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Background: Sjogren’s syndrome (SS) is an autoimmune disorder impacting
exocrine glands, while peripheral atherosclerosis (PA) demonstrates a close
link to inflammation. Despite a notable rise in atherosclerosis risk among SS
patients in prior investigations, the precise mechanisms remain elusive.

Methods: A comprehensive analysis was conducted on seven microarray
datasets (GSE7451, GSE23117, GSE143153, GSE28829, GSE100927, GSE159677,
and GSE40611). The LIMMA package, in conjunction with weighted gene co-
expression network analysis (WGCNA), provides a robust method for identifying
differentially expressed genes (DEGs) associated with peripheral atherosclerosis
(PA) in Sjogren’s syndrome (SS). Subsequently, machine learning algorithms and
protein-protein interaction (PPI) network analysis were employed to further
investigate potential predictive genes. These findings were utilized to
construct a nomogram and a receiver operating characteristic (ROC) curve,
which assessed the predictive accuracy of these genes in PA patients with SS.
Additionally, extensive analyses of immune cell infiltration and single-sample
gene set enrichment analysis (ssGSEA) were conducted to elucidate the
underlying biological mechanisms.

Results: Using the LIMMA package and WGCNA, 135 DEGs associated with PA in
SS were identified. PPl network analysis revealed 17 candidate hub genes. The
intersection of gene sets identified by three distinct machine learning algorithms
highlighted CCL4, CSF1R, and MX1 as key DEGs. ROC analysis and nomogram
construction demonstrated their high predictive accuracy (AUC: 0.971, 95% Cl:
0.941-1.000). Analysis of immune cell infiltration showed a significant positive
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correlation between these hub genes and dysregulated immune cells. Additionally,
ssGSEA provided critical biological insights into the progression of PA in SS.

Conclusion: This study systematically identified three promising hub genes (CCL4,
CSF1R, and MX1) and developed a nomogram for predicting PA in SS. Analysis of
immune cell infiltration demonstrated that dysregulated immune cells significantly
contribute to the progression of PA. Additionally, ssGSEA analysis offered important
insights into the mechanisms by which SS leads to PA.
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1 Introduction

Sjégren’s syndrome (SS) is characterized by the immune
self-tissue
This
inflammatory condition that affects various organs and tissues.

system’s  response  to antigens, resulting in

histopathological damage. process triggers a chronic
Peripheral atherosclerosis (PA) primarily impacts the lower
extremities and carotid arteries, potentially leading to lower limb
ischemia, necrosis, and cerebrovascular events. It is well known that
the occurrence of atherosclerosis is based on the interaction of
traditional cardiovascular risk factors (CRF), inflammatory events
and immune mechanisms (Safar, 2018). Recent studies have
underscored the significant association between SS and
The these

conditions likely involve systemic inflammation and endothelial

atherosclerosis. potential mechanisms  linking
dysfunction, common features of autoimmune disorders like SS
(Gravani et al., 2015). Research indicates that patients with SS have
impaired endothelial function, which may be the initiating step in
the formation of atherosclerosis (Kiripolsky and Kramer, 2018).
Endothelial cells are pivotal in atherosclerosis pathogenesis, leading
to the increased expression of adhesion molecules such as
intercellular adhesion molecule 1 (ICAM-1) and vascular cell
adhesion molecule 1 (VCAM-1). These molecules, serving as
biomarkers for endothelial injury, exhibit significant elevation in
individuals with SS, suggesting a plausible association between SS
and PA (Liu etal., 2023). In SS patients, there is a positive correlation
between the intima-media thickness of the carotid and femoral
arteries and the level of anti-Sjogren’s syndrome antibody A (SSA) in
the bloodstream (O et al., 2019; Turesson et al., 2004). This
correlation may stem from the autoimmune response triggering
vascular wall inflammation and hastening atherosclerosis
progression through interactions among various inflammatory
cells and cytokines. Immune cells are recruited and migrate to
the vascular wall through adhesion molecules (Zheng et al,
2009), and the pro-inflammatory microenvironment of SS further
(Nair et al, 2012).

similar inflammatory mediators and

promotes this pathological process

Atherosclerosis  shares
immune mechanisms with autoimmune rheumatic diseases. Due
to the over-activation of the immune system and chronic
inflammatory state, patients with SS have a potential pathological
process that can accelerate the progression of atherosclerosis.
Bartoloni et al. conducted a retrospective analysis on 1343 SS
patients, unveiling a significantly increased risk of cardiovascular
and cerebrovascular diseases (Bartoloni et al., 2015). Another

prospective cohort study indicated that the carotid intima-media
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thickness thickening in SS patients occurred earlier and faster than
in the control group, especially after the age of 50, and the likelihood
of plaque formation was also notably higher in this patient
population (Zehrfeld et al, 2024). A study involving 155 SS
patients showed that the prevalence of atherosclerosis (AS) was
41.3%, with major cardiovascular and cerebrovascular events
occurring at a rate of 5.2% (Liu et al., 2023). The diagnosis of SS
complicated by PA is challenging because of the absence of typical
clinical symptoms in the early stage and the risk of missed diagnosis
due to the limitations of imaging examinations such as
ultrasonography, which has insufficient sensitivity to early
lesions. Given the rising interest in the connection between SS
and atherosclerosis as prevalent autoimmune disorders,
identifying common biomarkers for SS and PA and investigating
their shared pathogenesis is crucial. These research findings hold
promise for early detection and intervention in SS and PA cases.
Timely diagnosis and management of PA in SS individuals are
imperative for minimizing adverse outcomes and improving
patient prognosis.

