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Introduction

Rice cultivation in South Korea has a rich and extensive historical background, dating
back to the Bronze Age (Jeong et al., 2021). Throughout history, rice has experienced
various transformations in its status, from being a luxury food item to being used as animal
feed owing to overproduction and reduced consumption. Recently, rice consumption in
South Korea has declined owing to cultural changes and governmental policies.
Consequently, the South Korean government is actively promoting rice consumption
and focusing on rice exports to meet the global demand and supply chain
requirements. The aroma of rice varies around the world, and South Korean rice
varieties are primarily glossy, soft, and sticky rice, compared to other parts of the
world. Additionally, factors such as enhancing the population-specific nutrients in rice,
similar to the golden rice project (Wu et al., 2021), and reducing inputs for rice cultivation
(Adu et al., 2022), which benefits the environment, the project such as Green Super Rice (Yu
et al., 2022), are essential. Therefore, it is crucial to develop new rice varieties that cater to
consumer preferences, combine traditional colored rice varieties, and enhance their
nutritional value. Furthermore, the current scenario of rice overproduction is not stable,
as Korean rice varieties have faced significant production losses due to temperature
fluctuations in the past, such as a 17% loss in 1971 and 20% loss in 2003, as well as an
80% loss due to cold temperatures in 1980 (Jeong, et al., 2021). In light of the potential threat
posed by current climate fluctuations to South Korea’s rice self-sufficiency, proactive
measures must be taken to ensure continued rice production. Given the consequences
of global warming and population expansion, which have resulted in a scarcity of rice
worldwide, it is imperative to adopt proactive measures to promote sustainable rice
production. To alleviate the strain on global food supply, the South Korean government
is exploring the cultivation of non-japonica rice for export, which could also enable South
Korea to establish itself as a formidable player in the global rice trade (Jeong, et al., 2021).

Considering rice breeding and its associated challenges, South Korea has been dedicated
to extensive research and varietal improvements since the 1970s. This dedication began with
the development of the high-yield cultivar “Tong-il,” which served as the foundation for the
South Korean Green Revolution and allowed the country to achieve self-sufficiency (Kim
et al., 2014). Over time, the emphasis has shifted from high-yield components to grain
quality and stress resistance, resulting in the diversification of rice varieties. In total,
206 Korean rice varieties have been studied, among which a significant proportion has been
categorized as good for consumption (Cho et al., 2009). It is noteworthy that the genetic
diversity within these varieties is somewhat limited, with a large percentage originating from
a few Korean-bred and Japanese stocks, which may pose challenges for future breeding
owing to the potential reduction in hybrid vigor. In terms of disease resistance, a study of
Korean rice varieties revealed the presence of major blast resistance genes, with a significant
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number of varieties containing genes that have origins in both
Korean and Japanese japonica rice genotypes. The presence of
these resistance genes contributes to the overall resistance of
Korean rice to blast disease caused by Magnaporthe oryzae (Cho,
et al., 2009). Although the presence of resistance gene pools ensures
blast resistance, further breeding programs may be needed to
address the genetic diversity issue to ensure the sustainable
development of rice varieties in Korea (Cho, et al., 2009).

Despite significant progress in exploring the genetics of the rice
genome using the available rice germplasm globally, a
comprehensive analysis of 3,010 rice germplasms from diverse
regions worldwide has been conducted as part of this endeavor
(Wang et al., 2018). Additionally, contemporary rice breeding
programs primarily incorporate genome sequencing to acquire
detailed genetic knowledge and establish precision breeding to
achieve desired outcomes (Paul, 2020; Wing et al., 2018).
Furthermore, the era of genomics has facilitated researchers to
pan-genome, which involves incorporating various cultivars and
varieties to better comprehend genetics and biological functions
associated with specific or multiple traits (Schreiber et al., 2024).
Recently, the pan-genome of rice has shed light on the
subpopulation structure of Asian rice varieties compared to the
wild type (Zhou et al., 2023). The collective effort of the
International Rice Genome Sequencing Project (IRGSP)
consortium has resulted in a high-quality reference genome for
rice Oryza sativa subsp. japonica cv Nipponbare (IRGSP v.1.0)
(Kawahara et al., 2013), which offers comprehensive genomic
information for O. sativa, a model species for monocotyledonous
plants. This reference and its annotations are distributed with
various additional assessments through primary rice databases
such as RAP-db (https://rapdb.dna.affrc.go.jp), RGAP (http://rice.
uga.edu), and Gramene (https://www.gramene.org). Additionally,
insights into the rice pan-genome datasets can be obtained through
RPAN (https://cgm.sjtu.edu.cn/3kricedb/index.php) and Rice RC
(http://ricerc.sicau.edu.cn/RiceRC). Furthermore, the
comprehensive catalogue of rice genes is organized at Rice Gene
Index (RGI), and its variants are organized in databases such as Rice
SNP-Seek, RPAN, and RiceVarMap (Yu et al., 2023). However,
nationwide germplasm databases are the most valuable assets for
researchers focusing on domestic varieties that are being improved.
To facilitate this for Korean rice researchers, genome re-sequencing
of the Korean rice population was conducted to identify effective
breeding signatures for the green super rice strategy. This strategy
aims to improve the Korean breeding efficiency for various
associated issues. Despite the inclusion of 35 rice varieties from
South Korea in the 3 K rice genome-resequencing project, additional
elite lines were incorporated into the genome-sequencing process.
The K-Rice database provides a comprehensive catalog of the elite
Korean rice population and wild genomes, which will enable
researchers to better understand the genetic variants present in
these genomes and to identify breeding signatures primarily from
Korean rice populations.

