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Objective: RNA methylation modifications play biological roles in tumorigenicity
and immune response, mainly mediated by the “writer” enzyme. Lung
adenocarcinoma (LUAD) development is closely related to RNA methylation.
Here, the prognostic values of the “writer” enzymes and the tumor
immunosurveillance in LUAD aim to provide new theoretical references for
the research of LUAD.

Methods: Genes associated with RNA methylation writer protein in LUAD were
identified using The Cancer Genome Atlas Program (TCGA) data and weighted
gene co-expression network analysis (WGCNA). Independent prognostic factors
were screened by Cox regression and least absolute shrinkage and selection
operator (LASSO) regression analyses. A prognostic risk model and a nomogram
were established using these genes. Moreover, Gene Set Enrichment Analysis
(GSEA) and CIBERSORTx were used to analyze the immune cell infiltration and
enrichment pathways in the low- and high-risk groups, respectively. In addition,
genes’ potential functions and regulatory mechanisms were explored through
gene-gene interaction (GGI) networks and competing endogenous RNA
(ceRNA) networks.

Results:We selected 202 genes associated with RNAmethylation writer proteins,
from which we identified the three genes (CLEC3B, GRIA1, and ANOS1). A
prognostic risk model was constructed based on genes associated with RNA
methylation writer proteins and stage, demonstrating reliable predictive
performance. GGI analysis revealed GRIA1 as a crucial gene. Enrichment
analysis revealed that the high-risk group had upregulated pathways
connected to cell division. Additionally, immune infiltration analysis revealed
that the significantly higher levels of NK cells, activated mast cells, activated
CD4 memory cells, and M0 and M1 macrophages displayed in the high-risk
group, while the significantly lower levels of monocytes, dendritic cells,
M2 macrophages, and inactive CD4 memory cells were in the low-risk
group. Moreover, Spearman correlation analysis demonstrated that the three
prognostic genes and risk scores correlated highly with various immune cells.

Conclusion: This study identified three prognostic genes related to RNA
methylation writer proteins in LUAD. A reliable prognostic model was
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constructed. The identified prognostic genes also play significant roles in immune
cell infiltration in LUAD. This study provides new theoretical references for
subsequent in-depth research on LUAD.
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality
globally, with lung adenocarcinoma (LUAD) being the primary
pathological subtype, characterized by high mortality and poor
prognosis (Sung et al., 2021; Nicholson et al., 2022). Current
treatment strategies offer a dismal survival rate, with fewer than
20% of patients with LUAD surviving beyond 5 years (Sung et al.,
2021). Despite advancements in diagnostic techniques and the
development of targeted therapies, the effectiveness of treatment
remains limited, as drug resistance often undermines therapeutic
outcomes (Dong et al., 2019). Therefore, identifying novel
biomarkers and therapeutic targets and improving the
understanding of molecular mechanisms is crucial for the early
diagnosis, prognosis, and treatment of LUAD.

Over nearly a decade of research, it has become evident that the
accumulation of both genetic and epigenetic alterations drives
cancer progression. While somatic genetic aberrations, such as
mutations and copy number variations, are critical in
tumorigenesis, epigenetic changes occur more frequently and play
a more significant role than somatic mutations (Brzezianska et al.,
2013). LUAD, in particular, is characterized by the accumulation of
epigenetic alterations in the respiratory epithelium (Dumitrescu,
2012). Among the various types of epigenetic modifications, RNA
and DNA methylation modifications are of paramount importance
(Jones et al., 2016). With the rapid development of specific
antibodies and high-throughput sequencing technologies, over
100 different chemical modifications in cellular RNAs have been
identified (Barbieri and Kouzarides, 2020). Increasing evidence
suggests dynamic RNA modification pathways are closely linked
to key processes such as lung cancer cell proliferation, invasion,
metastasis, and other biological behaviors (Diao et al., 2023; Liu
et al., 2020; Roundtree et al., 2017). RNAmethylation, especially N6-
methyladenine (m6A), is a common epigenetic modification that
plays a key role in regulating gene expression by affecting RNA
stability, splicing, translocation, and translation (Han et al., 2023;
Luan et al., 2022).

