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Cell segmentation is a crucial step in numerous biomedical imaging
endeavors—so much so that the community is flooded with publicly available,
state-of-the-art segmentation techniques ready for out-of-the-box use.
Assessing the strengths and limitations of each method on a tissue sample set
and then selecting the optimal method for each research objective and input
image are time-consuming and exacting tasks that often monopolize the
resources of biologists, biochemists, immunologists, and pathologists, despite
not being the primary goal of their research projects. In this work, we present a
segmentation software wrapper, coined CellSampler, which runs a selection of
established segmentation methods and then combines their individual
segmentation masks into a single optimized mask. This so-called “uber mask”
selects the best of the established masks across local neighborhoods within the
image, where both the neighborhood size and the statistical measure used to
define what qualifies as “best” are user-defined.
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1 Introduction

Segmentation is a prevalent challenge within medical imaging across a wide range of
different modalities. Cell segmentation, in particular, enables counting, characterization,
and spatial mapping of distinct cell types. A single analysis can require cell segmentation
across tens to hundreds of tissue samples; the common practice is to select a single
segmentation method based on its performance on a few samples and then assume that it
will perform optimally across the entire cohort. However, in reality, different segmentation
methods may work better for different tissue samples. Within a single sample, the best
method may depend on the tissue region or cell type. Furthermore, even if time and staff
resources would allow the option of manually annotating every tissue sample within a trial,
Wiggins et al. (2024) have shown that variability between different expert annotators, or just
the same annotator at different times, reduces the reproducibility of the subsequent analysis
and scientific conclusions. In this work, we aim to capitalize on the strengths of multiple
segmentation methods using a consensus technique.

Although traditional medical image segmentation techniques, such as thresholding or
the watershed method, can be applied to sample data with a small number of user-defined
input parameters, most modern methods typically rely on an initial set of human-annotated
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reference images. These images are used as either training samples
for deep learning algorithms (Schmidt et al., 2018; Greenwald et al.,
2022; Xiao et al., 2021; Stringer et al., 2021) or as Bayesian priors for
maximum likelihood methods (Warfield et al., 2004).
Artaechevarria et al. (2009) discussed the use of a priori human-
annotated segmentation masks, referred to as “atlas” images, within
expectation–maximization algorithms, and demonstrated that not
only domultiple atlas images improve segmentation results for brain
MRI data but so does altering the segmentation strategy across
localized regions of the full image. Recent developments in image
processing have placed researchers requiring nuclear segmentation
in the fortuitous position of having numerous proficient algorithms
available to them. The current challenge is how to appropriately
select which technique to use for each region of interest. We
introduce a consensus segmentation technique capable of
considering the nuclear segmentation of any number of
individual segmentation algorithms. This consensus technique
determines which algorithm outperforms all others within user-
defined subsections of the image and combines the optimum
segmentations from different techniques into a single choice
result for the image, which we refer to as the uber mask.

Consensus segmentation is not an unusual approach within
computer vision for optimizing boundary detections. However, the
majority of applications only require a per-pixel approach to voting
as they are intended for use on continuous image data. Boiangiu and
Ioanitescu (2013), for example, detailed a pixel co-associationmatrix
approach, which successfully combines segmentation algorithms to
produce clearly segmented representations of people, animals,
scenery, etc. For per-pixel consensus voting, such as that
proposed by Boiangiu and Ioanitescu (2013), there is the
inherent risk that several pixels within a single feature will be
identified as different from their neighbors. In the simple
example of an apple sitting on a table in front of a wall, the
segmentation might clearly show the apple, the table, and the
wall as having clear boundaries, but within any one of those
features, there may also be additional, segmented regions due to
the range of pixel intensities across a single feature. Although this is
not an unacceptable feature of continuous image processing, it
would prevent further analysis within cell segmentation. If two
cells were erroneously identified as occupying the same spatial
area using a nuclear segmentation algorithm, then this would
mislead any further interpretations of the tissue sample results.

For the specific case of single-cell nuclei detection, a consensus
segmentation algorithm that maintains individual cell structures is
required. Nguyen and Le (2022) moved beyond the standard per-
pixel analysis and implemented a consensus vote that acknowledges
the shape of the cell detected. As their technique takes into account
the geometric and topological properties of the segmentation masks,
it is referred to as “topological voting.” In this work, we extend their
topological voting approach to be able to consider complex cell
segmentation masks, which include multiple features, as opposed to
the binary masks required for the blood vessel segmentation shown
by Nguyen and Le (2022). In Section 2, we present an overview of
our segmentation combination pipeline and introduce the publicly
available segmentation algorithms to which we intend to apply our
consensus vote. In this section, we also introduce various statistical
criteria, which can be used to construct the optimum consensus
mask; a strength of our pipeline is that it allows users to select

different criteria for different image sets, based on their expertise and
any cursory checks of the input images. Our pipeline is a general
method applicable to any segmentation, and in Section 3, we present
our results on a series of imaging mass cytometry and fluorescent
imaging data. Section 4 presents the conclusion.

