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Objective: This study aims to screen common immunological markers of lung
tissues and blood for diagnosis of tuberculosis (TB).

Methods: Differentially expressed miRNAs (DEmRs) and mRNAs (DEGs) were
obtained by whole-transcriptome sequencing profiles on 18F-FDG PET/CT high
and low metabolic active regions in lung tissues of nine TB patients. Common
miRNAs were screened by intersecting with DEmRs, four miRNA GEO datasets, and
their target mRNAs were predicted through the miRTarbase and Tarbase databases.
Then these mRNAs were intersected with DEGs, mRNAs from blood samples and
immune-related genes, to construct a miRNA-mRNA interaction network, and the
hub genes were identified by Cytoscape. The relationship between immune
infiltration and hub genes were evaluated using Cibersort. Finally, a diagnostic
model basedon Lasso regression analysiswas established and validated by qRT-PCR.

Results: Five common miRNAs were obtained in both blood and tissues. Six
immune-related mRNAs (NEDD4, PLTP, RNASEL, SEMA7A, TAPBP, and THBS1)
were screened out. A diagnosticmodel was established and validated in the blood
samples of 30 pairs (TB/health volunteers). The AUC for the 6-mRNA
combination was 0.79.

Conclusion: We screened six mRNAs as a combination for diagnosing
tuberculosis.
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1 Introduction

Mycobacterium tuberculosis (Mtb) is the causative agent of TB and primarily spreads
through the air, infecting nearly all tissues and organs throughout the body, with tuberculosis
being the most common form. According to WHO Global TB Report 2024, there were
10.8million new TB cases and 1.25million deaths globally in 2023. Additionally, the impact of
the COVID-19 pandemic has led to sustained high TB mortality rates in recent years (World
Health Organization, 2024). It is estimated that at least 2 billion people (25%–30% of the
global population) are carriers of latent tuberculous infections (LTBI) (Seeberg, 2023). The
immune response in TB differs between LTBI and active tuberculosis (ATB) which is
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contagious (Barry et al., 2009). Therefore, it is crucial for early and
accurate diagnosis of ATB to enhance patients care, improve
outcomes, and delay the transmission cycle of Mtb. The current
methods for detecting TB involve culturing themicroorganism, which
requires 3–12 weeks (Rohner et al., 1997), Acid-Fast Bacilli (AFB)
Smear Microscopy and the gamma-interferon release assay (IGRA).
However, sputum smear testing has low sensitivity, while IGRA is
complex, time-consuming, and expensive (Goletti et al., 2022;
Nogueira et al., 2022). Although GeneXpert MTB/RIF Ultra
demonstrates high sensitivity in the diagnosis of tuberculosis, it is
a high-cost testing method (Quan et al., 2024). Therefore, there is an
urgent need to identify cost-effective and rapid biomarkers for the
diagnosis of tuberculosis.

miRNAs are small non-coding RNAs that finely regulate post-
transcriptional gene expression through inhibiting mRNA
transcription promoting their degradation (Bao et al., 2021). In
mammals, it is estimated that over 60% of mRNAs are regulated by
miRNAs (Friedman et al., 2009). This imbalance between mRNA
and miRNA is associated with various pathological processes,
including cancer, neurodegenerative diseases, and cardiovascular
diseases (Abbas and Gaye, 2025; Kandettu et al., 2025; Liao et al.,
2025). Recently miRNAs have received much attention for their vital
roles in TB pathogenesis, particularly in modulating T cells,
macrophages and cytokines during Mtb infection (Doghish et al.,
2025). For instance, miR-224-5p, miR-324-5p, and miR-488-5p
regulate the expression of the common target gene CTLA4,
promoting TB-associated macrophage polarization (Huang et al.,
2020). miRNA-4687-5p downregulated NRAMP1 and effected Mtb
survival in A549 cells, indicating its potential as a therapeutic targets
(Meng et al., 2024). Specific expression patterns of miRNAs in body
fluids (e.g., aberrant expression of miR-22, miR-20, miR-146a, miR-
191, and miR-320) serve as potential markers of active tuberculosis
versus latent infection and correlate with disease severity (Wang
et al., 2022). Compared to our previous study about LncRNA (Wang
et al., 2021), miRNAs exhibit higher specificity and multi-target
regulation ability, which make them have higher potential as
biomarkers for diagnosing tuberculosis.