In recent years, the application of microarray gene expression
profiling has emerged as a powerful technique for identifying
biomarkers, showing promise in the realm of SS and
arteriosclerosis. Numerous studies have shown that there are
multiple relationships between the onset of SS and various
genetic and environmental factors (Miceli-Richard and Criswell,
2014). The saliva of Sjogren’s syndrome patients may contain
multiple biomarkers, including soluble siglec-5, which could
potentially correlate with disease severity (Lee et al, 2019). As
regard to arteriosclerosis, research has pinpointed protein
type ] (PTPRJ) and

dehydrogenase/reductase 9 (DHRS9) as pivotal biomarkers with

tyrosine  phosphatase  receptor

high diagnostic accuracy for the pathological process of
atherosclerosis (Xu et al, 2022). Autoimmune responses in
Sjogren’s syndrome instigate inflammation within the vascular
wall, intensifying atherosclerosis progression. Consequently,
biomarkers linked to immune functionality might emerge as
crucial predictive indicators for the predisposition of Sjogren’s
syndrome patients to atherosclerosis, potentially informing
treatment decisions. The scarcity of literature addressing the
specific genetic mechanisms underlying Sjogren’s syndrome-
induced atherosclerosis underscores the imperative for further
investigation. While the broad utility of microarray technology in
these disease realms is evident, the precise pathogenesis of these
conditions remains enigmatic, necessitating additional research to

unravel their specific pathological mechanisms.
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Bioinformatics technologies hold significant potential for
elucidating disease mechanisms and identifying biological
markers (Zhou et al., 2022; Zhu et al.,, 2023; Wang et al.,, 2022).
Limma analysis proficiently manages gene chip data, discerns
differentially expressed genes, and plays a pivotal role in
investigating disease mechanisms and identifying biological
markers. WGCNA correlates gene modules with phenotypes
through the construction of gene co-expression networks, with its
central genes serving as vital biological indicators. PPI analysis
scrutinizes protein interactions using databases and experimental
data, facilitating the comprehension of disease mechanisms and
identification of crucial protein markers. Machine learning delves
into disease mechanisms, selecting genes with high predictive value
as markers by analyzing data patterns with algorithms. The
construction and analysis of a nomogram merge diverse
predictive variables to yield a comprehensive risk score, aiding in
the identification of potential predictive and diagnostic markers.
Immune cell infiltration analysis examines the immune cell status in
affected tissues, a crucial aspect in unveiling disease immune
identifying  pertinent These
technologies offer practical utility in exploring the specific genetic

mechanisms  and markers.
mechanisms triggered by SS for PA. Integrating bioinformatics and
machine learning methods enables the discovery of potential disease
mechanisms and identification of biomarkers (Vaziri-Moghadam
and Foroughmand-Araabi, 2024).

2 Methods

2.1 Microarray acquisition and data
processing

Using the keywords “Sjogren’s syndrome” or “peripheral
atherosclerosis,” seven microarray datasets (GSE7451, GSE23117,
GSE143153, GSE28829, GSE100927, GSE159677, GSE40611) were
screened from the NCBI Gene Expression Omnibus (GEO) (Clough
and Barrett, 2016). Detailed information regarding these datasets is
presented in Table 1. The GSE7451 (Hu et al.,, 2007), GSE23117
(Greenwell-Wild et al., 2011), GSE143153 (Joachims et al., 2020),
and GSE40611 (Horvath et al, 2012) datasets contain gene
expression data from individuals with Sjogren’s syndrome and
normal controls. The GSE100927 (Steenman et al., 2018) dataset
includes gene expression profiles from 69 human peripheral arteries
affected by atherosclerosis (including carotid arteries, femoral
arteries, and popliteal arteries) and 35 control arteries without
atherosclerotic lesions. The GSE159677 (Alsaigh et al., 2022)
dataset contains single-cell transcriptome profiles from three
calcified atherosclerotic core (AC) plaques and three controls
(patient-matched proximal adjacent regions of the carotid artery).
The GSE28829 dataset was used for external validation.

We preprocessed the downloaded raw datasets using the “affy” R
package from the Bioconductor project, including background
adjustment, log2 transformation (for GSE7451 and GSE23117),
and quantile normalization. When multiple probes matched the
same gene, we used the median as the final expression measurement
for that gene. After converting probes to gene symbols, we prepared
matrix files. Subsequently, we merged the GSE7451, GSE23117, and
GSE143153 datasets and used the R package Surrogate Variable
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Analysis (SVA) (Leek et al., 2012) to remove unwanted variations
and batch effects. Batch effect correction was carried out using the
ComBat function within the “sva” R package. In this process, the
mod = model.matrix (~group) parameter was utilized to designate
the biological grouping as covariates, preserving biological
variations associated with the grouping while eliminating batch
effects. Following this, PCA visualization was employed to assess
the efficacy of batch effect removal. The prcomp function in the stats
package was used to perform PCA on the data before and after batch
effect removal. The first principal component (PC1) and the second
(PC2) visualized with the
ggplot2 R package. In the principal component analysis, the

principal  component were
Cumulative Variance Explained method was adopted as the
selection criterion. That is, several top principal components
were chosen such that their cumulative explained variance
reached a certain threshold (typically 70%-90%), thereby

achieving dimensionality reduction of high-dimensional data.

2.2 DEGs identification in SS and PA

Based on established criteria (P < 0.05 and fold change (FC) >
1.5), we utilized the “Limma” package to identify DEGs between SS
and the control group in the merged dataset (GSE7451, GSE23117,
and GSE143153), as well as DEGs between PA and the control group
in the GSE100927 dataset. Utilizing heatmaps to illustrate the
expression patterns of differentially expressed genes across
various samples, and generating volcano plots to visually
represent the distribution of these genes.

2.3 Significant module identification via
WGCNA in SS and PA

WGCNA, a powerful strategy for constructing co-expression
networks, has been widely utilized in large dataset analyses (Yang
et al, 2020). We utilized WGCNA to identify gene modules
significantly linked to SS and PA. In this study, the analysis
process was as follows: Initially, we computed the absolute
median deviation (MAD) for each gene expression value and
removed the bottom 50% of genes with the lowest MAD values.
Next, the goodSamplesGenes function was applied to filter the
DEGs expression matrix and construct a scale-free co-expression
network. Using co-expression similarity, the soft-thresholding
pickSoftThreshold
function, gene
coefficients into a weighted adjacency matrix. Thereafter, the

parameter [ was determined via the

which was wused to convert correlation
Topological Overlap Matrix (TOM), which offers an improved
representation of gene co-expression relationships, was computed.
Hierarchical clustering was then performed on the TOM to group
genes with similar expression patterns into modules using dynamic
tree cutting. To prevent over-segmentation, small modules with
high similarity were merged based on a minimum module size
threshold of 50 in the gene dendrogram. Finally, distinct modules
were further analyzed through changes in estimated module
eigengenes to identify those significantly correlated with the
studied phenotypes, and a visualization of the eigengene

network was generated.
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TABLE 1 Basic information of GEO datasets used in the study.