RNA methylation modifications are dynamically and reversibly
regulated by three independent components: “writers,” “erasers,”
and “readers.”Writer enzymes such as METTL3 and METTL14 can
catalyze RNA methylation modifications by adding methyl groups
to specific RNA sites, thereby “writing” methylation information
(Zhang et al., 2023). Like members of the YTHDF family, reader
enzymes specifically recognize and bind to methylationmodification
sites, further converting modification information into downstream
regulatory pathways that affect RNA metabolism (Lan et al., 2021).
Eraser enzymes, such as FTO and ALKBH5, remove the methylation
groups and reverse methylation modifications for dynamic
regulation (Zhang et al., 2021). In LUAD, aberrant expression of

these enzymes may affect the proliferation, migration, and invasion
of LUAD tumor cells (Huan et al., 2020; Wang et al., 2021).

Meanwhile, RNAmethylation significantly impacts immune cell
activity, and its role in LUAD is particularly critical. Taking the
common m6A methylation as an example, it regulates immune cell
development, differentiation, and function. In the case of T cells,
m6A modification affects their activation and differentiation and
shapes the strength of the anti-tumor immune response (Qin et al.,
2024). The altered polarization state of macrophages after RNA
methylation modification affects phagocytosis and the killing of
tumor cells (Wu et al., 2022). The ability of dendritic cells to take up,
process, and present tumor antigens is also regulated by RNA
methylation (Ke et al., 2022).

In addition, researchers have previously explored RNA
methylation in LUAD. Wang et al. found that four RNA
methylation-modified immune molecule subtypes (RMM-I1,
RMM- I2, RMM-I3, and RMM-I4) were presented in LUAD
(Wang and Shu, 2024). Yang et al. showed that m6AlncRNAs
are a reliable prognostic tool that can aid in therapeutic decision-
making in ‘driver-gene-negative’ LUAD (Yang et al., 2023). In
addition, Li et al. found that methylation-driven lncRNAs and
mRNAs contribute to LUAD survival, and four of the lncRNAs
and eight of the mRNAs may be potential biomarkers of LUAD
prognosis (Li et al., 2019). However, none of these studies have
examined RNA methylation writing to proteins.

Thus, this study investigated the prognostic value of RNA
methylation writing proteins in LUAD and developed a
prognostic prediction model. The potential regulatory
mechanisms and immune cell infiltration were also explored,
providing a theoretical foundation for individualized treatment
strategies in LUAD. udies, which have examined RNA
methylation writing to proteins.

2 Materials and methods

2.1 Data selection

Clinical features, survival data, and RNA-seq transcriptome
information for LUAD were obtained from the UCSC Xena
TCGA database and served as the training set. The training set
comprised 585 cases, including 526 LUAD tumor samples and
59 adjacent normal lung tissue samples. The GSE50081 dataset
(GPL570) from the GEO database was used for validation set 1.
There were a total of 181 samples in this dataset. This study selected
all samples and their matched survival information for subsequent
analysis. GSE72094 (GPL15048) was used as validation set 2, which
contains 389 LUAD tumor samples. Additionally, 27 RNA
methylation writer genes were selected based on previous studies.
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2.2 Identification of LUAD-associated genes
related to RNA methylation writer proteins

Differentially expressed genes (DEGs) between LUAD and
control samples were analyzed using the “Deseq2” R package,
with a threshold of |log2FC| > 1 and p-value <0.05. Scores of
RNA methylation writer protein-related genes were computed
using single-sample gene set enrichment analysis (ssGSEA) (P <
0.05), with high scores serving as phenotypic traits to assess
correlations with gene modules. Kaplan-Meier (KM) survival
curves were utilized to evaluate the association of RNA
methylation writer proteins with patient survival (P < 0.05). A
scale-free co-expression network was constructed from the training
set using the “WGCNA” R package, based on the 27 RNA
methylation writer genes. Specifically, the “hclust” function was
first used for hierarchical clustering to check for outliers in the
samples, and the outlier samples were removed. Then, the optimal
soft threshold was set according to the scale-free fit index (signed
R2) and the average connectivity (close to 0). Subsequently, genes
were divided into different modules according to the criteria of the
hybrid dynamic tree-cutting algorithm. The minimum number of
genes in each gene module was set to 100. A correlation analysis was
conducted between the gene modules and the RNA methylation
writing scores, and the module with the highest correlation was
selected as the gene-related module for RNA methylation writing.
Finally, the genes within the modules were screened based on the
criteria of |gene significance (GS)| > 0.2 and |module membership
(MM)| > 0.7. The intersection of DEGs and WGCNA-related RNA
methylation writer genes was considered candidate genes.