The immune microenvironment of lung tissue reflects the specific
immune responses to pulmonary infection with Mtb (Wang et al.,
2023). However, obtaining lung tissue is challenging, and patients must
meet surgical criteria. By this stage, the majority of the patients have
already experienced significant disease progression, complicating
treatment efforts. Meanwhile, the profiles of miRNAs and mRNAs
in the TB lung tissues and blood are different, but have some relevance
(Liu et al., 2018; Huang et al., 2021). Therefore, we needed to identify
their common miRNAs and their target genes for effective and rapid
diagnosis. By comparative analysis of transcriptome sequencing
profiles in TB lung tissues and public databases, we aimed to
screen for potential miRNAs and their target genes that could serve
as rapid and accurate biomarkers for the diagnosis of tuberculosis.

2 Materials and methods

2.1 Data collection

In a previous study, our research group collected lung tissues
samples from nine patients diagnosed with pulmonary tuberculosis

(Supplementary Table S1), including nine samples with high metabolic
activity (PET-high) and nine samples with lowmetabolic activity (PET-
low) as identified by 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG-PET/CT) imaging,
for RNA-seq analysis. The sequencing datasets were GSE276819,
GSE158767, and GSE277481. The RNA extraction and whole
transcriptome sequencing were performed using the same methods
as our previous work (Wang et al., 2021). Besides, we collected whole
blood samples from 30 TB patients and 30 healthy volunteers
(Supplementary Table S2).

2.2 Analysis of miRNA and mRNA
differential genes

The raw data in FASTQ format were processed with
Trimmomatic (v0.30; https://github.com/usadellab/Trimmomatic)
to filter out redundant and low-quality data (Supplementary Table
S3). mRNA sequences reads were aligned to the reference genome
using HISAT2 (v2.0.1; https://daehwankimlab.github.io/hisat2/),
and gene expression levels were calculated using StringTie (v1.3.
5; https://github.com/gpertea/stringtie). miRNAs were identified and
their expression was evaluated using MiRDeep2 (v0.0.8; https://github.
com/rajewsky-lab/mirdeep2). Differential expression analysis was
performed with the DEGSeq Bioconductor package (v1.42.0; https://
bioconductor.org/). The thresholds for significant differential
expression of miRNA and mRNA were set as |log2FC|>1,
p-value<0.05, tpm_FH > 1, and tpm_FL > 1, resulting in the
identification of DEGs and DEmRs respectively.

2.3 Download datasets

From the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/): four miRNA datasets from blood
samples were downloaded: GSE25435, GSE131174, GSE149645,
and GSE229020; four mRNA datasets from blood samples were
downloaded: GSE19491, GSE28623, GSE73408, and GSE101705
(Supplementary Table S4).

2.4 Construction of the miRNA-
mRNA network

The differentially expressed genes from four miRNA datasets of
the blood samples were intersected with DEmRs to obtain a refined set
of miRNAs. These miRNAs were then uploaded to the miRTarbase
(https://mirtarbase.cuhk.edu.cn/php/index.php) and Tarbase (http://
carolina.imis.athenainnovation) to predicted target mRNAs. The
predicted target mRNAs were further intersected with DEGs, four
mRNA datasets of the blood samples, and immune-related genes
obtained from the ImmPort Portal database (https://www.immport.
org/). This process yielded the final miRNA-mRNA pairs.

Pearson correlation coefficients for miRNA-mRNA interactions
were calculated based on the gene expression matrix. miRNA-
mRNA pairs with |R|>0.4 and p-value<0.05 were selected, and
the network was visualized using Cytoscape (V3.9.1; https://
cytoscape.org/).
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2.5 Functional enrichment analysis
of mRNAs

To further investigate the biological mechanisms underlying
potential biomarkers, we employed the clusterProfiler package
(v3.16.1; https://www.bioconductor.org/packages/release/bioc/
html/clusterProfiler.html) to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) analyses
on the differentially expressed genes. The parameters used for the
analysis were as follows: minGSSize = 10, maxGSSize = 500, and
p-value<0.05.