10.3389/fgene.2025.1546315

GSE series Disease Samples Platform Group

1 GSE7451 SS 10 SS patients and 10 normal controls salivary gland =~ GPL570 Discovery cohort

2 GSE23117 SS 11 SS patients and 4 normal controls salivary gland = GPL570 Discovery cohort

3 GSE143153 SS 17 SS patients and 15 normal controls salivary gland =~ GPL13607 Discovery cohort

4 GSE100927 PA 69 peripheral atherosclerotic patients and 35 controls Arterie GPL17077 Discovery cohort

5 GSE159677 PA 3 carotid plaque patients and 3 matched proximal adjacent portion patients = Arterie GPL18573 Discovery cohort

6 GSE28829 PA 16 advanced carotid plaque patients and 13 early carotid plaque patients Arterie GPL570 Validation
cohort

7 GSE40611 SS 18 SS patients and 17 normal controls Parotid gland = GPL570 Validation
cohort

2.4 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata
et al,, 1999) serves as a pivotal knowledge repository for systematic
gene function analysis. Within Gene Ontology (GO) analysis
(Kuleshov et al., 2019), categories such as biological process (BP),
cellular component (CC), and molecular function (MF) are
delineated. In order to further uncover the physiopathological
mechanisms of PA in SS patients. KEGG and GO functional
enrichment analysis were conducted using the “ClusterProfiler” R
package, with the corresponding top 10 GO terms in each category
were visualized using the “ggplot2” R package (Yu et al, 2012).
Screening criteria included a false discovery rate below 0.05, and
adjusted P value lower than 0.05 is described as statistically
significant.

2.5 PPI network construction and candidate
hub genes selection

With a set minimum interaction score of 0.400, PPI network was
constructed in STRING database (https://cn.string-db.org; version
12.0) (S et al,, 2021). In practice, the genes that did not interact with
each other were concealed. Following the download of the
interaction data file, visual representation was accomplished
using the Cytoscape software (Otasek et al, 2019). To analyze
topology, the Cytoscape plug-in CytoHubba (Su et al., 2021) was
utilized, employing a trio of distinct algorithms (degree,
betweenness, closeness centrality). Ultimately, the intersection of
these algorithms facilitated the visualization of the top 30 DEGs.

2.6 Machine-learning

In machine learning, the Support Vector Machine-Recursive
Feature Elimination (SVM-RFE), Logistic Regression with Least
Absolute Shrinkage and Selection Operator (LASSO), and
Random Forest algorithms collectively facilitate the identification
of potential gene biomarkers. The SVM-RFE (Huang et al., 2014)
technique, within the Support Vector Machine framework, aimed to
identify optimal variables by eliminating feature vectors. We
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employed 10-fold cross-validation in the SVM-RFE algorithm to
reduce bias and ensure robust feature ranking. The FeatSweep.wrap
function was utilized to train SVM models for each feature subset
and evaluate their performance. Through the PlotErrors and
Plotaccuracy functions, we visualized and identified the highest
precision and lowest error rates. LASSO (Tibshirani, 1996)
regression is commonly employed to mitigate overfitting in
variable selection. It aims to attain the variables’ outcomes with
minimal prediction error and their corresponding regression
coefficients, leading to optimal results. 10-fold cross-validation
with the lowest standard was used to select the optimal
parameter (lambda) in the LASSO model. We solved the
coefficient of the gene and excluded the coefficient that is zero.
Random Forest (Blanchet et al., 2020) was recognized for its ability
to handle high-dimensional data, create predictive models, and
evaluate variable significance. Finally, we performed an
intersection analysis on the genes obtained from the three

algorithms for further research.

2.7 ROC evaluation and nomogram
construction

We examined the expression of each candidate gene in individuals
with PA compared to the control group through the student’s t-test.
To assess the predictive and diagnostic potential of these genes, we
plotted ROC curves and calculated their area under the curve (AUC)
with a 95% confidence interval (CI). An AUC value surpassing 0.7 is
deemed a suitable benchmark for predictive SS with PA. Additionally,
we employed the “rms” package in R to generate a nomogram,
assigning scores to genes based on their relative expression levels.
By aggregating the scores per gene, we derived a cumulative score for
predicting the risk of SS leading to PA. Lastly, an ROC curve was
generated for the nomogram to showcase its predictive performance.

2.8 gRT-PCR of the hub genes and
evaluation of the predictive model

To clinically validate the screened hub genes, a retrospective
cohort analysis was conducted at Shaoxing People’s Hospital. The
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study enrolled patients admitted between 1 June 2024, and 10 June
2025, including 7 patients with SS and 7 patients with SS and PA. SS
diagnosis followed the international criteria (Shiboski et al., 2017),
whereas PA was confirmed by imaging evidence from color doppler
ultrasound sonography or computed tomography angiography
(CTA). Baseline clinical characteristics of the enrolled subjects
are provided in Supplementary Table S1. This study was
approved by the hospital’s Ethics Committee (Approval No.:
2025-Scientific Research Project 103-01). Following peripheral
blood collection, total RNA was extracted using the MolPure”
Blood RNA Extraction Kit according to the manufacturer’s
protocol. Subsequently, cDNA synthesis was performed using the
Hifair’ll First-Strand cDNA Synthesis Kit (11121ES60, Yeasen,
Shanghai, China) as per the manufacturer’s instructions. The
primer sequences employed in this study are listed in
Supplementary Table S2. By analyzing key gene expression
differences between the two patient groups and developing a
predictive nomogram model, we aimed to achieve differential
diagnosis of SS patients with or without comorbid PA.

