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Introduction: The DNA replication of eukaryotes proceeds in a defined temporal
sequence known as the replication timing (RT) program. A recent study revealed
that the early- and late-replication temporal domains have different DNA
mutation patterns and that the late-replicating sequences have a substitution
pattern biased towards A and T. It raises the interesting question of how the
miRNAs in the late-replication domain cope with themutation bias caused by RT.

Methods: In this study, we characterized the genomic distribution of pre-miRNAs
in relation to DNA replication timing, and identified 362 pre-miRNAs within late-
replicating domains (late-miRNAs) and 631 pre-miRNAs within early-replicating
domains (early-miRNAs). We comprehensively examined the multiple molecular
features including the secondary structural properties, the genomic sequences
surrounding the pre-miRNA loci, the Dicer processing motifs, and CAGE tag-
based promoters and miRNAs expression profiles. Furthermore, we performed
the simulation of miRNA-target regulatory networks to elucidate the co-
regulation patterns among late-miRNAs. To advance predictive capabilities, we
developed a a support vector machine (SVM) classifier based on RNA-FM
embedding, enabling prediction of miRNAs’ replication timing domains.

Results andDiscussion:Our study indicated that the late pre-miRNAsmaintained
their ability to fold into hairpin structures through extending their lengths at both
ends under the premise of maintaining a certain GC content of the precursors.
The simulation demonstrated that the late-miRNAs tend to synergistically
regulate the same genes and are involved in small molecule metabolism,
immune responses and so on. The comparative analysis of early- and late-
miRNAs confirmed that the information of replication timing domains is
inherently encoded in miRNAs’ sequence-structure signatures, and suggested
that late-replication specific mutation patterns leave direct imprints on miRNA
architecture. This study provides insights into the impact of DNA replication
timing on miRNA-mediated posttranscriptional regulation and helps us
understand the evolutionary mechanism of miRNAs.
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Introduction

MicroRNAs (miRNAs) are important regulatory factors that
direct the posttranscriptional regulation of target genes. The
hairpin structure of the pri-miRNA transcript is recognized and
cleaved by Drosha, and the 80-120 nt pre-miRNA is translocated
from the nucleus to the cytoplasm by RanGTP/exportin 5
(Ambros, 2011; Ambros and Ruvkun, 2018). The stem of the
hairpin structure is then recognized and cleaved by Dicer,
releasing the mature miRNA molecule with 18–20 bp in length.
In this way, the pre-miRNA encodes an 18–25 bp mature miRNA
at the 5′end or 3′end; if both have high stability in the cytoplasm,
this pre-miRNA is considered to encode both the5′ miRNA
and 3′miRNA.

In mammals, the 5′seven- or eight-bp sequence of mature
miRNA recognizes the target gene by binding to the 3′UTR of
the reverse-complementary mRNA. In general, for target genes with
high expression intensity, miRNAs may reduce transcriptional noise
by hindering protein translation (Pasquinelli, 2012). For target genes
whose expression is low, miRNAs may directly regulate mRNA
abundance by promoting mRNA degradation (Wu and Song, 2011;
Wu et al., 2012).

The DNA replication of eukaryotes proceeds in a defined
temporal sequence known as the replication timing (RT)
program. RT is dynamically regulated during development and
exhibits cell type-specific RT signatures, which are closely related
to the A/B compartments of the chromatin structure, the local
chromatin environment and the transcriptional potential
(Rivera-Mulia and Gilbert, 2016). In mammals and other
warm-blooded vertebrates, the timing of DNA replication is
associated with long DNA segments with uniform GC base
compositions, known as GC isochores, which are differentially
enriched between early and late replication domains
(Vinogradov, 2003; Costantini and Bernardi, 2008). The GC
isochores attributed by the RT of germ cells,can be fixed
during evolution. Late-replicating sequences have a
substitution pattern biased towards A and T, attributed to the
deamination of methylcytosine at CpG sites and their intensity.
Therefore, in germline cells, the initiation timing of replication
leads to a preference for DNA mutation transitions (C- > T and
G- > A) in late-replicating domains during evolution (Chen et al.,
2010; Cornejo-Páramo et al., 2024).

This raises the intriguing question of how miRNAs in the late
stage of replication cope with the mutation bias caused by RT. In
terms of the miRNA maturation mechanism, pri-miRNAs must
encode stable hairpin structures with low folding free energy to
be recognized by Drosha in the nucleus (Rice et al., 2020; Roden
et al., 2017). After pruning, they are recognized by ExportinS for
nuclear export. Finally, the stem region of the hairpin structure is
cleaved by Dicer to release mature miRNAs (Zapletal et al., 2023).
In this study, we explored the evolutionary mechanism of
miRNAs in replication domains with different mutation
patterns, and performed a comparative analysis of early
replication miRNAs (early-miRNAs) and late replication
miRNAs (late-miRNAs) in terms of secondary structural
properties, evolutionary depth, expression profiles, and the
biological functions of target genes.

Materials and methods

Identification of early-miRNAs and
late-miRNAs

A previous study investigated the DNA replication patterns of
mouse primordial germ cells (PGCs) and spermatogonial stem cells
(SSCs) through oligonucleotide hybridization microarray
technology (Yehuda et al., 2018). Briefly, the sequencing reads
were mapped against the mouse genome (mm9), the G1 phase
reads were binned to establish genomic windows, and S phase reads
were counted to determine the S/G1 ratio. The ratio data was
normalized by subtracting the mean and dividing by the
standard deviation. In each cell line, the genomic windows were
recorded as early domains if ratio>0, and the genomic windows were
recorded as late domains if ratio ≤ 0.

The chromosomal coordinates of Mus musculus pre-miRNAs
(GRCm38/mm10) were downloaded from the miRBase (v22)
(Kozomara et al., 2019). The genomic coordinates were converted
from mm10 to mm9 through the LiftOver tool and then intersected
with the regions of the replication domains through the bedtools tool
(Quinlan and Hall, 2010). A total of 993 pre-miRNAs were found to
fall within the regions with early and late replication signals
available. The 362 pre-miRNAs located in DNA in late
replicating domains in at least one sample were defined as late-
miRNAs, and the remaining 631 pre-miRNAs that were consistently
located in early replicating domains were defined as early-miRNAs.

Secondary structural analysis of
miRNA hairpins

The sequences of pre-miRNAs were downloaded from the
miRBase (v22), and the frequencies of mononucleotide and
dinucleotide sequences were calculated separately. According to
the identifiers of pre-miRNAs, the minimum free energy
structures were downloaded from the miRBase (v22). Through
forgi software (Varenyk et al., 2023), the counts of nucleotides
involved in perfect matches, mismatches, bulges, and loops were
calculated. Through seqfold software (Ouya et al., 2013), the
decomposed terms of the folding free energy, including the free
energy of matches, mismatches, bulges, and loops, were calculated.
Through RNAfold software (Varenyk et al., 2023), the energy of the
minimum free energy structure, mef_freq (frequency of the mfe
structure in the ensemble), and diversity (ensemble diversity) were
calculated. The neutral set sizes of the miRNA structures were
determined via the method described by Martin and Ahnert, (2022).