2.6 Immune infiltration analysis

Using the gene expression signature matrix of 22 immune cell
subtypes (LM22) in the CIBERSORT (v0.1.0; https://github.com/
Moonerss/CIBERSORT) package as the reference gene set, the
immune infiltration analysis was performed using the cibersort
function with the following parameters: perm = 1000, QN = T.
The correlation coefficients and p-values between the abundance of
immune cells and the expression levels of target genes were
calculated using the cor function.

2.7 Construction of a lasso regression model

The Lasso regression analysis was conducted using the glmnet
package in R (v4.1.8; https://cran.r-project.org/web/packages/
glmnet/index.html) to perform binary logistic regression on gene
expression levels. The coefficients of the regression model were

extracted using the coef function to construct the regression model.
The classification performance of the model was validated using the
pROC package (v1.18.5; https://www.expasy.org/resources/proc) on
the GEO dataset.

2.8 Quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) assay

The total RNA was extracted from blood using the QIAamp
RNA Blood Mini Kit (Qiagen), and cDNA was synthesized from
RNA using HiScript III RT SuperMix for qPCR (+gDNA wiper)
(Vazyme) and amplified using the ChamQ Universal SYBR qPCR
Master Mix (Vazyme). Subsequently, target gene was normalized
to Hypoxanthine Phosphoribosyltransferase 1(HPRT1) and the
relative expression levels were calculated with the 2−ΔΔCt method.
The specificity of the PCR products was evaluated using melt
curve analysis. Real-time PCR was conducted using primers for
NEDD4, PLTP, RNASEL, SEMA7A, TAPBP, and THBS1. The
qRT-PCR primers were purchased from GeneWiz (Suzhou,
China), and the primer sequences were listed in the
Supplementary Table S6.

2.9 Statistical analysis

Statistical analysis of the experimental data was performed using
GraphPad Prism software (version 9.5). The Student’s t-test was
employed to compare continuous data. The accuracy of the 6-
mRNA diagnostic method was evaluated using SPSS software
(version 27.0.1). *p < 0.05 indicated statistical significance.

FIGURE 1
The flow chat of study.
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3 Results

The flow chart of this study was shown in Figure 1.

3.1 Differentially expressed miRNAs and
mRNAs in TB lung tissues

To understand the expression patterns of miRNA and mRNA in
the lung tissues of tuberculosis patients, we performed a differential
analysis of miRNA and mRNA between PET-high and PET-low
lung tissues in the affected areas (Figures 2A, B). The basic criteria
for screening DEGs were set as |log2FC|>1 & p-value<0.05 & tpm_
FH > 1 & tpm_FL > 1. A total of 117 DEmRs were identified, with
77 miRNAs being upregulated and 40 miRNAs downregulated. In
addition, 2014 DEGs were identified, including 1235 mRNAs that
were upregulated and 779 mRNAs that were downregulated.
Hierarchical clustering analysis of DEmRs and DEGs revealed a
distinct distribution in PET-high and PET-low samples
(Figures 2C, D).

GO functional enrichment analysis indicated that DEGs were
significantly associated with leukocyte migration, focal adhesion,
cell-matrix adhesion, collagen, and cadherins (Figure 2E). KEGG
enrichment analysis demonstrated that DEGs were primarily
involved in the interactions between cell adhesion molecules,
viral proteins, cytokines, and cytokine receptors (Figure 2F).

3.2 Screening ofmiRNAs and construction of
miRNA-mRNA network

We hypothesized that miRNAs associated with tuberculosis
infection in lung tissues could also be detected in blood samples.
Consequently, we screened for the overlapping genes between
DEmRs and the miRNA datasets GSE131174, GSE14964,
GSE229020, and GSE25435 from blood samples (Figure 3A), and
obtained five differentially expressed miRNAs: has-miR-409-3p,
has-miR-486-3p, has-miR-127-3p, has-miR-654-3p, and has-miR-
142-3p (Supplementary Table S5). Besides, we found that has-miR-
486-3p was downregulated in PET-high tissues, while the other four
miRNAs showed significantly higher expression levels compared to
the PET-low tissue samples (Figure 3B).