2.9 Immune infiltration analysis by
CIBERSORT and scRNA-seq

Utilizing the CIBERSORT algorithm (Newman et al,, 2015), we
utilized deconvolution on the gene expression matrix that was
normalized to ascertain the makeup of infiltrating immune cells
present in tissue samples. The algorithm precisely evaluated the
relative distribution of 22 diverse types of immune cells. The
proportions of these immune cell types across varied groups were
quantified with the “CIBERSORT” R package. To illustrate potential
correlations among distinct immune cell populations throughout
disease progression, we created heatmaps using the “corrplot” R
package. Furthermore, single-sample gene set enrichment analysis
(ssGSEA) was performed to explore the correlation between
immune cell infiltration and the expression patterns of
characteristic genes. Visual representations of these associations
were generated using the “ggcorrplot” package.

Utilizing the Seurat package (Stuart et al., 2019), we conducted
single-cell data analysis, encompassing quality control (QC),
dimensionality reduction, and clustering. Cells failing predefined
criteria—specifically, those with fewer than 200 detected genes or
mitochondrial content exceeding 20%—were removed. The retained
high-quality cells underwent linear transformation through the
“NormalizeData” and “ScaleData” functions. To address batch
effects, we harmonized data from multiple samples with the
Harmony package’s “RunHarmony” function (Korsunsky et al.,
2019). Cluster distributions were visualized using Uniform
Manifold Approximation and Projection (UMAP) (Becht
et al.,, 2018).

2.10 Elucidating identified biomarker-
hallmark gene set connections by ssGSEA

To investigate potential associations between the identified
biomarkers and hallmark gene sets, we utilized the ssGSEA
method. The hallmark gene sets are sourced from the Molecular
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Signatures Database (MSigDB), a comprehensive repository that
covers 50 distinct biological states and processe (Liberzon et al.,
2011). Employing the Gene Set Variation Analysis (GSVA) tool, we
performed ssGSEA to assess the correlations between the potential
biomarkers and hallmark gene sets.

2.11 Statistical analysis

In our research, SPSS Version 26.0 and GraphPad Prism
Version 9.4.0 were employed to perform statistical analyses.
The comparison of continuous variables between the two
groups was performed using the Student’s t-test. p-values less
than 0.05 was considered statistically significant. The version of
R software used was 4.2.1.

3 Results

3.1 DEGs identification via Limma in SS
and PA

Figure 1 illustrated the research flowchart. Before batch effect
correction, the boxplot (Supplementary Figure S1A) displayed
significant diversity in sample distributions among datasets,
suggesting the presence of batch effects. Post-correction, data
distributions among datasets attained uniformity, aligning
medians along a single axis (Supplementary Figure S1B). For
PCA, PCl and PC2 were plotted to visualize the first two
principal components. Before batch correction, PCl1 and
PC2 explained >70% of variance, with dataset-specific differences
dominating, reflecting strong batch effects (Supplementary Figure
S1C).  After

interclustered and

datasets

effect
elimination (Supplementary Figure S1D). 2,531 DEGs were
identified in total
upregulation, while 1,139 genes exhibited downregulation in the

correction, samples from different

intertwined, demonstrating batch

Among them, 1,392 genes showed
SS group. In comparison to the control group, the PA group revealed
1,662 DEGs, with 1,055 genes upregulated and 607 genes
downregulated. We visualized the top 20 upregulated and
downregulated DEGs using a heatmap and presented the overall
distribution of all identified DEGs through a volcano plot. In the
volcano plot, the log2 fold change (Iog2FC) of gene expression is
displayed on the x-axis, whereas the -log10(P-value), which reflects
the statistical significance of differential gene expression, is plotted
on the y-axis. Each gene is represented as a point: upregulated genes
are shown in red, downregulated genes in blue, and genes without
significant differential expression in black (SS: Figures 2A,B, PA;
Figures 3A,B).

3.2 ldentification of significant module
genes in SS and PA using WGCNA

Respective significant module genes associated with SS and
PA were identified using WGCNA. In Figure 2C, the blue module
exhibited a significant positive correlation with SS (r = 0.4, p =
3.5 x 107%), and the turquoise module showed a strong positive
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Immune infiltration analysis by i GSE40611(SS)
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Clinical sample
l i l validation by qRT-PCR
Receiver operating curve Nomogram construction ssGSEA
FIGURE 1

Study flowchart.

correlation with PA (r = 0.72, p = 1.0 x 107"7) in Figure 3C. The

3.3 Functional enrichment analysis of SS-
related DEGs in PA

relationship between module membership in the blue/turquoise
modules and gene significance in SS and PA is illustrated in

The overlap of 1,442 DEGs associated with SS and 1,577 DEGs
linked to PA produced 135 DEGs connected to both SS and PA
(Figure 4A). The significant enrichment of GO terms in biological

Figures 2D, 3D. Supplementary Figures S2, S3 shows the soft
threshold selection and gene clustering trees. Specifically,
6,947 genes were selected for SS and 12,130 for PA. The
overlap of 2531 SS-related DEGs and 1,342 module genes
associated with SS yielded 1442 SS-related DEGs (Figure 2E).
Similarly, the overlap of 1,662 DEGs related to PA and
12,130 module genes associated with PA resulted in 1577 PA-
related DEGs (Figure 3E).

processes (BP) for these 135 DEGs encompassed “immune system
process,” “immune response,” and “regulation of immune system
process.” Furthermore, the enriched terms for CC include “organelle

membrane,
organelle,” while the MF of DEGs were closely tied to “molecular

plasmamembrane part,” and “bounding membrane of
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FIGURE 2
Heatmap and volcano plot of DEGs between SS and control group, and identification of module genes in SS via WGCNA. (A) Heatmap showing the

top 20 DEGs between SS and control groups, emphasizing the most upregulated and downregulated genes. Blue blocks indicate downregulated
expression, while red blocks indicate upregulated expression. (B) Volcano plot depicting the DEGs between SS and control groups. Red and green points
represent significantly upregulated and downregulated DEGs, respectively. (C) Heatmap of SS-related modules. The number in the upper left corner
indicates the correlation between the module and SS, and the P value in the lower right corner signifies the significance of this correlation. In SS, the blue
module exhibits the strongest correlation. (D) Correlation between gene significance and module membership in the blue module. (E) Venn diagram
illustrating that the intersection of DEGs and significantly expressed module genes in SS results in 1,442 DEGs.
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function regulator,” “identical protein binding,” and “protein
homodimerization activity” (Figures 4B-D; Supplementary Table
S3). The outcomes of the functional enrichment analysis for these
135 DEGs were presented in Figure 4E and Supplementary Table S1.
These DEGs exhibited notable enrichment in “influenza A,”
“rheumatoid arthritis,” and “viral myocarditis.”