2.3 Enrichment analysis and PPI network
construction

The R package “clusterProfiler” (adj.p < 0.05) was used to
conduct enrichment analysis of candidate genes for the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO). To explore the protein interactions among
the candidate genes, a protein-protein interaction (PPI)
network was built through the STRING database
(confidence value >0.4).

2.4 Developing a nomogram and risk model
using biomarkers

Prognostic data and the expression profiles of genes related to
RNA methylation writer proteins were merged, and univariate Cox
regression analysis from the “survival” R package was applied to
examine the relationship between gene expression and prognosis
(P < 0.05). Genetic screening was conducted using the proportional
hazards (PH) hypothesis test (P > 0.05) based on univariate Cox
results. The genes that had passed the univariate Cox regression
analysis and the PH test were subjected to the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis. LASSO achieved feature selection by shrinking the
coefficients to 0, ensuring the sparsity and generalization ability
of the model. Ten-fold cross-validation was performed, and genes

were selected according to the lambda. min value. Subsequently, the
risk model was constructed. First, the risk score was calculated using
the weighted regression coefficients and the linear combination of
expression levels as follows: Risk score = Σ (ExpmRNAn ×
βmRNAn). Among them, “Exp” represented the expression level
of the corresponding gene, and “β” was the regression coefficient of
the corresponding gene.

The patients in the training and validation sets were divided into
high-risk and low-risk groups according to the median of the risk
scores. A risk curve was constructed based on these scores. KM
analysis and the log-rank test assessed survival differences between
the high-risk and low-risk groups. To evaluate the prognostic utility
of the risk model, time-dependent receiver operating characteristic
(ROC) curves and the associated area under the curve (AUC) values
were calculated for both the training and validation sets (AUC >0.6).
Meanwhile, a heat map of the expression levels of prognostic genes
between the high-risk and low-risk groups was drawn to understand
the expression differences of prognostic genes between the high-risk
and low-risk groups. Univariate Cox regression analysis (Hazard
Ratio (HR) ≠ 1, P < 0.05) and PH test (P > 0.05) were performed on
risk score, age, gender, and stage. Subsequently, factors that passed
the univariate Cox regression analysis and PH test were subjected to
multivariate Cox regression analysis (HR≠1, P < 0.05) to identify
independent prognostic factors. Based on independent prognostic
factors, in the training set, the “rms” package was used to construct a
nomogram model for predicting the 1-year, 3-year, and 5-year
survival rates of LUAD patients. To evaluate the predictive
performance of the nomogram model, the calibration curve of
the nomogram model was plotted, and decision curve analysis
(DCA) was conducted.

2.5 GSEA

To reveal the distinctions between the two risk groups’
participation in signaling networks and pertinent biological
processes, GSEA was performed. First, the “msigdbr” package in
R language was used to download the GO gene sets
(c5.go.bp.v2023.2. Hs.symbols) and KEGG gene sets (C2: KEGG
gene sets) as the background sets. Subsequently, a differential
analysis was conducted between the high-risk and low-risk
groups, and the log2FC values were calculated. Then, the genes
were ranked in descending order according to the log2FC values.
Finally, the GSEA function in R language was used to perform
GSEA (adj.P < 0.05).

2.6 Analysis of immune cell

Immune cell infiltration in the training set was analyzed using
the CIBERSORTx algorithm to assess the role of prognostic
biomarkers in the LUAD immune microenvironment. Samples
enriched with significant immune cell populations (P < 0.05)
were selected based on their immune cell infiltration levels. The
Wilcoxon test was applied to compare immune cell enrichment
scores between the high-risk and low-risk groups (P < 0.05). A total
of 1,000 permutation tests were conducted to evaluate the reliability
of the analysis results. To further explore whether the biomarkers
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FIGURE 1
Identified RNA methylation writer proteins-related genes. (A) Volcano plot of DEGs. Each dot represents a gene, red and blue dots represent
upregulated and downregulated genes, respectively. There were a total of 4,951 DEGs, among which 3,156 were upregulated and 1795 were
downregulated. (B,C) Heatmap of the four gene modules most correlated with RNA methylation writer proteins. (D) Venn diagram showing the
202 candidate genes related to RNA methylation writer proteins. (E) GO analysis of candidate genes. The size of the box indicates the number of
genes included, and the color indicates significance. (F) KEGG analysis of candidate genes. The circle represents the enriched KEGG pathway, and the
outer circle is the gene enriched in that pathway. (G) PPI network revealing 61 gene nodes. DEGs, differentially expressed genes; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-Protein Interaction.
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and risk scores could predict the infiltration of immune cells during
disease progression, Spearman’s correlation analysis was performed
using R software to evaluate the relationships between the immune
cells with differential immune enrichment scores between the high-
risk and low-risk groups and the biomarkers.