Genomic sequence analysis of pre-
miRNA loci

The coordinate information of the mouse-rat genome alignment
was downloaded from UCSC (Mm9 vs. Rn5 genome alignment)
(Zhao and Zhang, 2015). Through LiftOver, the orthologous regions
of mouse miRNAs in the rat genome were determined. The rat
genome sequence was downloaded from UCSC (Rn5), and the
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sequences of the miRNA orthologues were extracted. Using the
global alignment algorithm of ClustalW (Larkin et al., 2007), the
mouse miRNAs were aligned against the rat orthologous sequences,
and the sequence similarity was calculated via the distmat in the
EMBOSS toolbox (Rice et al., 2000). Finally, the homologous
sequences with a similarity ≥ 60% were retained. The minimum
free energy secondary structure was determined by RNAfold, and
the ensemble parameters of the filtered sequences were obtained.

The genome sequence of the mouse was downloaded from
UCSC (mm9). On the basis of the genomic coordinates of pre-
miRNA, the sequences 200 bp upstream, 50 bp from the 5′end of
pre-miRNA, 50 bp before the 3′end of pre-miRNA, and 200 bp
downstream were extracted. To calculate the site-based GC ratio, the
nucleotides of G or C were counted for each site and divided by the
number of early-miRNAs and late-miRNAs, and the GC content
profiles were obtained for early-miRNAs and late-miRNAs,
respectively. A T test was used to investigate whether there was a
significant difference in the GC ratios between the 200 bp upstream
sequence and the 5′50 bp sequence of the miRNAs and whether
there was a significant difference in the GC ratios between the 200 bp
downstream sequence and the 3′50 bp sequence of the pre-miRNAs.

On the basis of the genomic coordinates of pre-miRNAs, 10 kb
upstream and downstream of the miRNAs and 1Mb (1,000 kb) were
identified. The general feature files of the mouse protein-coding
genes, including the encoding coordinates of the genes, exons and
introns, were downloaded from UCSC (mm9), and the overlap
analysis was performed via the intersect tool of the bedtools package.
For eachmiRNA, whether there was a protein-coding gene within its
10 kb range was recorded, and the number of protein-coding genes
within the 1 Mb range was calculated. For miRNAs located within
protein genes, the number of miRNAs overlapping with the same
and opposite strand was calculated respectively.

The analysis of the dicer processing motifs

The positional information of mature miRNAs mapped to
precursor miRNAs (pre-miRNAs) were retrived from miRBase,
and the Dicer cleavage patterns were characterized through the
following analytical framework: the 5′cleavage recognition motif
was defined as second to ninth nucleotides downstream of the 3′-
end of 5′mature miRNAs, the 3′cleavage recognition motif was
defined as −3rd to −10th nucleotides upstreamn of the 5′-end of
3′mature miRNAs (Liu et al., 2021). The position-specific nucleotide
distributions of the Dicer 5′ cleavage and 3′ cleavage motifs were
compared between the early- and late-miRNAs using Chi-
square tests.

To perform the unsupervised motif clustering analysis, a three-
stage computational pipeline was implemented as follows, (1) For
the unique sequence motifs from the identified cleavage windows,
the pairwise edit distances were calculated using levenshtein
distance metric (minimum character insertions, deletions, or
substitutions required for sequence alignment), and then the n ×
n distance matrix was constructed, where n equal to the counts of the
unique motifs. (2) The dimensionality reduction was conducted
using the multidimensional scaling (MDS) via
sklearn.manifold.MDS with the n_components was set as 2, the
high-dimensional distance matrix D was transformed into 2D

embedding space. (3) The spatial separation between early- and
late-replicating miRNA clusters in MDS projection space was
evaluated through Kernel density estimation, and the two-sample
t tests were performed along the first and the second principal
dimension separately.

Analysis of miRNA expression profiles

Second-generation sequencing-based transcriptome sequencing
is a high-throughput and unbiased method for determining the
expression profile of mature miRNAs. A previous study constructed
mature miRNA libraries and generated transcriptomic profiles
across 7 mouse tissues (Keller et al., 2022). The reads per million
mapped reads (RMPs) of miRNAs were downloaded, and the
expression intensities of biological replicates of each tissue were
averaged, the ≥ 1 rpm was selected as the criterion to determine
whether the miRNA was expressed in the tissue. The proportions of
early-miRNAs and late-miRNAs expressed in each tissue were
calculated.

CAGE tag processing and the identification
of miRNA promoters

In order to identify the miRNA promoters with high confidence,
the analytical workflow for CAGE tag quantification and semi-
supervised mixture modeling construction was implemented as
follows (Marsico et al., 2013), (1) The mouse pre-mapped CAGE
tags were retrieved from the FANTOM4 database (Kawaji et al.,
2009), the genomic coordinates of CAGE tags were intersected with
the 5′ upstream 50 kb region relative to each annotated pre-miRNA
via the intersect tool of the bedtools package (Quinlan and Hall,
2010). The raw tag count matrix was created and the position-
specific quantile normalization was applied to mitigate systematic
inter-sample variations affecting absolute tag counts, ensuring
comparable signal distributions across experimental replicates. (2)
The abundance distribution of CAGE signals was modeled as a two-
component mixture of promoter-associated regions and
background noise: (a) For the background noise modeling, the
1,000 intergenic locus were randomly selected genome-wide, the
CAGE tags within ±2,500 bp windows centered on these loci were
extracted, and the tags detected in fewer than 5 samples were
classified as background noise. (b) For selection of the candidate
promoters, the tags within miRNA upstream regions (−50 kb from
pre-miRNA) were designated as putative promoters, the 1,000 bp
windows centered on each tag midpoint were extracted and the
sequence properties were calculated, including CpG ratio, TATA-
box affinity (position weight matrix scoring by the TRAP method)
(Thomas-Chollier et al., 2011), and the average PhastCons scores.
Based on these features, the binomial generalized linear models
(GLMs) were constructed to discriminate the putative promoters vs.
background. (3) A semi-supervised expectation-maximization (EM)
framework was employed to model tag counts: (a) the precomputed
promoter probabilities from GLM outputs were incorporated as
bayesian priors, (b) the mean and standard deviation for each
mixture component were learned by iteratively optimization via
EM, (c) The posterior probability of each tags as background noise
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or putative promoter were calculated. (4) The tags were partitioned
into promoter/background classes using a decision boundary of
P(Promoter|x) > 0.5.