3.4 PPI network construction and hub
gene selection

135 DEGs was used to construct a PPI network. Using
Cytoscape, the comprehensive PPI network comprising 77 DEGs
associated with both SS and PA was visualized (Figure 5A). 58 DEGs
were excluded due to a lack of interactions. Furthermore, three
distinct algorithms from the Cytoscape plug-in CytoHubba were
utilized to identify overlapping DEGs. Figures 5B-D displayed the
top 30 DEGs derived from the intersection of these algorithms. For
subsequent machine learning analysis, 17 DEGs were chosen based
on a Venn diagram (Figure 5E; Supplementary Table S4).

3.5 Identification of candidate diagnostic
genes using machine learning algorithms

The outcome of the Lasso regression analysis was illustrated in
Figure 6A, revealing that 5 DEGs exhibited the least binomial
variance. Through the utilization of Support Vector Machine-
Recursive Feature Elimination (SVM-RFE), the top 9 DEGs with
the highest precision and lowest error rates were selected
(Figure 6B). The random forest algorithm was employed to
assess the significance of the DEGs, as depicted in Figure 6C,
showcasing the top 10 DEGs based on their importance ranking.
Subsequently, three crucial DEGs (CCL4, CSFIR, MXI1) chosen
from the intersecting region in the Venn diagram were identified for
ROC evaluation (Figure 6D).

3.6 The predictive value evaluation,
nomogram construction and validation of
the hub genes

The comparison with the control group revealed upregulation of
three genes (CCL4, CSFIR, MX1) in PA (Figure 7A). The ROC curve
analysis indicated good diagnostic performance for each gene
(Figure 7B): MX1 (AUC: 0.904, 95% CI 0.843-0.965); CCL4
(AUC: 0.934, 95% CI: 0.890-0.979); CSF1R (AUC: 0.958, 95% CI
0.922-0.994). the
(Figure 7C). ROC analysis of the nomogram assessed its clinical
utility, demonstrating high predictive value for PA (AUC 0.970, 95%
CI0.941-1.000) (Figure 7D). To validate its predictive potential, we
utilized the GSE28829 validation dataset for ROC curve analysis. As
illustrated in Supplementary Figure S4A, the genes CCL4, CSFIR,
and MXI1 exhibited upregulation. Supplementary Figure S4B
presents the AUC and 95% CI for each gene. And ROC analysis
demoonstrated satisfactory predictive capabilities for these genes.

Subsequently, nomogram was generated

Lastly, the nomogram construction is depicted in Supplementary
Figure S4C. The evaluation of the nomogram in the validation
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dataset yielded an AUC of 0.952, indicating significant clinical
predictive ability, as shown in Supplementary Figure S4D.

SS also demonstrated elevated expression of genes (CCL4,
CSFIR, MXI1), as depicted in Supplementary Figure S5A. The
nomogram, which is presented in Supplementary Figure S5B,
achieved an AUC of 0.724 (95% CI: 0.600-0.848). This outcome,
as illustrated in Supplementary Figure S5C, validates its clinical
applicability in diagnosis. To evaluate its predictive capacity, we
utilized the GSE40611 validation dataset for ROC curve analysis.
Supplementary Figure S5D illustrates the construction of the
nomogram. In the validation group, the nomogram demonstrated
an AUC of 0.961, clinical its significant clinical predictive capacity,
as depicted in Supplementary Figure S5E.

Moreover, as depicted in Figure 7E, clinical verification of
peripheral blood samples revealed elevated expression of three
genes (CCL4, CSFIR, MX1) in SS patients with PA compared to
the SS-only group. Additionally, we developed a nomogram to
evaluate the risk of PA in SS patients. Demonstrated in
Supplementary Figures S6A, B, this model achieved an AUC of
1, confirming its remarkable predictive capability for PA in
SS patients.

3.7 Immune cell infiltration analysis

In PA,immune cell infiltration analysis using the CIBERSORT
algorithm revealed the distribution of 22 different types of immune
cells in each sample (Figure 8A). Boxplot analysis demonstrated
that, compared to the control group, the proportions of y§ T cells,
memory B cells, activated mast cells, and M0 macrophages were
significantly higher in the PA samples. Conversely, the levels of naive
B cells, plasma cells, CD4 memory resting T cells, CD4 memory
activated T cells, monocytes, M1 macrophages, M2 macrophages,
and resting mast cells were significantly lower in the PA samples
(Figure 8B). Further correlation analysis revealed a positive
correlation between naive B cells and plasma cells (r = 0.66) and
a significant negative correlation between MO macrophages and
CD4 memory resting T cells (r = —0.78) (Figure 8C). Additionally,
the immune cell infiltration analysis showed a significant correlation
with three hub DEGs (Figure 8D). In SS, Supplementary Figure S7A
showed the distribution of 22 immune cell types per sample. Boxplot
analysis revealed higher proportions of follicular helper T cells and
neutrophils in SS samples compared to controls, while monocytes
were significantly reduced (Supplementary Figure S7B). Correlation
analysis identified a positive correlation between monocytes and
resting NK cells (r = 0.54) and a significant negative correlation
between y§ T cells and CD8 T cells (r —0.48)
(Supplementary Figure S7C).

Following quality control (QC), we conducted normalization,
unsupervised dimensionality reduction, and UMAP clustering
analysis. This analysis yielded 28 major cell clusters (Figure 9A).
Using marker genes of various cell types, we annotated the data,
categorizing the 28 clusters into 14 cell types and displaying marker
genes for each subgroup (Figures 9B,C). Figures 9D,E showed that
endothelial cells (EC), myofibroblasts, and CD4 T cells comprised
the top three cell clusters in the PA group, whereas CD4 T cells,
CD8 T cells, and myofibroblasts dominated the AC group. Although
not statistically significant, boxplots showed that PA samples had
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FIGURE 5
Construction of PPl network and selection of key Genes. (A) The PPl network of 77 PA and SS-related DEGs was visualized using Cytoscape software.