2.7 GGI analysis and ceRNA network

GeneMANIA (http://genemania.org) was used to construct a
gene-gene interaction (GGI) network for the biomarkers to explore
the potential functional roles of prognostic biomarkers. Specifically,
the gene names were entered into the database, and then the species
“Homo sapiens” was selected for the construction of the GGI
network. The regulatory network of biomarkers was also
constructed using a competing endogenous RNA (ceRNA)
network, incorporating miRNAs and lncRNAs. miRNAs involved
in regulating biomarker expression were predicted using the miRDB
and Targetscan databases, while related lncRNAs were identified
using the Starbase database. Finally, the Cytoscape software was
used to visualize the ceRNA network.

3 Results

3.1 Identified RNA methylation writer
proteins-related genes

Several analyses were conducted to identify genes associated
with RNA methylation writer proteins. Initially, DEGs between the
LUAD and normal groups were extracted from the training set,
revealing 4,951 DEGs, with 3,156 upregulated and
1795 downregulated (Figure 1A). The ssGSEA scores were
calculated based on 27 methylation writer genes, demonstrating a
significantly higher level of RNA methylation writing in LUAD
tissue compared to normal tissue (Supplementary Figure S1A).
Survival analysis via the Kaplan-Meier curve revealed that
patients with elevated RNA methylation writing had poorer
survival outcomes than those with lower levels (Supplementary
Figure S1B). WGCNA, using these scores as phenotypic traits,
identified four significant modules, with the most strongly
correlated module comprising 202 genes associated with RNA
methylation writer proteins (Figures 1B, C). The intersection of
DEGs and WGCNA led to identifying 202 candidate
genes (Figure 1D).

GO and KEGG enrichment analyses explored the functional
roles and pathways of these candidate genes in LUAD
progression. GO analysis revealed significant enrichment in
biological processes (BP), such as vasculogenesis, heart
morphogenesis, and endothelium development; cellular
components (CC), including the external side of the plasma
membrane and focal adhesion; and molecular functions (MF),
such as transmembrane receptor protein kinase activity
(Figure 1E). KEGG analysis indicated involvement in
pathways related to cell adhesion molecules and adherens
junctions (Figure 1F). The PPI network, constructed using the
STRING database, identified 61 gene nodes, suggesting that these
genes play a pivotal role in LUAD (Figure 1G).

3.2 Establishment and validation of
prognostic risk model

Prognostic genes were selected from the 202 candidate genes
using univariate Cox regression analysis, resulting in 118 genes.
LASSO regression further refined the list to 9 characteristic genes.
Multivariate Cox regression, based on the Akaike Information
Criterion (AIC), identified three prognostic genes (they were all
risk factors for LUAD)—CLEC3B (HR = 0.83), GRIA1 (HR = 0.55),
and ANOS1 (HR = 0.84)—which were subsequently used to
construct a prognostic risk model (Figure 2A). The risk score
formula is as follows: Risk score = CLEC3B × (−0.183) +
GRIA1 × (−0.593) + ANOS1 × (−0.175). Patients were stratified
into high-risk and low-risk groups according to the median risk
score (training set: −0.954; validation set 1: −4.13; validation set 2:
−5.87). The analysis revealed that the high-risk group exhibited
significantly higher mortality rates (Figures 2B, C; Supplementary
Figure S2A) and lower survival rates in both training and validation
cohorts (P < 0.05) (Figures 2D, E, Supplementary Figure S2B). The
model’s prognostic accuracy for LUAD was confirmed by ROC
curve analysis, with AUC values of approximately 0.65 for 1-, 3-, and
5-year survival in the training set, near 1 in the validation set 1, and
approximately 0.67 in the validation set 2 (Figures 2F, G;
Supplementary Figure S2C). The AUC values of the ROC curves
for 1-, 3-, and 5-year in both the training set and the validation set
were all greater than 0.6, indicating that the prediction effect of the
risk model was good. Furthermore, CLEC3B, GRIA1, and
ANOS1 all had higher expression levels in the low-risk group
(Supplementary Figure S3).