The CAGE regions exhibiting both high prior probabilities and
elevated tag densities were retained as validated promoters. For each
miRNA, the tags with maximal tag density was designated as its
high-confidence promoters.

The construction of simulated miRNA‒
target regulation networks

The experimentally verified miRNAtarget genes were
downloaded from miRTarBase. The edge-swapping method was
used to construct the simulated networks (Wu and Qi, 2010). A
randomized network was constructed via the following steps: (a)
Two miRNA‒target gene pairs, namely, miRNA1- > target1 and
miRNA2- > target2, were randomly selected from the regulatory
network. (b) If miRNA1- > target2 and miRNA2- > target1 do not
exist in the network, edge swapping is performed; that is, the
miRNAs are swapped between the two edges, miRNA1- >
target1 is transformed to miRNA2- > target1, miRNA2- >
target2 is transformed to transformto miRNA1- > target2, and
the network is updated; otherwise, edge swapping is not
performed. (c) Edge swapping from steps (a) to (b) was carried
out 100,000 times. Eventually, there was≤10% of the miRNA‒target
genes relationships overlapped between each of the randomized
network and the original network.

According to the categories of miRNAs, the following values
were counted: the number of target genes regulated exclusively by
early-miRNAs, the number of target genes regulated exclusively by
late-miRNAs, and the number of target genes jointly regulated by
both early- and late-miRNAs. In the 100 randomly simulated
networks constructed, the distributions of these three values were
measured, and the significance of the deviation of these observed
numbers from the random distribution was determined. The
p-values were obtained from the Z-score, which was calculated as
(the observed number - the mean number of 100 simulations)/
standard deviation of 100 simulations.

To investigate whether the early- and late- DNA replication
stages where miRNAs are located influence the early- and late-
replication stages of their target genes, the following values were
counted: the number of miRNA–target gene regulatory pairs
within the same replication zone, including the number of
regulatory relationships where early-miRNAs regulate early-
target genes, the number of regulatory relationships where late-
miRNAs regulate late-target genes; and the number of
miRNA–target gene regulatory pairs across different replication
zones, including the number of regulatory relationships where
early-miRNAs regulate late-target genes and the number of
regulatory relationships where late-miRNAs regulate early-target
genes. In the constructed 100 random simulation networks, the
distributions of these two values were measured, and the
significance of the deviation of these observed characteristic
numbers from the random distribution was determined. The
p-values were obtained from the Z-score, which was calculated
as (the observed number - the mean number of 100 simulations)/
standard deviation of 100 simulations.

Measurement of the expression variation of
miRNA targets

miRNAs regulate the expression level of target genes at the
posttranscriptional level and usually affect the stability of target
mRNAs. The microarray expression profiles of 19 mouse tissues
were downloaded from NCBI (GSE9954) (Thorrez et al., 2008). The
expression intensity of each biological replicate was averaged across
each tissue, and the tau value was used to measure the fluctuations in
the expression of protein-coding genes across tissues (Yanai
et al., 2005).

Functional analysis of miRNA target genes

MSigDB (Molecular Signatures Database, Mouse collections)
was used to collect gene annotations for functional enrichment
analysis (Liberzon et al., 2011). The functional differences in the
target genes of early-miRNAs and late-miRNAs were investigated at
four levels: GO molecular function, GO biological process, GO
cellular component, and KEGG metabolic pathway. In each
annotation category, the numbers of target genes of early-
miRNAs and late-miRNAs with annotations available were
recorded. For each subclass, the proportions of target genes of
early-miRNAs and late-miRNAs with annotations available were
compared, and the significance of the differences was measured via
the chi-square test.

The construction of SVM model to predict
the early- and late-miRNAs

In order to establish the predictive models for early- and late-
miRNAs, the analytical workflow for miRNA features extraction and
the svm classifier construction was implemented as follows, (1) the
RNA-FM pre-trained model was employed for miRNA sequence
feature learning (Shen et al., 2024): (a) The pre-trained RNA-FM
model with a Transformer-based architecture and its corresponding
vocabulary system (alphabet) were loaded using fm. pretrained.rna_
fm_t12 (). (b) The miRNA sequences were converted into tensor
formats via the batch_converter via esm library, generating batch
data containing the encoded token tensors (batch_tokens) with
dimensions as batch_size × sequence_length), (c) The processed
data were fed into RNA-FM for forward propagation, extracting
hidden states from the 12th layer with repr_layers=12 (dimensions:
sequence_length × 640), then the column averaging along the
sequence axis yielded a 640-dimensional feature vector per
miRNA (dimensions: 1 × 640). (2) A support vector machine
(SVM) was adopted to predict miRNA replication timing (early
vs. late): (a) Data Partitioning & Hyperparameter Tuning: Feature
matrices were split into training (80%) and test sets (20%) using
train_test_split (sklearn.model_selection) with test_size = 0.2. (b) A
hyperparameter grid was defined to optimize radial basis function
(RBF) (kernel parameters: “C”: [0.1, 1, 10, 100, 1,000], “gamma”: [1,
0.1, 0.01, 0.001, 0.0001], “kernel”: [“rbf”], “probability”: [True]), this
parameter space spanned four orders of magnitude for C and
gamma, ensuring thorough exploration of model complexity and
generalization trade-offs. (c) a class-weighted SVC was initialized,
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and the exhaustive grid search with 5-fold cross-validation was
conducted to evaluate all hyperparameter combinations, with refit
set as true to trigger automatic retraining of the optimal model on
the full training set. The final model instantiation was executed via
grid.fit. (3) The class membership probabilities were generated
using grid.best_estimator_.predict_proba, where the predicted
probability of late replication domain (approaching 1) or early
domain (approaching 0) served as the score of late replication
timing propensity. (4) The model performance was evaluated
through the receiver operating characteristic (ROC) curve
analysis with area under the curve (AUC) quantification, and the
probability distributions between early- and late-replicating miRNA
groups were compared by the non-parametric Mann-Whitney
U tests.

Results

Comparison of secondary structural
properties between early-miRNAs and
late-miRNAs

We investigated the distribution of mononucleotides and
dinucleotides in the sequences of early pre-miRNAs and late pre-
miRNAs (seeMethods). In line with the biased accumulation of A or
T in the late replicating domains, the late pre-miRNAs presented
significantly greater proportionsof A and T, and significantly lower
proportionsof G and C (Mann‒Whitney U test, p < 0.05, two-sided)
(Figure 1A). In terms of the distribution of dinucleotide motifs, late
pre-miRNAs presented significantly greater proportionsof AA, AG,
AT, TA, and TT (Mann‒Whitney U test, p < 0.05, two-sided) and
significantly lower proportionsof AC, GG, CG, and CC (Mann‒
Whitney U test, p < 0.05, two-sided) (Figure 1B).