Due to the lack of interactions among some genes, 58 DEGs were excluded from the network, resulting in a PPl network consisting of 77 nodes
(representing genes) and multiple edges (indicating gene interactions). (B—D) The CytoHubba plugin in Cytoscape was employed to identify key genes
from the 77 genes using three distinct algorithms. By analyzing these genes from three different perspectives, the top 30 genes were selected for
each algorithm. (B—D) depict the Betweenness, Closeness and Degree algorithms, respectively. Deeper colors indicate a more significant role in the
algorithm. (E) The intersection of the results from the three algorithms was determined, and ultimately, 17 DEGs were selected for further in-

depth analysis.
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Identification of candidate predictive biomarkers using machine learning algorithms. (A) Lasso regression analysis was performed to screen a series

of gene variables, using binomial deviation as an evaluation metric, and identified 5 genes with the lowest binomial deviation. (B) The SVM-RFE algorithm
was applied to minimize error and maximize accuracy by iteratively eliminating less important genes from the gene set, ultimately selecting 9 genes with
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Assessment of the predictive value and construction of nomogram for candidate biomarkers in PA. (A) Significant differences in the expression levels
of three candidate genes between PA patients and controls, with increased expression (****, P < 0.0001). (B) ROC curve analysis was conducted to assess
the predictive value of these three genes for PA. Each panel clearly displays the area under the curve (AUC) value and its corresponding 95% confidence
interval. A higher AUC value indicates that the diagnostic model has better discriminatory power and can more accurately distinguish PA patients
from healthy controls. (C,D) A nomogram, a visual predictive model that integrates multiple predictive factors (CCL4, CSF1R, and MX1), was constructed
for PA. Panels C and D show the process and results of constructing the nomogram based on these three genes. (E) Through qRT-PCR, differential

expression of three genes was detected when comparing the SS patients with PA against those without PA (*, p < 0.05; **, p < 0.01).
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FIGURE 8

Comparison of immunological changes between the control group and the PA group, along with the association between three key hub DEGs and
immune-related characteristics in PA. (A) A bar plot visually illustrates the relative abundances of 22 different immune cell types across all samples. (B) A
boxplot illustrates the intergroup differences in immune cell expression levels between the PA and control groups (*p < 0.05, **p < 0.01, ***p < 0.001,
****n < 0.0001). (C) A heatmap illustrates the relationships between different immune cell types. Rows and columns correspond to distinctimmune

cell types, with color intensity denoting correlation strength. Red signifies a positive correlation and blue denotes a negative correlation. (D) A correlation
analysis diagram evaluates the link between immune cell infiltration and the three hub DEGs. Similar to the prior depiction, red signifies a positive
correlation and blue denotes a negative correlation, with color intensity denoting correlation strength.
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FIGURE 9

Single-cell RNA sequencing of human atherosclerotic plaque tissues. (A) The single-cell atlas of carotid atherosclerotic plaques was visualized
through UMAP. (B) Dot plot illustrating the proportion of cells expressing specific genes (dot size) and the mean expression levels in expressing cells (dot
color) across distinct clusters. (C) This representation delineated 14 distinct cell types. (D) An overview comparing the 14 cell types between the AC and
Control groups was conducted and categorized by cell type. (E) The proportions of cell types in each group were compared using bar charts and

box plots.
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higher proportions of EC, fibroblasts, and myofibroblasts compared
to the AC group. Conversely, PA samples exhibited lower
proportions of CD4 T cells, CD8 T cells, macrophages,
and monocytes.

In summary, the immune cell regulation mechanism may
represent a promising therapeutic approach for SS-related PA.

3.8 ssGSEA

Using the ssGSEA method, we conducted an in-depth
investigation into the relationships between the three hub genes
and various biological processes. The results demonstrated that
these core genes were significantly associated with multiple
biological processes. The biological processes positively correlated
with these three genes included “inflammatory response,” “IL6/JAK/

» «

STATS3 signaling,” “coagulation,” “apoptosis,” and “angiogenesis,”
etc., while the negatively correlated ones were “Hedgehog signaling,”
and “TGF-p

Supplementary Figure S8. These findings provide valuable

“myogenesis,” signaling,” etc., as shown in
insights into the pathophysiological mechanisms underlying SS-
induced PA and guide future research and the identification of

potential therapeutic targets.

4 Discussion

Sjogren’s syndrome (SS) is a complex chronic autoimmune
disease that primarily affects the blood system and organs such
as the lungs and kidneys (Gao et al., 2020). It shares some common
pathophysiological features with systemic lupus erythematosus and
can also impact blood vessels. Recent reports have highlighted a
close association between SS and the development of atherosclerosis,
leading to an elevated risk of cardiovascular and cerebrovascular
events. Atherosclerosis (AS) is an inflammatory condition of the
arteries and a significant contributor to peripheral vascular disease,
potentially causing vascular stenosis or occlusion, resulting in tissue
and organ ischemia (Yi et al,, 2022). Although its progression is
often subtle, it poses a severe threat. An expanding body of research
indicates that peripheral atherosclerosis (PA) is an inflammatory
disorder closely linked to autoimmune conditions. Acute systemic
inflammatory responses and chronic systemic vasculitis contribute
to endothelial dysfunction, fostering the formation of atherosclerotic
plaques, which can subsequently give rise to cardiovascular and
peripheral vascular disorders (Frostegard, 2005). Although there is a
scarcity of research data on PA in patients with SS, the harm of PA in
this patient population should not be overlooked. Therefore, early
prevention, diagnosis, and treatment of PA in patients with SS are of
paramount importance.