Furthermore, these miRNAs were uploaded to the
miRTarbase and Tarbase databases for summarizing all
predicted target genes. Subsequently, by screening for
overlapping genes between the miRNA target genes, four
datasets of blood samples and an RNA-seq dataset from lung
tissues, as well as an immune-related gene set downloaded from
the ImmPort Portal database, a final set of 74 immune-related
target genes were obtained (38 genes downregulated and 36 genes
upregulated). GO enrichment analysis of these 74 targeted
mRNAs revealed significant enrichment in biological processes
(BP) such as positive regulation of MAPK cascade, positive
regulation of response to external stimulus, epithelial cell
proliferation, and cytokine-mediated signaling pathways
(Figure 3C). Concurrently, KEGG enrichment analysis showed
that the differentially expressed genes were primarily involved in
the TNF signaling pathway, IL-17 signaling pathway, human

cytomegalovirus infection, Epstein-Barr virus infection, and
cancer-related pathways (Figure 3D).

Based on the gene expression matrix, we generated a heatmap
and calculated the Pearson correlation coefficients for miRNA-
mRNA interactions (Supplementary Figure S1). The criteria for
selecting miRNA-mRNA pairs were set as |R|>0.4 and p < 0.05.
Then, we used Cytoscape to perform a detailed analysis of the
selected 74 overlapping genes and constructed a miRNA-mRNA co-
expression network (Figure 3E). Ultimately, we determined six
miRNA target genes: NEDD4, PLTP, RNASEL, SEMA7A, TAPBP,
and THBS1 (Supplementary Table S5). The miRNA-mRNA
network analysis revealed that has-miR-486-3p acted as a sponge
for the key gene NEDD4; has-miR-142-3p regulated the expression
of target genes TAPBP and SEMA7A; the expression of RNASEL was
regulated by has-miR-409-3p; and the four miRNAs, has-miR-409-
3p, has-miR-127-3p, has-miR-486-3p, and has-miR-654-3p, may
co-regulate the target gene THBS1 (Figure 3F). Notably, the genes
PLTP, RNASEL, SEMA7A, TAPBP, and THBS1 exhibited high
expression levels in PET-high tissue samples, while NEDD4 was
found to be downregulated (Figure 3G).

3.3 Relationship between miRNA target-
genes expression and immune infiltration

Further we explored the potential connections between the six
miRNA target genes and immune cells. Using the gene expression
signature matrix of 22 immune cell subtypes (LM22) from the
CIBERSORT algorithm as a reference, we analyzed and compared
the immune cell composition between PET-high and PET-low
(control) tissues. As showed, the proportion of M2 macrophages
significantly increased in PET-high tissues compared to PET-low
tissues, while the proportion of neutrophils notably decreased
(Figure 4A). Then the expression changes of the six selected
immune-related genes were analyzed, and the results showed that
the hub genes, PLTP (Figure 4C), RNASEL (Figure 4D), SEMA7A
(Figure 4E), and TAPBP (Figure 4F) exhibited a positive correlation
with the infiltration states of M0 macrophages and plasma cells, while
showing a negative correlation with the resting states of neutrophils,
mast cells, eosinophils and NK cells. Additionally, the hub genes
NEDD4 (Figure 4B) and THBS1 (Figure 4G) was found to be
positively correlated with the infiltration states of eosinophils and
Treg cells, but negatively correlated with the resting infiltration of
CD4+ memory T cells, CD8+ T cells, and NK cells.

3.4 Construction of a diagnostic model

To validate the significance of the six selected mRNAs, we
assessed their expression in four independent datasets
(GSE19491, GSE28623, GSE73408, and GSE101705), which
include samples from LTBI and TB (Figures 5A–D). NEDD4,
PLTP, RNASEL, SEMA7A, TAPBP, and THBS1 were combined
into a 6-mRNA feature panel for diagnosis of tuberculosis. Use
lasso regression in the logistic regression model fitting data, the
model in the form of: logit (p)/(1 - p) = β0+ β1β2+β2β2+. . .+βn Xn.