We investigated the energy characteristics of the secondary
structure via three measures: the minimum free energy (mfe)
structure, the frequency of the mfe structure in the ensemble and
the ensemble diversity (see Methods). Early pre-miRNAs and late
pre-miRNAs have similar distributions of mfe energy, mfe
frequency and ensemble diversity (Mann‒Whitney U test, p >
0.05, two-sided) (Supplementary Figures S1A–C); that is, both
early pre-miRNAs and late pre-miRNAs can fold into stable
hairpin structures.

We analyzed the energy components contributing to the
minimum free energy of the hairpin structures (see Methods). In
a canonical hairpin structure, the insertions or deletions occurring in
the stem region introduce bulges, which have destabilized effect on
the structure and are reflected in the energy term BULGE. Fifty-nine
percent of the early-replicated miRNAs had energy contributions
from BULGE, whereas 48% of the late-replicated miRNAs had
energy contributions from BULGE (chi-squaretest, p < 0.5, df =
1, two-sided) (Figure 2A). The point mutations in the middle of the
stem also destabilized the structure and were reflected in the energy
terms of STACK-mismatch (tri-nucleotide alignment with middle
mismatch) and INTERIOR-loop. We found that late-miRNAs have
significantly greater energy contributions from the INTERIOR-loop
(Mann‒Whitney U test, p < 0.05, two-sided) (Figure 2B). The
mutations occurring near the ends of the hairpin loops in the
stem lead to loop enlargement and a typical disordered region,
which destabilizes the secondary structure. Although the
destabilizing effect of the loop on the secondary structure cannot
be precisely characterized, the base pair near the disordered loop can
provide a rough estimate and is reflected in the energy term
HAIPIN. We found that late miRNAs have higher HAIPIN
energy values (Mann‒Whitney U test, p < 0.05, two-sided)
(Figure 2C), suggesting weaker restraint to the disordered
loop. The perfect matches have a predominant contribution to

FIGURE 1
The early-miRNAs and late-miRNAs have significantly different sequence properties. (A) Comparison of the mononucleotide composition in the
sequences of early- and late-pre-miRNAs. (B) Comparison of the dinucleotide compositions of the sequences of early- and late-miRNAs.The *
represents a p value≤0.05, ** represents a p value ≤ 0.01, and na represents a p value > 0.05.
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structural stability, and as reflected in the energy term STACK-
match, the late-miRNAs and early-replicated miRNAs have similar
values of STACK-match energies (Mann‒Whitney U test, p > 0.05,
two-sided) (Figure 2D).

From the perspective of binding energy, A:T basepairing consists
of two covalent bonds, whereas G:C basepairing consists of three
covalent bonds, and the binding energy of A:T basepairing is
significantly lower than that of G:C basepairing. Given the same
length, hairpin structures with high A/T contents generally have
significantly higher free energies than hairpin structures with high
C/G contents and are therefore less tolerant of destabilized mutations.
To reduce the destabilization of mutation and loop enlargement,
hairpin structures with high A/T contents can be stabilized by
adopting the longer stem or extending the stem length. In line
with this inference, although the late pre-miRNAs have longer
loops, they have the significantly higher number of nucleotides
involved in perfect matching (Mann‒Whitney U test, p < 0.05,
two-sided) (Figures 2E, F). In line with the biased accumulation of
A/T mutations in late replication domains, late-miRNAs may obtain
matched A:T pairs at both ends, and we observed that late-miRNAs
presented significantly shorter 5′end overhangs than early-miRNAs
did (Mann‒Whitney U test, p < 0.05, two-sided) (Figure 2G).

Comparison of evolutionary properties
between early-miRNAs and late-miRNAs

From the perspective of the mechanisms of miRNA processing
and maturation, miRNAs are predominantly determined by their

ability to form stable hairpin structures. Therefore, the preservation
of a stable secondary structure is key for the survival of nascent
miRNAs during evolution. In the late stage of replication, with
biased accumulation of A/T bases, miRNAs may be prone to obtain
A:T base pairings and expand the length of alignments.

We investigated the orthology sequences of pre-miRNAs in the
mouse-rat genomic alignments (see Methods). The proportion of
late pre-miRNAs with homologous sequences in the rat genome was
significantly greater than that of early-miRNAs (88.9% vs. 82.9%,
chi-squaretest, p < 0.05, df = 1,two-sided) (Figures 3A,B). To
investigate whether these orthologous regions encoded stable
secondary structures, we calculated three energy measures of
mouse miRNAs and obtained the 95th percentile of the folding
energy of the minimum free-energy structure as −19.1 kcal/mol, the
95th percentile of the frequency of the mfe structure in the ensemble
as 0.54, and the 95th percentile of the ensemble diversity as 22.2. We
then extracted the rat orthologue sequence from the alignment and
used RNAFold to investigate its folding potential. The orthologous
sequences of rat satisfying the three criteria of dG <=−19.1 kcal/mol,
mef_freq≤0.54 and ensemble_diversity ≤ 22.2 were selected as pre-
miRNA candidates with high-quality folding potential. The results
demonstrated that the homologous regions of late-miRNAs in the
rat genome have a greater propensity to encode high-confidence
pre-miRNA candidates (67.6% vs. 58.5%, chi-square test, p < 0.05,
df = 1,two-sided) (Figures 3A,B). The late miRNAs benefit from the
biased enrichment of A/T of the late-replicating domains and have a
greater possibility of being retained in evolution.

We analysed the GC contents of the upstream and downstream
sequences of the pre-miRNAs separately. Specifically, we extracted

FIGURE 2
The early-miRNAs and late-miRNAs have significant structural properties. (A)Comparison of energy terms with bugle contributions in the minimum
energy structure of early- and late-pre-miRNAs. (B) Comparison of interior loop energy in the minimum energy structure of early- and late-pre-miRNAs.
(C) Comparison of haipin energy in the minimum energy structure of early- and late-pre-miRNAs. (D) Comparison of perfect match energy in the
minimum energy structure of early-and late-pre-miRNAs. (E) Comparison of the length of perfect match nucleotides in the minimum energy
structure of early-and late-miRNAs. (F) Comparison of the length of external loop nucleotides in the minimum energy structure of early- and late-
miRNAs. (G) Comparison of the length of 5′overhangs in the minimum energy structure of early-and late-miRNAs.The * represents a p value≤0.05, **
represents a p value ≤ 0.01.
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the upstream 200 bp sequence of the pre-miRNA and the first 50 bp
sequence from the 5′end of the pre-miRNA. The GC content was
calculated at each site from −200 to +50 bps, centering the 5′ end of
the pre-miRNAs. The results revealed that there was no significant
difference in the GC content between early miRNAs and their
upstream sequences (T-test, p > 0.05, two-sided) (Figure 3C),
whereas the GC content of the late-miRNAs was significantly
greater than that of their upstream sequences (T-test, p < 0.05,
two-sided) (Figure 3C). We extracted the last 50 bp sequence at the
3′end of the pre-miRNA and the 200 bp downstream sequence and
calculated the GC content at each site from −50 to +200 bps,
centering the 3′ end of the pre-miRNAs. The results revealed
that there was no significant difference in the GC content
between early miRNAs and their downstream sequences (T-test,
p > 0.05, two-sided) (Figure 3D), the GC content of the 3′end
sequences of late-miRNAs was significantly greater than that of their
downstream sequences (T-test, p < 0.05, two-sided) (Figure 3D).
These results suggest that early-miRNAs have similar nucleotide
substitution patterns with upstream and downstream sequences,
whereas late-miRNAs undergo purifying selection to maintain a
certain CG content and pursue a stable hairpin structure under the
pressure of domain-specific biased A/T-enriched mutations.