3.3 Prognostic risk assessment of
LUAD patients

A nomogram incorporating risk scores and clinicopathological
features was developed to predict the risk and survival of patients
with LUAD. Both risk score and tumor stage were found to be
independent prognostic factors in univariate and multivariate Cox
regression analyses and were included in the nomogram (Figures
3A, B). This nomogram estimates the 1-, 3-, and 5-year survival
probabilities for patients with LUAD based on risk score and tumor
stage (Figure 3C). Calibration curves indicated that the observed
overall survival (OS) closely matched the predicted OS for 1-, 3-, and
5-year intervals, demonstrating the nomogram’s accuracy
(Figure 3D). Decision curve analysis (DCA) revealed that the
nomogram provided more significant net benefits compared to
individual factors, further validating its predictive
accuracy (Figure 3E).

3.4 Enrichment pathways for different
risk groups

GSEA was performed to identify functional variations between
risk groups. In the high-risk group, GO enrichment analysis revealed
the upregulation of functions related to chromosome segregation,
mitosis, and meiosis (Figure 4A). Conversely, the low-risk group
showed enhanced functions associated with axoneme assembly,
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FIGURE 2
Establishment and validation of the prognostic risk model. (A) Forest plots displaying prognostic genes identified through univariate andmultivariate
Cox regression. Three prognostic genes, CLEC3B, GRIA1, and ANOS1, were identified. They were all protective factors for LUAD. The significance level is
set at P < 0.05. (B) Risk scores and survival time distribution for patients with LUAD in the training and validation sets. The mortality rate of patients in the
high-risk groupwas higher than that in the low-risk group. A circle represents a sample. (C, D) Kaplan-Meier survival curves for high- (training set: n =
255; validation set: n = 82) and low-risk (training set: n = 255; validation set: n = 99) groups in training and validation sets. The survival differences between
the high-risk and low-risk groups were compared using the Log-rank test. The survival probabilities of the high-risk group were significantly lower than
those of the low-risk group in both the training set (P = 0.00021) and the validation set (P < 0.0001). (E, F) ROC curve AUCs for 1-, 3-, and 5-year survival.
LUAD, lung adenocarcinoma; AUC, Area Under Curve.
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cilium movement, and microtubule bundle formation (Figure 4A).
KEGG enrichment analysis further indicated that the high-risk
group was enriched in pathways associated with the spliceosome,
DNA replication, proteasome, and the cell cycle (Figure 4B). In
contrast, the low-risk group exhibited enriched pathways related to
hematopoietic cell lineage, vascular smooth muscle contraction, cell
adhesion molecules, and viral myocarditis (Figure 4B). These results
suggest that upregulated cell division-related pathways characterize
the high-risk group.

3.5 Immune cell infiltration in different
risk groups

To elucidate the role of prognostic genes in the LUAD immune
microenvironment, immune cell infiltration was analyzed using the
CIBERSORTx method, which estimates the abundance of immune
cell types based on gene expression data. The high-risk group
showed increased infiltration of NK cells, activated mast cells,
activated CD4 memory cells, and M0 and M1 macrophages. In
contrast, monocytes, dendritic cells, M2 macrophages, and inactive

CD4 memory cells were reduced (Figure 5A). These results suggest
that the inflammatory response at the tumor site may be more
intense in the high-risk group. To determine whether the risk model
and prognostic genes could reliably predict immune cell infiltration
in LUAD, the correlation between prognostic genes, immune cell
enrichment scores, and risk scores was examined using Spearman
correlation analysis. The results revealed strong correlations
between the three prognostic genes, risk scores, and various
immune cell types, highlighting their potential as prognostic
biomarkers (Figure 5B).

