (immune infiltration analysis),
revealing the mechanism of immune metabolism regulation
behind the model. Although the model contains only two genes,
its predictive efficiency (AUC>0.6) is equivalent to some more
complex molecular models (Sun et al., 2024), and it can predict
the recurrence risk independently of TNM staging. This may
provide a potential tool with simplicity, operability and
mechanism explanation for the individualized diagnosis and
treatment of gastric cancer.

The cancer recurrence rate was notably higher in the high-risk
group than in the low-risk group (p < 0.05), highlighting the model’s
ability to predict survival outcomes and reflect tumor behavior
differences. Although the model’s AUC value wasn’t very high,
its stability in validation and analysis with clinical features like T
stage and age suggests potential clinical use. The nomogram-based
prognosis system combines risk scores with clinical indicators for
better patient management in gastric cancer. Future large-scale
studies and experiments are needed to confirm the model’s
applicability.

The TME, widely recognized for its critical role in cancer
progression—including proliferation, invasion, and metastasis
(Arner and Rathmell, 2023)—showed a strong association with
the identified prognostic signature. Elevated immune cell
infiltration was observed in the high-risk group, particularly
involving memory B cells, resting memory CD4+ T cells, Tregs,
monocytes, resting dendritic cells, and resting mast cells. In GC,
immune cell dynamics substantially influence tumor progression.
The differentiation of activated memory CD4+ T cells has been
linked to patient prognosis (Sun et al., 2023), while memory B cells
contribute to the formation of tertiary lymphoid structures (TLS),
which correlate with favorable immunotherapy responses in solid
tumors (Hu et al., 2024). Tregs undermine antitumor immunity and
facilitate tumor progression in GC (Negura et al., 2023). Monocytes

recruited into the TME frequently differentiate into
M2 macrophages, promoting tumor growth (Xu et al., 2022).
Although dendritic cells are expected to prime T-cell responses,
their immunostimulatory functions are often suppressed within the
TME, diminishing immune surveillance (Heras-Murillo et al., 2024).
Mast cells, associated with increased microvessel density and tumor-
associated macrophage markers, are inversely correlated with
patient survival (Eissmann et al., 2019). Collectively, these
immune components contribute to immune evasion and
metastatic progression.

Chemoresistance remains a major obstacle in the treatment of GC,
significantly contributing to its elevated mortality rate (Zen et al., 2022).
Stratifying patients based on chemosensitivity may optimize therapeutic
efficacy by identifying subpopulations more likely to benefit from
standard chemotherapy. In the present study, individuals classified as
high-risk demonstrated increased sensitivity to AZD.0530, CCT007093,
DMOG, JNJ-26854,165, and LFM-A13. AZD.0530, originally developed
as a tyrosine kinase inhibitor, has undergone multiple clinical trials with
limited success across various malignancies (Li et al., 2024b; Hennequin
et al., 2006). CCT007093 acts as a selective WIP1 phosphatase inhibitor
(Buss et al., 2012). Dimethyloxalylglycine (DMOG) functions by
nonspecifically stabilizing hypoxia-inducible factor 1, as shown in
numerous preclinical models (Imran Khan, 2022). JNJ-26854,165 is a
novel chemotherapeutic agent that activates p53 and concurrently
inhibits human double minute protein 2 (HDM2) (Chargari et al.,
2011). LFM-A13, the first small-molecule inhibitor of Bruton’s tyrosine
kinase (BTK), has demonstrated efficacy in curbing tumor growth
(Mahajan et al., 1999), with additional anti-proliferative and pro-
apoptotic effects observed in breast cancer models (Rozkiewicz et al.,
2020). Currently, these drugs lack enough clinical validation for GC
treatment. More studies are needed to confirm their effectiveness and
safety, aiming to offer precise, personalized treatment for high-
risk patients.

In conclusion, this study introduces a novel prognostic signature
based on protein lactylation and macrophage polarization, capable of
reliably predicting outcomes in GC. The findings establish a
mechanistic and predictive foundation, highlighting the relevance of
protein lactylation and macrophage polarization in the prognostic
landscape of GC. This work may inform future development of
targeted clinical interventions. Our study has several limitations: a
single Kla gene doesn’t fully represent the lactylation modification
network; secondly, although the potential roles of ERCC6L andMYB in
the association between emulsification modification and macrophage
status were found, the mechanism hypothesis in the current study was
still speculative and lacked direct functional evidence; and despite an
AUC value over 0.65, the model’s accuracy and discrimination need
improvement. In the future, we plan to use three cell lines to construct
in vitro validation, overexpression/gene knockout and other functional
experiments to verify the existing hypothetical mechanisms, and further
analyze the specific molecular mechanisms of ERCC6L andMYB genes
in emulsification modification and macrophage state regulation.
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