The genotype‒phenotype (GP) map of the RNA secondary
structure connects RNA sequences with their corresponding

secondary structures. For the evolution of the RNA secondary
structure, the size of the neutral set of the structure, which
quantifies how many sequences fold into this structure, has been
proven to be particularly important. On the basis of the minimum
energy free energy structure of miRNAs, we calculated the size of the
neutral set of the structure of early-miRNAs and late-miRNAs (see
Methods) and found that the size of the neutral set of late-miRNAs
was significantly larger than that of early-miRNAs (Mann‒Whitney
U test, p < 0.05, two-sided) (Figure 3E). This finding indicates that
late miRNAs can accommodate more mutations while maintaining
the folding potential.

Comparison of transcription properties
between early-miRNAs and late-miRNAs

We examined mature miRNAs encoded by early pre-
miRNAs and late pre-miRNAs. Among the 631 late pre-
miRNAs, 486 pre-miRNAs encoded mature miRNAs at both
the 5′and 3′ends. Among the 362 late pre-miRNAs, 234 pre-
miRNAs encoded mature miRNAs at both the 5′and 3′ends.
Apparently, the early pre-miRNAs tend to encode mature
miRNAs at both the 5′and 3′ends (chi-square test, p < 0.05,
df = 1,two-sided) (Figure 4A).

FIGURE 3
The early-miRNAs and late-miRNAs have significantly different evolutionary profiles and GC contents. (A) Distribution of the number of earlypre-
miRNAs in three categories: pre-miRNAs without orthologues, pre-miRNAs with orthologous genes that meet with <three energy criteria, and pre-
miRNAs with orthologous genes that meet the three energy criteria. (B) Distribution of the number of late pre-miRNAs in three categories: pre-miRNAs
without orthologues, pre-miRNAs with orthologous genes that cannotmeet with the three energy criteria, and pre-miRNAswith orthologous genes
thatmeet with the three energy criteria. (C)GCcontent profile of the pre-miRNAs and their upstream sequences; the positions from 1 to 200 bp represent
the 200 bp upstream sequence, and from 201 to 250 represents the 50 bp sequence from the 5′end of themiRNA. The red lines represent the average GC
content of early-miRNAs and their upstream sequences. The bluelines represent the average GC content of early-miRNAs and their upstream sequences.
(D) GC content profile of the pre-miRNAs and their downstream sequences; the positions from 1 to 50 bp representthe 50 bp sequence to the 3′end of
the miRNA,and from 51 to 250 represent the 200 bp downstream sequence. The red lines represent the average GC content of early-miRNAs and their
downstream sequences. The bluelines represent the average GC content of late-miRNAs and their upstream sequences. (E)Comparison of the size of the
neutral set between the early- and late-miRNAs. The **represents a p value ≤ 0.01.
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The maturation process of miRNAs depends on the precise
cleavage of the secondary structure of pre-miRNAs by Dicer and the
stability of miRNAs in the cytoplasm. On the basis of the positional
coordinates of mature miRNAs in pre-miRNAs, we can identify
sequence motifs around high-confidence Dicer cleavage sites.

Generally, the second to ninth nucleotides downstream of the 3′-
end of mature 5′miRNAs embed its 5′high-confidence site,
and −10th to −3rd nucleotides upstreamn of the 5′-end of
mature 3′miRNAs embed its 3′high-confidence cleavage site. The
results demonstrated late-miRNAs prefer to use A or U in the fifth
positions in their 5′cleavage motifs (Chi-square test, p < 0.05, df =
1,two-sided) (Supplementary Figure S2A), and tend to adopt A or U
in -8th, -6th, -3rd positions in their 3′cleavage motifs (Chi-square
test, p < 0.05, df = 1,two-sided) (Supplementary Figure S2B), the
cluster analysis of 5′cleavage motifs showed that the late-miRNAs
have significant different values with the early-miRNAs in the first
dimension in DMS projection (Supplementary Figure S3), and the
cluster analysis of 3′cleavage motifs showed that the late-miRNAs
have significant different values with early-miRNAs in both of the
first and the second dimension in DMS projection
(Supplementary Figure S4).

We collected the expression profiles of miRNAs in seven tissues
and identified the expressed miRNAs in each tissue using a cut-off of
rpm≥1 (see Methods). The results revealed significantly greater
proportions of expressed late-miRNAs in each of the seven
tissues (Mann‒Whitney U test, p < 0.05, two-sided) (Figure 4B).

We further used a probabilistic mixture model integrating the
sequence based GLM priors and CAGE tags through a semi-
supervised EM algorithm (see Methods), and identified 435 high-
confidence promoters for 510 early-pre-miRNAs, and 174 high-
confidence promoters for 246 late-pre-miRNAs (in both types of
miRNAs, the clustered miRNAs were assigned with the same
promoters). Comparative analysis of promoters properties
revealed that the promoters of the late-miRNA exhibit

significantly higher TATA-box propensity (Mann‒Whitney U
test, p < 0.05, two-sided), the reduced CpG content (Mann-
Whitney U test, p < 0.05, two-sided), and greater genomic
distances from pre-miRNAs (Mann‒Whitney U test, p < 0.05,
two-sided) (Supplementary Figures S5A-C). These promoter
sequence divergences may suggest differential regulation by
transcription factors with contrasting binding preferences (e.g.,
CG-rich versus AT-rich core motifs), and is involved in distinct
cis-regulatory architectures for temporally regulated genes.