3.6 Potential functions and regulatory
networks of biomarkers

A GGI network was constructed to investigate prognostic genes’
potential roles, emphasizing the top 20 genes (such as CACNG2,
GRID2, and CNIH2) and their associated pathways. GRIA1 was
found to participate in multiple biological functions, including
ionotropic glutamate receptor activity, regulation of
neurotransmitter receptor activity, and involvement in various

FIGURE 3
Prognostic risk assessment for patients with LUAD. (A,B) Forest plots illustrating HR from univariate and multivariate Cox analyses. Risk score and
stagewere demonstrated to be an independent prognostic factor. An HRmore significant than one is considered a risk factor, while an HR less than one is
considered a protective factor. The significance level is set at P < 0.05. (C) Nomogram for predicting 1-, 3-, and 5-year survival probabilities of patients
with LUAD based on risk score and tumor stage. Each factor corresponds to a point, and the sumof the points of each factor corresponds to the total
point. The higher the total point, the lower the patient’s survival rate. (D) Calibration curves for 1-, 3-, and 5-year survival predictions based on the
nomogram. The slopes of the calibration curves were all close to 1. (E) Decision curve analysis for 1-, 3-, and 5-year survival. The curve corresponding to
the nomogram exceeded the “All” and “None” baselines, and the net benefit of the nomogram was higher than that of a single independent prognostic
factor. HR, hazard ratio.
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receptor complexes, underscoring its critical biological role
(Figure 6). A ceRNA regulatory network was analyzed to explore
further the regulatory mechanisms influencing biomarker
expression. In this network, GRIA1 was involved with
22 miRNAs, CLEC3B with 6 miRNAs, and ANOS1 with
23 miRNAs. There were a total of 463 related lncRNAs. These
miRNAs, lncRNAs, and the three prognostic genes constituted a
complex ceRNA regulatory network. Complex regulatory
relationships such as NEAT1-hsa-miR-542-3p-ANOS1, CARMN-
hsa-miR-500a-3p-GRIA1, and SNHG29-hsa-miR-3605-5p-

CLEC3B were present therein (Figure 7). These results suggest
extensive regulatory networks governing the expression of these
prognostic genes.

4 Discussion

RNA methylation modifications are closely linked to cancer
development and progression, playing a pivotal role in shaping
immune cell infiltration within the tumormicroenvironment (TME)

FIGURE 4
GSEA revealed key pathways in the high-risk and low-risk groups. (A,B) Functional enrichment pathways for different risk groups based on GO and
KEGG gene sets. A negative enrichment score indicates the downregulation of the pathway, while a positive enrichment score represents the
upregulation of the pathway. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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(Wang and Shu, 2024). However, the molecular mechanisms
underlying RNA methylation writer proteins and their diagnostic
significance in lung cancer, especially LUAD, remain underexplored.

In this study, RNA methylation writer protein-associated genes
related to LUAD prognosis were identified, including CLEC3B,
ANOS1, and GRIA1. A novel risk model based on these
identified genes was developed, demonstrating its effectiveness in
prognostic prediction for patients with LUAD. Additionally,
immune infiltration analysis revealed significantly higher levels of
natural killer (NK) cells, activated mast cells, activated CD4memory
cells, andM0 andM1macrophages in the high-risk group compared
to the low-risk group. Conversely, the high-risk group showed
decreased levels of monocytes, dendritic cells, M2 macrophages,
and inactive CD4 memory cells. Spearman correlation analysis

further confirmed strong associations between the three
prognostic genes and risk scores with various immune cell types.

The GRIA1, CLEC3B, and ANOS1 prognostic signatures
demonstrated significant predictive capabilities for patient
outcomes in training and validation cohorts. GRIA1, encoding
the glutamate ionotropic receptor AMPA type subunit 1, has
been identified as a prognostic factor in LUAD (Qian et al., 2022;
Wang et al., 2023). Meanwhile, Xu et al. found that the GRIA1 gene
was related to the sensory perception of chemical stimulus and the
sensory perception of the smell signaling pathway, suggesting that
the GRIA1 gene may affect the process of LUAD through these
signaling pathways (Xu et al., 2022). Glutamate acts as both a
neurotransmitter and a growth factor, promoting the
proliferation of normal and malignant cells (Tilley et al., 2017).