Where p is the probability of TB, X1, X2, . . . Xn is the gene
expression level, β0, β1, . . . , βn is the model parameter. The probability
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FIGURE 2
Differentially expressed miRNAs and mRNAs in TB lung tissues. (A, B) The volcano plots display DEmRs (A) and DEGs (B); (C, D) The heatmaps
illustrate the expression levels of DEmRs and DEGs, with the criteria of |log2FC|>1 & p-value<0.05 & tpm_FH > 1 & tpm_FL > 1; (E) The top 30 Gene
Ontology (GO) terms enriched from DEGs, categorized into biological processes (BP), cellular components (CC), and molecular functions (MF); (F) KEGG
pathway enrichment analysis of the top 30 enriched DEGs.
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FIGURE 3
Screening ofmiRNAs and construction ofmiRNA-mRNA network. (A) The Venn diagram demonstrates the overlapping genes between DEmRs from
lung tissues RNA-seq and the blood datasets GSE131174, GSE14964, GSE229020 and GSE25435. (B) Expression levels of the five differentially expressed
miRNAs in PET-high/low lung tissues. (C, D) The top 30 GeneOntology (GO) terms in biological processes (BP), cellular components (CC), andmolecular
functions (MF) for the targeted mRNAs of the miRNAs (C), as well as the top 30 enriched pathways of differentially expressed mRNAs in the KEGG
analysis (D). (E) The miRNA-mRNA co-expression network constructed from differentially expressed miRNAs and their predicted target genes. (F)
Subnetwork diagram of the miRNA-mRNA network with |R|>0.4 and P < 0.05. (G) Expression levels of six mRNAs in PET-high and PET-low lung tissues.
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equation for predicting TB was as follows: 6-mRNA = NEDD4*-
0.117407108+PLTP*0.00241744+RNASEL*1.097231674+SEMA7A*
0.727327735+TAPBP*-0.004076635+THBS1*0.028823439. The six
genes are predictor variables for gene expression levels, and the

coefficient in front of each variable represents the effect of that gene
expression level on the log-odds of developing tuberculosis disease.

The area under the curve (AUC) for the datasets GSE19491,
GSE28623, GSE73408, and GSE101705 were 0.6578, 0.6852,

FIGURE 4
Analysis of immune infiltration. (A) Correlation PET/CT-high/low tuberculosis tissues samples with immune infiltration level. (B–G) Correlation of
NEDD4, PLTP, RNASEL, SEMA7A, TAPBP, and THBS1 expressions with immune infiltration level.
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FIGURE 5
Validation of the expression of six mRNAs in GEO datasets. (A–D) The expression of six candidate miRNA targeted-genes in GSE19491, GSE28623,
GSE73408, and GSE101705. (E) ROC curves for diagnosing tuberculosis using the 6-mRNA signature. The AUC indicates that the 6-mRNA signature
demonstrates good predictive performance across the datasets GSE19491, GSE28623, GSE73408 and GSE101705. LTBI: latent tuberculosis infection; TB:
tuberculosis.
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0.782 and 0.8438 respectively (Figure 5E). The above results
suggested the combination of the 6-mRNA features in the
validation cohort demonstrated significant diagnostic efficacy.

3.5 Validation of 6-mRNAs combination
signature in blood samples

Tissue samples are advantageous for identification, whereas
liquid samples such as blood are more suited for diagnosis,

prognosis, and disease detection. We collected whole blood
samples from 30 patients with pulmonary tuberculosis and
30 healthy volunteers to validate the expression of six selected
mRNAs previously through qRT-PCR. The results showed that
PLTP (Figure 6B), RNASEL (Figure 6C), SEMA7A (Figure 6D),
and TAPBP (Figure 6E) were upregulated in the whole blood of
tuberculosis patients, while NEDD4 (Figure 6A) and THBS1
(Figure 6F) were downregulated. We also assessed the expression
levels of these six mRNAs in the GSE19491 dataset (Figure 6G), and
found that the results for PLTP, RNASEL, SEMA7A, and TAPBP

FIGURE 6
Validation of the expression of six mRNAs in blood samples. (A–F) The expression levels ofNEDD4, PLTP, RNASEL, SEMA7A, TAPBP and THBS1were
confirmed using qRT-PCR in health and TB whole blood. (G) validation of mRNA by GSE19491. (H) ROC for diagnosing TB by the 6-mRNA signature
between patients and health in the combined or respective mRNA. The p-value were calculated using Student’s test. ***p < 0.001, ****p < 0.0001.
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were consisted with the results of qRT-PCR. The receiver operating
characteristic (ROC) curve analysis for the 6-mRNA signature
revealed an AUC of 0.790, with a 95% confidence interval (CI)
ranging from 0.712 to 0.869 (Figure 6H).