Because miRNAs are involved in the posttranscriptional
regulation of protein-coding genes, we further analyzed the
overall transcriptional activity of the regions surrounding the
miRNAs. There were significantly fewer genes surrounding ±1 M
of the late-miRNAs than early-miRNAs (Mann‒Whitney U test, p <
0.05, two-sided) (Figure 5A). A total of 56% of the late miRNAs had
protein-coding genes within the 10 kb range, which was significantly
lower than the 83% of the early miRNAs (chi-square test, p < 0.05,
df = 1,two-sided) (Figure 5B). We further analysed the overlap
between pre-miRNAs and protein-coding genes. The 178 early
pre-miRNAs did not overlap with protein-coding genes, whereas
the 398 and 55 early pre-miRNAs overlapped with the same and
opposite stand of host protien-coding transcripts, respectively. The
188 late pre-miRNAs did not overlap with protein-coding genes,
whereas the 138 and 36 late pre-miRNAs overlapped the same and
opposite stand of host protien-coding transcripts, respectively. The
results demonstrated that early pre-miRNAs tend to be located in
protein-coding regions (chi-square test, p < 0.05, df = 1,two-sided)
(Figures 5C,D) and transcribe in the same direction as the
transcripts of host protein-coding genes (chi-square test, p < 0.05,
df = 1,two-sided) (Figures 5C,D).

These findings indicate that late miRNAs tend to be located in
regions with lower protein-coding activity, may have relatively
independent transcriptional initiation mechanisms, and are less
likely to be affected by transcriptional noise. This may provide a

FIGURE 4
The early-miRNAs and late-miRNAs have significantly different encoding statues of mature miRNAs, and the expressional activities. (A) Comparison
of the proportions of pre-miRNAs encoding both 5′end mature miRNAs and 3′end mature miRNAs. (B) Comparison of the expression activities of pre-
miRNAs and late-miRNAs in the seven tissues. The * represents a p value≤0.05, ** represents a p value ≤ 0.01.
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beneficial effect for better exhibiting the role of posttranscriptional
regulation.

Late-miRNAs tend to synergistically regulate
the same target genes

We investigated the topological properties of the
posttranscriptional regulatory network mediated by early-
miRNAs and late-miRNAs. On the basis of the experimentally
validated target genes, we reconstructed a regulatory network,
including 36,505 regulatory edges between 809 miRNAs
(including 486 early-replicating miRNAs and 323 late-
replicating miRNAs) and 7,411 target genes. We counted the
number of target genes regulated exclusively by one early-
miRNA, the number of target genes regulated exclusively
by≥2 late-miRNAs, and the number of target genes regulated
by both early-miRNAs and late-miRNAs. We adopted an edge-
rewiring algorithm to construct a simulated regulatory network
in which the number of regulatory miRNAs for each gene were

the same as those in the original network (seeMethods). We then
constructed the number distribution of the genes regulated by
each category of miRNAs.

We observed that 1,094 genes were regulated exclusively by one
early-miRNA, and this value significantly deviated from the
distribution observed in the simulated networks (1,379 ± 21.95, Z
score = −13, p < 0.05) (Figure 6A). The 579 genes were regulated
exclusively by ≥ 2 early-miRNAs, and this value significantly
deviated from the distribution observed in the simulated
networks (722 ± 21.99, Z score = -6.5, p < 0.05) (Figure 6B). The
1,190 genes were regulated by only one late miRNA, and this value
significantly deviated from the distribution observed in the
simulated networks (904 ± 21.95, Z score = 13.0, p < 0.05)
(Figure 6C). The 349 genes were regulated by ≥ 2 late-replicating
miRNAs, and this value significantly deviated from the distribution
observed in the simulated networks (234 ± 13.85, Z score = 7.61, p <
0.05) (Figure 6D). The 4,199 genes were regulated by both early-
miRNAs and late-miRNAs, and this value did not deviate from the
distribution observed in the simulated networks (4,161 ± 23.34, Z
score = 1.63, p > 0.05) (Supplementary Figure S6). Therefore, late-

FIGURE 5
The early-miRNAs and late-miRNAs loci have significantly different transcription activities of protein-coding genes. (A) Comparison of the number
of protein-coding genes within a 1 M range between early- and late-pre-miRNAs. (B)Comparison of the proportions of pre-miRNAs with protein-coding
genes within the 10 kb range between early- and late-pre-miRNAs. (C) Distribution of the number of earlypre-miRNAs in three categories: pre-miRNAs
with no intersection with protein-coding genes, pre-miRNAs located in protein-coding genes with the same strand, and pre-miRNAs located in
protein-coding genes with the opposite strand. (D) Distribution of the number of late pre-miRNAs in three categories: pre-miRNAs with no intersection
with protein-coding genes, pre-miRNAs located in protein-coding genes with the same strand, and pre-miRNAs located in protein-coding genes with
the opposite strand. * represents a p value≤0.05, ** represents a p value ≤ 0.01.
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miRNAs tend to regulate more genes and tend to cooperatively
regulate the same type of target genes.

We investigated whether the miRNA regulatory network has
domain-like properties, that is, whether miRNAs and their target
genes belong to the same replication temporal domain or different
replication temporal domains. We further limited the analysis to
target genes with early- or late-replication domain information. We
observed 14,728 regulatory relationships of miRNA target genes in
the same replication domain, including the number of early-genes
regulated by early-miRNAs and the number of late-genes regulated
by late miRNAs. This value does not significantly deviate from the
distribution observed in the simulated networks (14,818 ± 73.44, Z
score = −1.23, p value > 0.05) (Supplementary Figure S7A). We
observed 13,215 regulatory relationships of miRNA target genes in
different replication periods, including the number of early-genes
regulated by late-miRNAs and the number of late-genes regulated by
early-miRNAs. This value does not significantly deviate from the
distribution observed in the simulated networks (13,124 ± 73.44, Z
score = 1.23, p value > 0.05) (Supplementary Figure S7B). These
results indicate that the target selection of miRNAs is independent of
the replication temporal stages of the target genes.

We further analyzed the target genes regulated exclusively by
late-miRNAs and the target genes regulated exclusively by early-
miRNAs. The target genes regulated exclusively by late-miRNAs
presented significantly shorter UTRs (Mann‒Whitney U test, p <
0.05, two-sided) (Supplementary Figure S8A) and lower expression

variability (Mann‒Whitney U test, p < 0.05, two-sided)
(Supplementary Figure S8B). These results indicate that late- and
early-miRNAs indeed have certain effects on the regulation of
target genes.

Early-miRNAs and late-miRNAs involved in
different biological functions

We investigated the biological functions of genes regulated
exclusively by early-miRNAs (early miRNA targets) and those
regulated exclusively by late-miRNAs (late miRNA targets) within
cells. On the basis of the MSigDB annotation system (see Methods)
(Liberzon et al., 2011), we conducted functional enrichment analyses in
four categories: GO Molecular Function, GO Biological Process, GO
Cellular Component, and KEGG metabolic pathways.