FIGURE 5
Immune cell infiltration in different risk groups. (A) Immune cell infiltration of 21 immune cell types in patients with LUAD is categorized into low-risk
and high-risk groups. The Wilcoxon test was used to compare the differences in immune cell infiltration between the high-risk and low-risk groups.
11 types of immune cells showed differences between the two groups (P < 0.05). (B)Heatmap showing correlations between prognostic genes, immune
cell enrichment scores, and risk scores based on Spearman correlation analysis. The redder the color, the stronger the positive correlation; the bluer
the color, the stronger the negative correlation. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns. LUAD, lung adenocarcinoma; ns, no significance.
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Dysregulation of glutamate signaling, often due to changes in
glutamate receptor expression, has been implicated in various
cancers. Additionally, genes linked to glutamate receptor
signaling have been found to undergo abnormal methylation in
several malignancies (Stepulak et al., 2014; Luksch et al., 2011; Wu
et al., 2010). CLEC3B is a transmembrane Ca2+-binding protein in
the plasma membrane, extracellular matrix, and exosomes (Dai
et al., 2019). The p53 signaling pathway regulates CLEC3B and
indirectly modulates the epithelial-mesenchymal transition
pathway, influencing LUAD cell invasion and migration.
CLEC3B expression is significantly reduced in LUAD, with this
downregulation correlating strongly with clinical staging (Lu et al.,
2022). In addition, CLEC3B has been studied in other tumors. For
example, in cholangiocarcinoma, CLEC3B inhibited cellular
proliferation and migration of cholangiocarcinoma through the
Wnt/β-catenin pathway (Wu et al., 2024). In clear cell renal cell
carcinoma, CLEC3B expression is downregulated and inhibits cell
proliferationthe (Liu et al., 2018). ANOS1 is a secreted glycoprotein
(100 kDa) constituting an extracellular matrix component (Murcia-
Belmonte et al., 2010). ANOS1 plays a role in cell adhesion,
neurogenesis, and the motility and migration of neural cells
during development (Murcia-Belmonte et al., 2016). Moreover,
circulating ANOS1 has been identified as a diagnostic biomarker

in gastric cancer (Kanda et al., 2020). The study has shown that
ANOS1 is associated with the immune microenvironment of LUAD
and is a good predictor of overall survival in LUAD patients
(Davoodi-Moghaddam et al., 2024). Moreover,
ANOS1 expression was significantly enhanced in esophageal
cancer patients and cell lines, and its increased expression was
associated with advanced T stage and worse disease-free survival
of esophageal cancer patients (Zhu et al., 2024). Our findings align
with previous research. GO and KEGG analyses revealed that these
RNA methylation-associated prognostic genes are enriched in
cellular components like cell adhesion molecules and adherens
junctions, which may influence LUAD cell migration.

GSEA further revealed that the high-risk group was
predominantly enriched in biological processes related to cell
division and the cell cycle pathway. This suggests that the poor
prognosis observed in high-risk patients with LUAD may be partly
attributed to dysregulation of the cell cycle, which is closely linked to
tumor proliferation and progression.

Recent advancements in tumor immunotherapy underscore the
critical role of the immune system in lung cancer onset and
progression (Camidge et al., 2019; Carbone et al., 2015). Research
has established that immune cell infiltration and the tumor
microenvironment influence tumor prognosis (Zhang and Zhang,

FIGURE 6
Potential functions and regulatory networks of prognostic genes. The GGI network highlights the top 20 genes (such as CACNG2, GRID2, and
CNIH2) and the related pathways of prognostic genes (such as neurotransmitter receptor complex, ionotropic glutamate receptor complex, and plasma
membrane signaling receptor complex). The center circle represents the prognostic gene, and the surrounding circle represents the gene associated
with the prognostic gene. The color in each circle represents the signaling pathway associated with the gene. The line between the circles
represents the interaction between the two genes, and the color of the line represents the interaction pattern between the two genes. GGI, gene-gene
interaction.
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2020; Muppa et al., 2019; Zhang et al., 2019). Our analysis of
immune cell infiltration demonstrated an increased presence of
NK cells, activated mast cells, activated CD4 memory cells, and
M0 and M1 macrophages in the high-risk group. In contrast, levels
of monocytes, dendritic cells, M2 macrophages, and inactive
CD4 memory cells were reduced. As a key member of intrinsic
immunity, NK cells can rapidly recognize and kill tumor cells,
directly lysing lung adenocarcinoma cells by releasing cytotoxic
substances, such as perforin and granzyme. They also secrete
cytokines, such as IFN-γ, to regulate the tumor
microenvironment and inhibit tumor angiogenesis, thus limiting
tumor growth and metastasis (Russick et al., 2024; Gillard-Bocquet
et al., 2013; Huang et al., 2022; Chockley et al., 2018). Macrophages
exhibit heterogeneity in the lung adenocarcinoma tumor
microenvironment. Classically activated M1-type macrophages
have antitumor activity, phagocytose tumor cells, secrete
proinflammatory cytokines and chemokines, recruit immune cells
to the tumor site, and enhance immune surveillance (Zhang et al.,
2025). However, in the tumor microenvironment, macrophages are
often polarized to theM2 type, which secrete cytokines such as IL-10