4 Discussion

More than half of the suspected cases of tuberculosis worldwide
remain undiagnosed, highlighting complexity of its diagnosis
(Global Tuberculosis Report 2024 Factsheet, n. d.). Studies have
shown that differentially expressed miRNAs play a crucial role in
tuberculosis by regulating the interactions betweenMtb and the host
(Silva et al., 2021). In this study, we aimed to identify immune cell-
related biomarkers by exploring miRNA-mRNA interactions.

This study analyzed the differentially expressed miRNAs and
mRNAs in lung tissues with high/low metabolic activity as identified
by PET/CT in patients undergoing surgical resection for pulmonary
tuberculosis. By comparing these findings with tuberculosis-related
blood databases, we identified five miRNAs (has-miR-409-3p, has-
miR-127-3p, has-miR-486-3p, has-miR-654-3p, and has-miR-142-
3p). Among these, has-miR-486-3p plays a crucial role in the
regulation of granuloma formation in tuberculosis and its
associated physiopathology (Silva et al., 2021). Additionally, has-
miR-127-3p promotes disease progression by targeting JAK1 to
activate the type I interferon signaling pathway (Wu et al., 2021).

Consequently, we identified corresponding target genes in the
bloodstream based on differentially expressed miRNAs in the lung
tissues of tuberculosis patients and investigated whether these target
genes could serve as biomarkers for the diagnosis of tuberculosis. By
taking the intersection of these target genes of these miRNAs with
the blood databases and immune-related gene sets, the Pearson
correlation coefficient was calculated, six key genes (NEDD4, PLTP,
RNASEL, SEMA7A, TAPBP, and THBS1) were selected.
Furthermore, miRNA-mRNA network analysis revealed the
regulatory relationships between specific miRNAs and their
target genes.

Previous studies have shown that immune infiltration influences
the progression of tuberculosis. Therefore, we utilized the
CIBERSORT algorithm to analyze the relationship between the
six target genes and immune infiltration. As expected, NEDD4,
PLTP, RNASEL, SEMA7A, TAPBP, and THBS1 were associated with
immune cell states. We further examined the expression levels of
these genes in PET-high and PET-low lung tissues from tuberculosis
patients. The results showed significant differences in expression
and notably, most genes were upregulated in PET-high tissues
compared to PET-low, while NEDD4 was downregulated. The
validation in whole blood also confirmed that, the qPCR results
for these hub genes, except THBS1, were consistent with the
bioinformatics findings.

NEDD4 is an E3 ubiquitin ligase that has recently been linked
to inflammatory responses and oxidative stress, playing a crucial
role in the pathogenesis of pulmonary diseases (Cockram et al.,
2021). It may mitigate pulmonary fibrosis by mediating the
ubiquitination of YY1 (Chen et al., 2024). The miRNA-mRNA
network indicated that NEDD4 was negatively regulated by has-
miR-486-3p, resulting in decreased expression levels. This
finding aligned with our validation results, which showed

reduced expression levels of NEDD4 in the blood of
tuberculosis patients (Figure 6A).

Phospholipid transfer protein (PLTP), a widely expressed key
lipid transfer protein, not only influences the transport of plasma
triglycerides and cholesterol but also responds to pro-inflammatory
stimuli and exhibits anti-cancer properties (Schlitt et al., 2005).
Moreover, PLTP has been shown to inhibit neutrophil degranulation
(Ochieng et al., 2018). Increased expression of PLTP has been
observed in the lung tissues of patients with chronic obstructive
pulmonary disease (COPD) (Jiang et al., 1998). Based on these
findings, we hypothesized that PLTP played a crucial role in lipid
metabolism and immune cell recruitment in tuberculosis.

RNASEL, a crucial ribosome-related gene, plays an essential role
in various cellular physiological processes. Studies have
demonstrated that RNase L is necessary for the induction of pro-
inflammatory cytokines and regulates lysosomal enzyme activity,
thereby facilitating the digestion of bacteria (Li et al., 2008).
Additionally, it mediates antibacterial activity through apoptosis
(Castelli et al., 1997). Our analysis of clinical samples from
tuberculosis patients revealed a significant increase in RNASEL
expression in the serum of patients with pulmonary tuberculosis
compared to healthy volunteers (Figure 6C).