We identified 1,224 early-miRNA target genes and 1,183 late-
miRNA target genes with available annotations of GO molecular
functions. Compared with the early-miRNA genes, the late-miRNA
targets represented a significantly greater proportion of the genes
annotated with enzyme activator activity and calmodulin binding
(chi-square test, p < 0.05, df = 1, two-sided) and a significantly lower
proportion of the genes annotated with signalling receptor binding
(chi-square test, p < 0.05, df = 1, two-sided) (Figure 7A).

We identified 1,319 early-miRNA target genes and 1,259 late-
miRNA target genes with available annotations of the GO Biological

FIGURE 6
Simulation analysis to explore the target-recognition preference of late-miRNAs. (A) Distribution of the number of genes regulated exclusively by
one early-miRNA in 100 simulations. The arrow on the left hand side represents the observed number of targets regulated exclusively by one early-
miRNA. (B)Distribution of the number of genes regulated exclusively by≥two early-miRNAs in 100 simulations. The arrow on the left hand side represents
the observed number of targets regulated exclusively by≥two early-miRNAs. (C) Distribution of the number of genes regulated exclusively by one
late-miRNA in 100 simulations. The arrow on the right hand side represents the observed number of targets of one early-miRNAs. (D) Distribution of the
number of genes regulated exclusively≥two late-miRNAs in 100 simulations. The arrow on the right hand side represents the observed number of targets
regulated exclusively by≥two late-miRNAs.
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Process. Compared with the early-miRNA target genes, a
significantly greater proportion of the late-miRNA target genes
were annotated as exocytosis, regulation of protein serine and
threonine kinase activity, regulation of MAP kinase activity,
positive regulation of GTPase activity, etc. (Chi-square test, p <
0.05, df = 1,two-sided) (Figure 7B), and a significantly lower
proportion of the target genes were annotated as response to
oxygen-containing compounds, negative regulation of cell death,
etc. (Chi-square test, p < 0.05, df = 1, two-sided) (Figure 7C).

We identified 1,102 early-miRNA target genes and 1,049 late-
miRNA target genes with available annotations of the GO Cellular
Component. Compared with the early-miRNA target genes, a
significantly greater proportion of the late-miRNA target genes
were annotated as enzymes encodingcytoplasmic vesicles,
secretory vesicles and phagocytic vesicles (chi-square test, p <
0.05, df = 1,two-sided), and a significantly lower proportion of
the target genes were annotated as intrinsic components of the
plasma membrane (chi-square test, p < 0.05, df = 1, two-
sided) (Figure 7D).

We identified 983 early-miRNA target genes and 930 late-
miRNA target genes with available annotations of the GO
Cellular component. Compared with the early-miRNA target
genes, the late-miRNA targets represented a significantly
greater proportion of the target genes annotated as enzymes
involved in post-translational protein modification, intra-
celluar signalling by second messengers, the cell cycle and
myogenesis (chi-square test, p < 0.05, df = 1,two-sided) and a
significantly lower proportion of the target genes annotated as
axon guidance and heme metabolism (chi-square test, p < 0.05,
df = 1,two-sided) (Figure 7E).

We also investigated the propensity of the target genes of early-
miRNAs and late-miRNAs encoding essential genes in cells
(Morgens et al., 2016; Cacheiro et al., 2020). A total of
50 essential categories were evaluated, including 15 partially
essential terms and 35 completely essential terms, and 631 and
599 essential genes were identified as target genes of early-miRNAs
and late-miRNAs, respectively. Overall, there was no significant
difference in the proportion of essential genes encoded by the target

FIGURE 7
The target genes of early-miRNAs and late-miRNAs enriched in different biological function categories. (A) Comparison of the proportion of genes
annotated by GOmolecular functions of target genes between early-miRNAs and late-miRNAs. (B)Comparison of the proportion of genes annotated by
GO biological processes of target genes between early-miRNAs and late-miRNAs, showing the GO terms associated with late-miRNA target enrichment.
(C)Comparison of the proportion of genes annotated byGO biological processes of target genes between early-miRNAs and late-miRNAs, showing
the GO terms associated with early-miRNA target enrichment. (D) Comparison of the proportion of genes annotated by GO cellular components of
target genes between early-miRNAs and late-miRNAs. (E) Comparison of the proportion of genes annotated by KEGG metabolic pathways of target
genes between early-miRNAs and late-miRNAs. * represents a p value≤0.05, and ** represents a p value ≤ 0.01.
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genes of early-miRNAs and late-miRNAs (chi-square test, p > 0.05,
df = 1, two-sided).

Construction of predictive models for early-
and late-miRNAs based on sequence-
structure features

Utilizing the RNA-FM language model and support vector
machine (SVM) approaches, we established a predictive model
that discriminates early- and late-miRNAs purely based on
miRNA sequence and structural features (see Methods). We
trained the predicitve model on 80% of the dataset, and
evaluated its performance in an independent validation set (20%
of data). The predictive model achieved 75% classification accuracy
(Supplementary Figure S9A). We further adopted the predictive
probability to score the propensity of miRNAs located in late-
replicating domains, and observed late-miRNAs have significant
higher scores of than ealry-miRNA (Supplementary Figure S9B).
These results confirmed that the information of replication timing
domains is inherently encoded in miRNAs’ sequence-structure
signatures, and suggested that late-replication specific mutation
patterns leave direct imprints on miRNA architecture.

Discussion

Cell division is one of the most important events in the cell life
cycle (Wu and Li, 2016). Orderly and high-fidelity genome
replication ensures that daughter cells maintain growth vitality
(Frost et al., 2021). Recent studies revealed the DNA replication
temporal pattern of the genome and indicated that the early and late
replication domains have significant effects on the epigenetic
landscape and genomic mutability. As an important factor in
posttranscriptional regulation, the occurrence and retention of
miRNAs in evolution depend mainly on whether the pre-miRNA
can fold into a thermally stable hairpin structure, which is
recognized by Ago2 and Dicer to produce mature miRNAs.

The bias toward AT enrichment of late replication domains
clearly poses a considerable challenge for late-miRNAs to maintain a
stable hairpin structure. Our study demonstrated that miRNAs
might take advantage of this mutation bias mechanism to extend
at both ends, increasing the length of the stems to compensate for
the increase in entropy caused by the increase in the number of loops
and the relatively lower binding energy of A:T basepairing. On the
basis of the GC profiles of the upstream regions, downstream regions
and miRNAs, the CG content of late-miRNAs takes on a protruding
shape, whereas that of early-miRNAs takes on a nearly flat shape.
These results indicate that miRNAs have undergone negative
selection to maintain some necessary G:C pairings, coupled with
their ease of extension at both ends, and that both factors jointly
ensure the maintenance of the miRNA hairpin structure. For this
reason, late-miRNAs are more likely to be retained in evolution,
which was confirmed in the comparative genomic analysis of mice
and rat; that is, the rat orthologous regions of late-miRNAs have a
greater probability of folding into miRNA-like hairpin structures.