and TGF-β that promote tumor cell proliferation, angiogenesis, and
immune escape, which are detrimental to tumor control (Zhang
et al., 2025; Zhou et al., 2024). At the same time, the interaction
between NK cells and macrophages also affects the tumor
microenvironment. NK cells can regulate macrophage
polarization by secreting cytokines, which leads to their
conversion to the anti-tumor M1 type; macrophages can affect
NK cell activity and function by releasing cytokines (Wang et al.,
2019; Cekic et al., 2014). In addition, RNAmethylation can also have
an impact on immune cells, which in turn affects tumor progression.
For example, m6A sequencing revealed that m6A modifications of
multiple genes are altered in m6A methyltransferase METTL3-
deficient macrophages, affecting macrophage functions (Gu et al.,
2023). METTL3-mediated m6A RNA methylation promotes anti-
tumor immunity in natural killer cells. METTL3 expression was
reduced in tumor-infiltrating NK cells, and METTL3 protein
expression levels were positively correlated with NK cell effector
molecules (Tang et al., 2024). Additionally, higher infiltration of
M0 macrophages has been linked to poor prognosis in LUAD (Liu
et al., 2017), while increased infiltration of activated mast cells and

FIGURE 7
Potential expression regulation mode of prognostic genes. The ceRNA regulatory network analysis identified numerous potential regulatory
mechanisms involving 22miRNAs for GRIA1, 6 for CLEC3B, and 23 for ANOS1, interactingwith 463 associated lncRNAs. Red is a gene, green ismiRNA, and
blue is lncRNA.
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CD4 memory T cells correlates with a worse prognosis in patients
with LUAD (Deng et al., 2022). Spearman correlation analysis
revealed a strong association between RNA methylation prognostic
genes and risk scores across various immune cell types, indicating a
potential link between these genes and immune cell infiltration in
tumor tissue. However, further investigation using additional clinical
samples and prospective experiments is necessary to elucidate the
mechanisms by which RNA methylation prognostic genes impact
immunotherapy responses in LUAD.

In this study, we analyzed public databases and determined that
CLEC3B, ANOS1, and GRIA1 are associated with the prognosis of
LUAD. However, there are some limitations in this study, such as
the biological mechanisms and functions of CLEC3B, ANOS1, and
GRIA1 remain unclear. Moreover, the specific mechanism by which
RNAmethylation regulates the activity of these genes is still unclear.
Therefore, in the future, we will collect clinical samples to detect the
expression and RNA methylation levels of target genes and analyze
their specific associations with the prognosis of LUAD. Secondly, we
will evaluate their effects on cancer cell proliferation, migration, and
invasion through knockout/overexpression models and explore the
potential efficacy of targeted therapies using animal models. In
addition, its biological role was revealed through cell function
experiments (proliferation, migration) and in vivo experimental
systems to provide a basis for clinical translation.

5 Conclusion

In this study, we successfully identified three prognostic genes
associated with RNA methylation writing proteins in LUAD and
constructed a reliable prognostic model. These prognostic genes
have also been shown to significantly influence immune cell
infiltration in LUAD. These findings provide new insights into
the regulatory mechanisms of LUAD and provide a reliable
theoretical basis for subsequent in-depth studies.

According to the expression level of specific prognostic genes in
patients, the risk of disease progression can be predicted, and high-risk
patients can be intensified therapeutic intervention in advance. The
differential immune cell status reflects the patient’s immune
microenvironment characteristics. For patients with low immune cell
activity, immune activation therapy can be used to enhance the tumor-
killing ability of immune cells; for the abnormal enrichment of specific
immune cells, the relevant pathways can be targeted for inhibition to
correct the imbalanced microenvironment to achieve precise and
personalized lung adenocarcinoma treatment and to improve
therapeutic efficacy and the quality of patient’s survival. Meanwhile,
more precise treatment strategies can also be formulated according to
the RNA methylation status of patients, especially for patients with
abnormal RNA methylation modifications. At the same time, RNA
methylation inhibitors may enhance the therapeutic response of
immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) in
patients, thus providing a strategy for combination therapy.
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