Value of the data

The dataset presented in this study constitutes a useful and
informative resource for understanding the genetic diversity of

the Korean rice population. This dataset may prove to be a
valuable asset for rice breeders and researchers, enabling them
to conduct research on Korean rice varieties and develop new
varieties that can address the challenges posed by the
ongoing global warming crisis and the impending
population increase.

Materials and methods

Collection of rice germplasm and
phenotypic data

A total of 105 rice germplasms (85 elite cultivars and 20 wild
accessions, detailed in Supplementary Table 1) were procured from
the National Institute of Crop and Food Science (NICS), RDA,
Korea. Along with the germplasm, NICS provided data for
15 phenotypic traits that they had previously investigated for
these lines. These traits include protein content, milling recovery
ratio, grain filling ratio, taste evaluation, head rice ratio, grain
number, height, yield, panicle length, panicle number, grain
length/width ratio, 1000-grain weight of brown rice, heading
ecotype, blast resistance, and RSV (rice stripe virus) resistance.
This phenotypic data is accessible within the K-RICE database
for each corresponding germplasm.

DNA sequencing and variant calling

Total DNA was isolated from the samples individually
according to standard sequencing protocols. DNA was
prepared using a TruSeq Nano DNA Prep Kit for Illumina
sequencing. Each isolated DNA sample was sequenced using
Novaseq6000 (Illumina), which is a short-read sequencing
technique. The experiment was performed by Macrogen, an
authorized service provider in South Korea. Illumina paired-
end sequences were subjected to quality and adapter trimming
using BBDuk v28.26. The processed reads were mapped to the
O. sativa subsp. japonica cv Nipponbare (IRGSP v1.0)
reference genome (Kawahara, et al., 2013) using
Bowtie2 v.2.2.5(Langmead and Salzberg, 2012), and variant
calling was performed with the Haplotype caller in the
Genome Analysis Toolkit (GATK v4.2.0.0) (McKenna et al.,
2010). SNPs were selected using GATK parameters, that is, a
normalized quality score ≥2 and mapping quality ≥40. The SNPs
were annotated using SnpEff v.4.2 (Cingolani et al., 2012).

Establish database framework

The entire database of webpages was encoded using Java, and the
database was accessed via the URL (http://nabic.rda.go.kr/post_
jbrowse.do?data=K_RICE). The database was designed to
facilitate effective exploration of the variant region using the
genome JBrowse for all 100 VCF file tracks, along with the
reference genome, which includes the transcripts, gene, and exon
regions of the genes. The respective VCF files were also available for
downloading (Figure 1).
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FIGURE 1
The design and output example of the database. (A) Index page of the K-Rice database; (B) The variants calling pipeline overview; (C) Genome
browser with all 100 germplasm variant datasets.

TABLE 1 Overview of rice genome trait features in the K-rice database.

Traits Level/Time Japonica Tongil-type

Resistance to blast Weak 10 1

Medium Weak 3 0

Medium 13 3

Medium Strong 3 2

Strong 22 19

Resistance to Striped leaf blight Weak 23 1

Medium Weak 0 0

Medium 1 2

Medium Strong 1 0

Strong 27 19

Flowering Time Very early maturing variety 2 0

Semi-early maturing variety 3 0

Early maturing variety 14 1

Medium maturing variety 16 15

Medium late maturing variety 20 8

Late maturing variety 0 3
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Preliminary analysis report

The overall quantity of sequence data generated from 105 rice
germplasm samples (including 85 elite and 20 wild samples) using
whole-genome short-read sequencing. Each sample generated
approximately 11.9 GB of raw reads, which became 11.6 GB after
processing. Of the processed reads, 98.2%were successfullymapped to
the rice genome, with the mapped reads covering the genome being
approximately 26.6-fold. The dataset also provided 15 phenotypic
values, such as protein content, milling recovery ratio, grain filling
ratio, taste evaluation, rice head ratio, grain number, height, yield,
panicle length, panicle number, grain length/width ratio, 1,000 grain
weight of brown rice, heading ecotype, blast resistance, RSV (rice
stripe virus) resistance, to evaluate individual trait vigor
(Supplementary Table 1). Moreover, the genomes were categorized
into three primary groups based on their resistance to blast, striped
leaf blight, and flowering time, as illustrated in Table 1, and shown to
represent the coverage of the Korean germplasm.

Recognizing the importance of nationwide germplasm variation
in rice, it is crucial for researchers to conduct extensive research and
contribute to the diversification of rice varieties. The Korean
National Agricultural Biotechnology Information Center, which
formerly maintained the Korean rice germplasm, has organized
the genetic variant data into the K-Rice database, which is now
accessible to the public.
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