To tackle this issue, we employed comprehensive bioinformatics
and machine learning technologies for an exhaustive analysis of
microarray datasets, with the goal of identifying common
biomarkers and biological pathways linked to these two diseases.
These methodologies offer a robust means of accurately pinpointing
disease-related biomarkers, thereby facilitating research into
comprehending disease onset, advancement, and potential
pathogenic mechanisms. In this study, we utilized the Limma R
package, a potent tool for gene expression data analysis, and
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WGCNA, an analytical instrument adept at discerning significant
correlations between gene modules and phenotypes, to pinpoint
DEGs associated with SS and PA. Through overlap analysis, a final
compilation of 135 DEGs closely intertwined with SS and PA
emerged. To shed light on the functional roles of these
135 DEGs, we conducted enrichment analysis using the KEGG
pathway and GO databases. The outcomes underscored their
primary associations with “immune system process,” “immune
response,” and “regulation of immune system process,” all closely
related to the occurrence of SS and PA, reinforcing the hypothesis of
a possible connection between the two conditions. Additionally, a
PPI network was established using the 135 DEGs to explore
potential interactions, revealing 17 potential hub DEGs that
might significantly influence underlying biological processes.
Machine learning algorithms, such as SVM-RFE, LASSO, and
random forests, enable the extraction of valuable insights from
complex biological data, with their amalgamation enhancing the
precision and dependability of biomarker prognostication. This
study employed three machine learning techniques and ROC
curve analysis to evaluate the diagnostic accuracy of candidate
gene expressions, culminating in the identification of three
candidate hub genes (CCL4, CSFIR, and MX1) with promising
diagnostic utility. Construction of a Nomogram using these gene sets
showcased a high predictive value for PA in SS. To validate the
prognostic efficacy of these genes, an additional dataset (GSE28829)
was employed for validation, affirming their practical
application value.

CCL4 (C-C motif chemokine ligand 4), commonly referred to as
MIP-1p
important chemokine within the CC chemokine family. It is
primarily synthesized by immune cells such as monocytes,

(Macrophage Inflammatory Protein-1 beta), is an

macrophages, and T cells, playing a crucial role in the
modulation of immune responses and inflammatory processes.
By binding to its receptor CCR5, CCL4 facilitates the migration
and activation of immune cells, thereby exerting a substantial
influence in a variety of immune-related conditions. In SS, the
expression of CCL4 is closely associated with the disease’s
pathogenesis. Studies indicate that CCL4 is significantly elevated
in the salivary glands and peripheral blood of SS individuals,
local

potentially lymphocyte infiltration and

inflammatory responses (Blokland et al, 2021). The hallmark

facilitating

histological feature of SS is the infiltration of mononuclear cells
into exocrine glands, with the secretion of CCL4 potentially playing
a pivotal role in the immunopathology of SS (Lee et al., 20105
Mircheff et al., 2019). In the context of atherosclerosis, CCL4 also
plays a significant role. Atherosclerosis is characterized as a chronic
inflammatory condition, with CCL4 detectable in T cells, smooth
muscle cells, and macrophages within atherosclerotic plaques, and
further upregulated in vulnerable plaques. CCL4 contributes to the
formation and progression of atherosclerotic plaques by promoting
the migration of monocytes and T cells (Chang et al,, 2020).
Research has shown that chemokines play a crucial role in the
advancement of cardiovascular diseases (Gencer et al, 2021).
Elevated levels of CCL4 in the plasma of patients with
atherosclerosis indicate a higher risk of stroke and cardiovascular
events for those with higher CCL4 levels (Tatara et al, 2009).
Therefore, CCL4 not only plays a significant role in Sjogren’s
syndrome but also has a key function in the pathophysiological
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process of atherosclerosis. In summary, as an important chemokine,
CCL4 demonstrates significant pathological relevance in both
Sjogren’s syndrome and atherosclerosis, indicating its potential as
a therapeutic target for these two diseases.

CSFIR (Colony Stimulating Factor 1 Receptor) is a coding gene
that encodes a tyrosine kinase receptor. It is predominantly expressed
in monocytes and macrophages, playing a pivotal role in immune
response modulation, cell proliferation, and differentiation (Sletta
et al, 2021). Recent studies have identified mutations in CSF1R
linked to inflammation and immune disorders, including Sjogren’s
syndrome and atherosclerosis. Evidence suggests that CSFIR
significantly contributes to the pathogenesis of Sjogren’s syndrome,
with mutations or aberrant expression potentially inducing
macrophage dysfunction, intensifying inflammatory responses, and
promoting tissue damage (Hu et al, 2022). The second ligand of
CSFIR, IL-34, is a recently discovered inflammatory cytokine, has
associations with various rheumatic conditions such as rheumatoid
arthritis, systemic lupus erythematosus, and SS. Elevated IL-34
expression in the salivary glands of SS patients is believed to be
implicated in the disease’s pathogenesis (Ciccia et al., 2013; Liu et al.,
2020). These findings propose that CSFIR may function as a
promising biomarker and therapeutic target for SS. Furthermore,
CSF1R plays a crucial role in atherosclerosis pathogenesis. Study
that CSFIR
proliferation and differentiation, pivotal in atherosclerotic plaque
Inhibiting CSFIR may aid in
(Wei et al, 2015).
Bioinformatics analyse also support the significant involvement of

demonstrates activation promotes macrophage
formation and progression.

attenuating atherosclerosis advancement

CSFI1R in atherosclerosis biological processes (Teng et al., 2023).
CSF1R may play an important role in the pathogenesis of SS and PA,
suggesting its potential as a diagnostic and therapeutic target
warranting further exploration.

MX1 (MX Dynamin Like GTPase 1) gene encodes a protein that is
a member of the interferon-induced Mx protein family. Study has
shown that the expression of the IFN-stimulated gene MX1 is elevated
in patients with SS (Jara et al., 2021). In SS patients, the expression
levels of MX1 in the glands and peripheral blood are increased, and
utilizing a random forest model with the MX1 gene expression level as
a significant feature shows promise as a diagnostic technique for SS
(Xu et al., 2023). Atherosclerosis is a chronic inflammatory disease,
and research has found that the MX1 gene may also play a role in the
occurrence and development of atherosclerosis. The antiviral function
of MX1 is closely related to its role in regulating inflammatory
responses, potentially affecting the pathological processes of
MX1
atherosclerosis (Wang et al., 2024). In patients with systemic lupus
erythematosus, overexpression of MX1 may be associated with

atherosclerosis. may be a potential biomarker for

accelerated atherosclerosis. The expression of MX1 may lead to
endothelial cell damage by regulating the release of inflammatory
factors and the activation of immune cells, ultimately affecting the
progression of atherosclerosis (Lee et al., 2007). MX1 may play an
important role in both SS and PA; However, the precise relationship
between SS and PA remains to be elucidated.