Semaphorin 7A (SEMA7A), a member of the “immune”
signaling family, stimulates macrophages to produce pro-
inflammatory factors through β1 integrin, initiating the
inflammatory response (Suzuki et al., 2007). In patients with
idiopathic pulmonary fibrosis (IPF), the expression of SEMA7A
on CD4+CD25+FoxP3+ regulatory T cells (Tregs) is associated with
disease progression (Reilkoff et al., 2013). We found that SEMA7A
expression was upregulated in both lung tissues and blood samples
of tuberculosis patients (Figures 3G, 6D). The upregulation of
SEMA7A may exacerbate pulmonary fibrosis and reflect disease
severity, suggesting its potential as a diagnostic marker for
pulmonary tuberculosis.

TAPBP encodes a transporter associated with antigen processing
(TAP) binding protein, also known as Tapasin (Bach et al., 1997). As
a component of the peptide-loading complex, Tapasin plays a
crucial role in selecting high-affinity peptides for binding to
MHC class I molecules (Howarth et al., 2004). Studies have
shown that individuals with TAPBP gene mutations are more
susceptible to bacterial infections, particularly from Streptococcus
pneumoniae and Haemophilus influenzae (Yabe et al., 2002). In
clinical samples from tuberculosis patients, the expression level of
TAPBP is elevated, leading to enhanced antigen presentation and an
increased proportion of CD8+ T cell immune infiltration
(Figure 6E). However, our immune infiltration analysis revealed
downregulation TAPBP gene within CD8+ T cells (Figure 4F). This
may be attributed to either decreased expression or dysfunction of
MHC class I molecules on CD8+ T cells, impairing antigen
presentation and preventing CD8+ T cells from effectively
recognizing and eliminating cells infected by Mtb. Furthermore,
chronic inflammation caused by long-term pulmonary tuberculosis
infection could lead to immune tolerance, thereby suppressing CD8+

T cell function while simultaneously increasing TAPBP
expression levels.

Thrombospondin 1 (THBS1), a member of the platelet-reactive
protein family, is a glycoprotein produced by various cells, including
platelets and macrophages (Jefferson et al., 2020). Research has
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shown that THBS1 inhibits endothelial nitric oxide synthase (eNOS)
(Bauer et al., 2010), reducing nitric oxide (NO) production, which is
considered an important molecule in the defense against Mtb
(Braverman and Stanley, 2017). In our study using whole blood
samples from tuberculosis patients, we found that THBS1 expression
was downregulated (Figure 6F). That is probably because THBS1 can
regulate vascular permeability (Bauer et al., 2010), and its decreased
expression may lead to increased vascular permeability, further
aggravating pulmonary edema and worsening lung disease. These
findings suggest that THBS1 is a promising candidate as both a novel
therapeutic target and a potential biomarker for diagnosing
tuberculosis.

The discovery of these six mRNAs (NEDD4, PLTP, RNASEL,
SEMA7A, TAPBP, and THBS1) not only reveals critical molecular
mechanisms underlying immune regulation in tuberculosis but also
establishes a robust theoretical foundation for advancing diagnostic
and therapeutic strategies. By integrating these genes into a
diagnostic panel, we developed a Lasso regression model that
effectively distinguishes tuberculosis patients from healthy
individuals. This model demonstrates significant potential for
screening and clinical application, particularly due to its cost-
effectiveness, rapid turnaround time, and high diagnostic
accuracy (AUC: 0.790 in qPCR validation).

Despite its advancements, this study still has some limitations,
including reliance on surgical lung tissue, public datasets and a small
validation cohort in the blood samples, which may limit
generalizability. For further experiments, multi-center studies
with diverse populations and mechanistic research are needed to
validate the model and explore gene functions in tuberculosis
pathogenesis. Additionally, we plan to integrate the model with
existing diagnostic standards to achieve better diagnostic
performance. In conclusion, this work provides a practical
diagnostic tool, and lays the groundwork for improving
diagnosis, treatment, and patient outcomes.
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