Further analysis of the regions surrounding the miRNAs
revealed that late-miRNAs tend to be located in regions with

relatively few protein genes and have relatively high expression
activities in various tissues. We speculate that late-miRNAs may
have a relatively independent transcriptional initiation system. The
late-miRNAs tend to coordinately regulate the same type of genes;
the target genes exclusively regulated by late-miRNAs have shorter
UTRs and lower expression variability and are enriched in
functional categories such as exocytosis, the cell cycle, and
posttranslational protein modification. These results suggest that
the location of the early and late replication domains has a certain
effect on the miRNA-mediated posttranscriptional regulatory
network. Our research results provide new insight into the study
of miRNA structural genomics and would help us understand the
evolutionary mechanism of miRNAs and miRNA-mediated
posttranscriptional regulation in cancers (Wu et al., 2023; Ma
et al., 2024).

To explore the generalizability of the observed miRNA features
in human genome, we extracted the early- and late-replicating
domains in human embryonic stem cells (GSE137764) (Zhao et al.,
2020), and obtained 1,372 early-pre-miRNAs and 391 late pre-
miRNAs. The sequence analyisis demonstrated the similar
tendancy that the A or U enriched in the late-mRNAs
(Supplementary Figure S10A,B), however, the simulation of
post-regulation network analysis among miRNAs and their
experimental target genes (miRTarBase) did not reveal a
significant tendency for late mRNAs to co-regulate the same
target genes in human genome (data not shown). We propose
that the following reasons may potentially explain this
inconsistency. First, the population genetics may be different
between human and mouse, the mouse species are characterized
by high reproductive rates and short lifespans, maintain elevated
genetic diversity. In contrast, humans exhibit lower reproductive
rates and extended lifespans, leading to slower accumulation of
neutral mutations and adaptive variants. The potential higher
probability of fixation of environmentally adaptive mutations
may explain the observed coordinated regulation patterns of
late-miRNAs in mouse genome. Second, there were significant
structural divergence in 3′UTR regions between human and
mouse, the human 3′UTRs display greater sequence complexity
and regulatory element diversity, the increased density of miRNA
binding sites in human 3′UTRs may impose additional regulatory
constraints, thereby reducing the likelihood of observing
conserved co-regulatory patterns. Consequently, the synergistic
regulatory effects observed in mouse may stem from their higher
fixation rates of environmental adaptive mutations.
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SUPPLEMENTARY FIGURE S1
The early-miRNAs and late-miRNAs have similar folding ensemble
properties. (A) Comparison of the folding free energy of the minimum
energy structure between early- and late-pre-miRNAs. (B) Comparison
of the frequencies of the minimum energy structure in the ensembles
between early- and late-pre-miRNAs. (C) Comparison of the ensemble
diversities between early-and late-pre-miRNAs. The na represents a
p value > 0.05.

SUPPLEMENTARY FIGURE S2
The comparison of position-specific nucleotide distributions between early-
and late-miRNAs in (A) Dicer 5′ motifs and (B) 3′ motifs. The p values were
calculated in for each base. The * represents a p value≤0.05, ** represents a
p value ≤ 0.01, and na represents a p value > 0.05.

SUPPLEMENTARY FIGURE S3
The clustering analysis of Dicer 5′ cleavage motifs. (A) The multidimensional
scaling (MDS) scatter plot of miRNAs, with early-miRNAs represent red nodes
an late-miRNAs as blue nodes. (B) The late-miRNAs have a significantly
higher value of the first component than early-miRNAs. (C) The early-miRNAs
have similar value of the second component with late-miRNAs.

SUPPLEMENTARY FIGURE S4
The clustering analysis of Dicer 3′cleavage site motifs. (A) The
multidimensional scaling (MDS) scatter plot of miRNAs, with early-miRNA
represent red nodes an late-miRNAs as blue nodes. (B) The late-miRNAs
have a significantly higher value of the first component than early-miRNAs.
(C) The late-miRNAs have a significantly lower value of the first component
than early-replicating miRNA.

SUPPLEMENTARY FIGURE S5
The early-miRNAs and late-miRNAs loci have significantly different promoter
properties in (A) the GC ratios, (B) the TATA-box affinity, (C) distance
between promoters and the pre-miRNAs. * represents a p value≤0.05, **
represents a p value ≤ 0.01.

SUPPLEMENTARY FIGURE S6
Simulation analysis to explore the target-recognition preference of early-miRNA
and late-miRNAs. Distribution of the number of genes regulated by both the
early-miRNAs and late-miRNAs in 100 simulations. The arrow represents the
observed number of targets of both the early-miRNAs and late-miRNAs.

SUPPLEMENTARY FIGURE S7
Simulation analysis to explore cross-domain target-recognition preference
of early-miRNA and late-miRNAs. (A) Distribution of the number of early-
genes regulated by early-miRNAs, and late-genes regulated by late-
miRNAs in 100 simulations. The arrow represents the observed number of
regulation-ships between early-genes regulated by early-miRNAs, and late-
genes regulated by late-miRNAs. (B) Distribution of the number of
regulation-ships between early-genes regulated by late-miRNAs, and late-
genes regulated by early-miRNAs in 100 simulations. The arrow represents
the observed number of the early-genes regulated by late-miRNAs, and the
late-genes regulated by early-miRNAs.

SUPPLEMENTARY FIGURE S8
The target genes of early-miRNAs and late-miRNAs tend to have short lenght
of 3′UTRs and lower transcription variations. (A) Comparison of 3′UTR
length of targets genes between early-miRNAs and late-miRNAs. (B)
Comparison of transcriptional variation of target genes between early-
miRNAs and late-miRNAs. * represents a p value≤0.05, and ** represents a
p value ≤ 0.01.

SUPPLEMENTARY FIGURE S9
The performance of predictive model in classify the early- and late-miRNAs.
(A) The ROCplot showing themodel achieved 75% classification accuracy in
the independent validation set. (B) Using the predictive probability to
represent the propensity of miRNAs located in late-replicating domains, the
late-miRNAs have significant higher scores thant ealry-miRNA. * represents
a p value≤0.05, ** represents a p value ≤ 0.01.

SUPPLEMENTARY FIGURE S10
The early-miRNAs and late-miRNAs have significantly different sequence
properties in human genome. (A) Comparison of the mononucleotide
composition in the sequences of early- and late-pre-miRNAs. (B)
Comparison of the dinucleotide compositions of the sequences of early- and
late-miRNAs. The * represents a p value≤0.05, ** represents a p value ≤ 0.01,
and na represents a p value > 0.05.
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