The immune infiltration analysis in this study revealed that in
patients with SS, the increased abundance of follicular helper T cells
(Tth) and neutrophils, likely mediated by the activation of the Tth-B
cell axis and the release of neutrophil extracellular traps (NETs)
(Carmona-Rivera et al, 2015), leads to vascular endothelial
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damage and the onset of inflammatory cascades. Previous studies
have shown that Tth cells induce B cells to differentiate into plasma
cells via IL-21 secretion (notably, a significant positive correlation was
observed between naive B cells and plasma cells in this study, r = 0.66),
leading to the production of anti-endothelial cell antibodies that
directly harm the vascular endothelium (Dale et al., 2019; Ricard
et al, 2019). Additionally, research has indicated that the release of
NETs by neutrophils can worsen vascular endothelial injury by
cytotoxic  proteases  (e.g,
myeloperoxidase MPO), and pro-inflammatory mediators (Wang
et al, 2021), ultimately contributing to the development of
atherosclerosis (Clement et al, 2015). In PA samples, the

generating histones, elastase,

concurrent increase of y§ T cells and MO macrophages further
exacerbates the imbalance of innate immune responses. Studies
have shown that y§ T cells stimulate neutrophil mobilization and
activation by releasing IL-17, thereby promoting the production of
pro-inflammatory cytokines and chemokines (Caccamo et al., 2011).
Meanwhile, another study (Yin et al., 2022) has indicated that due to
polarization irregularities (evidenced by a significant decrease in M1/
M2 macrophage numbers), MO macrophages provoke an imbalance
between pro-inflammatory and anti-inflammatory responses,
worsening vascular endothelial injury and initiating atherosclerosis.

Single-cell transcriptome analysis delineated the distribution
patterns of immune cells during atherosclerosis progression. The
findings highlighted that CD4 T cells and CD8 T cells constituted
the primary components of the immune cell population in the
atherosclerotic core region (AC group). Comparatively, the AC
group  exhibited of
CD4 T cells, CD8 T cells, macrophages, and monocytes in

significantly  increased  proportions
contrast to the control group, emphasizing the substantial role of
immune cells in the advancement of atherosclerotic plaques.
Inflammation may accelerate atherosclerosis by promoting
inflammatory cell infiltration into the vascular wall and causing
endothelial dysfunction. Even in patients with SS lacking
cardiovascular disease or risk factors, endothelial dysfunction and
endothelial suggesting
predisposition to atherosclerosis (Luczak et al.,, 2021). Therefore,

impaired function may persist, a
immune modulation may be an option for PA in SS patients.
Furthermore, ssGSEA analysis identified significant associations
between the three hub genes and various biological processes. The
positive correlation between hub genes and inflammatory responses,
as well as the IL6/JAK/STAT3 signaling pathway, indicates that
there is persistent immune activation and a pro-inflammatory
environment during the pathogenesis of SS-PA. SS is a chronic
systemic inflammatory disease, and PA is an inflammatory response
secondary to vascular injury. Inflammatory responses continuously
affect the entire process of arteriosclerosis (Li et al, 2018).
Meanwhile, the abnormal activation of the IL6/JAK/
STAT3 pathway can upregulate VCAM-1, accelerate endothelial
cell damage, and promote arteriosclerosis (Wiejak et al., 2019).
Inflammation and angiogenesis are often interrelated, and the
imbalance of angiogenesis can lead to various inflammatory
diseases such as SS (Lisi et al.,, 2013), and its abnormal activation
is also closely related to the occurrence of PA (Lu et al,, 2011). It is
worth noting that hub genes are positively correlated with apoptosis:
study has shown that apoptosis plays a core role in the pathogenesis
of SS (Sisto et al., 2006), and apoptotic cells are specifically present in
the calcified regions of arteries in patients with atherosclerosis
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(Schaub et al.,, 2019). In contrast, hub genes are negatively correlated
with Hedgehog, myogenesis, and TGF-f signaling pathways, further
confirming the defect in vascular repair ability in SS-PA: Hedgehog
signaling can regulate angiogenesis (Doboszewska et al., 2023), and
its inhibition may promote the occurrence of atherosclerosis; the
inhibition of myogenesis may weaken the differentiation potential of
vascular smooth muscle cells (VSMCs), leading to the inability of
damaged endothelial cells and vascular walls to be effectively
repaired, accelerating the progression of atherosclerosis
(Doboszewska et al., 2023; Ackers-Johnson et al., 2015). TGF-p
may play a core role in both normal and pathological vascular repair,
and its functional inhibition may promote the occurrence of PA
(Toma and McCaffrey, 2012). These processes are likely to play
crucial roles in the occurrence and development of PA in SS patients,
suggesting a strong correlation between the two conditions. These
findings provide valuable insights into the pathophysiological
mechanisms underlying SS-induced PA and guide future research
and the identification of potential therapeutic targets.

Our study integrated bioinformatics and machine learning
methodologies to identify biomarkers associated with PA induced
by SS. The nomogram model developed in our research demonstrated
significant predictive capability for PA in SS patients. Furthermore,
our study revealed potential disease mechanisms and offers various
avenues for investigating the molecular mechanisms of SS-induced
PA in future research. Despite these strengths, the study does have
limitations. While validation datasets and clinical samples were
utilized to evaluate predictive performance, additional experimental
investigations are essential to validate and delve into the mechanisms
underlying PA induced by SS.

5 Conclusion

This study systematically identified three promising hub genes
(CCL4, CSFIR, and MX1) and developed a nomogram for
predicting PA in SS. Analysis of immune cell infiltration
demonstrated that dysregulated immune cells significantly
contribute to the progression of PA. Additionally, ssGSEA
analysis offered important insights into the mechanisms by
which SS leads to PA.
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