2 Materials and methods

2.1 Overview of the pipeline

Numerous segmentation algorithms are currently available for
detecting cell boundaries within medical images, each with varying
degrees of performance for different cell morphologies. The Python

pipeline presented in this work, CellSampler, is a comparison and
combination wrapper that aims to capitalize on recent advancements
within nuclear segmentation by using a selection of state-of-the-art
segmentation algorithms and combining their results into a single,
optimized mask of cell nuclei. Figure 1 provides an overview of the
CellSampler pipeline, which takes the form of a collection of
Python scripts. CellSampler accepts input samples in Zarr
format1 and produces segmentation masks in Zarr format and
catalogs (lists) of individual cell properties in Parquet format2. IMC
datasets can be converted to the Zarr format using the following code:
https://gitlab.developers.cam.ac.uk/astronomy/camcead/imaxt/imc2zarr;
alternatively, a Jupyter notebook is provided as part of the
CellSampler code base, which details how to run the pipeline on
an image in the form of a TIFF file. CellSampler runs a variety of
nuclear segmentationmethods, andmoremethods can easily be added to
the pipeline framework. The code is extensible for the user to add their
own segmentation methods or preprocessing steps; instructions for this
functionality are provided within the code repository. The choice of how
many and which methods to run, along with the user input parameters
for each segmentation algorithm, is controlled by the user through a
configuration YAML. The example data shown in Figure 1 are taken
from the BRCA2 dataset, which is introduced in Section 3.1.

In this work, we explore the functionality of five established
segmentation tools: Cellpose (Stringer et al., 2021), Mesmer
(Greenwald et al., 2022), StarDist (Schmidt et al., 2018; Weigert
et al., 2020; Weigert and Schmidt, 2022), a watershed segmentation,
and an in-house implementation of Dice-XMBD (Xiao et al., 2021)
followed by a watershed segmentation. As Cellpose, StarDist, and
Mesmer have been optimized to perform on normalized input data,
each input image is normalized between its first (dmin) and 95th
(dmax) percentile values, as shown in Equation 1:

dnorm p( ) � d p( ) − dmin( )/ dmax − dmin( ), (1)
and then clipped so that any values less than 0/greater than 1 are set
to 0/1. Finally, local histogram equalization3 is applied to the scaled
data to increase the image contrast. All the segmentation tools are
run on identical images to set up a fair comparison environment;

1 https://zarr.readthedocs.io

2 https://parquet.apache.org/

3 https://scikit-image.org/
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therefore, even if an algorithm has its own embedded normalization
procedure, the image given to it has gone through the
CellSampler preprocessing steps.

2.2 Cellpose

Cellpose is a deep learning algorithm that uses convolutional
neural networks (CNNs) with the U-Net architecture to perform
nuclear and cell segmentation. Cellpose has been trained on a variety
of datasets and can also be retrained on specific images provided by
the user. In this work, we use Cellpose3 and the built-in “nuclei”
model type. This model has been pre-trained on several hundred
microscopy and fluorescence images. As the option to load specific
training weights exists within Cellpose3, it also exists with
CellSampler. However, we choose to progress with the pre-
trained models for this work. Cellpose also allows the user to input
an expected cell diameter, and thus, we run two versions of Cellpose,
one with an expected cell diameter of 6 pixels and another with an
expected cell diameter of 10 pixels. Instead of requiring the selection

of a single-algorithm input parameter, such as cell diameter,
CellSampler allows users to evaluate several options
simultaneously. We also alter the flow and probability thresholds
to increase the number of nuclear detections until we are satisfied
with the result; this is determined through visual inspection of a
subset of five masks produced alongside the nuclear channel data.
The ability to adjust cell diameter, flow, and probability thresholds is
a functionality provided to the user through the CellSampler

configuration YAML.

2.3 Mesmer

Mesmer is a segmentation algorithm that exploits the ResNet-50
CNN architecture and is trained on the TissueNet dataset (Barshir
et al., 2012). In this work, we use Mesmer for nuclear segmentation
(as opposed to whole-cell segmentation) and alter the imagemicron-
per-pixel parameter to optimize our results. This scaling factor is a
user input to the algorithm; Mesmer itself provides the scaling
functionality. We use scaling factors of both 0.5 and 0.75 μm

FIGURE 1
Schematic overview of the CellSampler pipeline. The input image is processed using various state-of-the-art segmentation algorithms, producing
segmentation masks, which are then combined into a single optimal mask: the “uber mask.” The inclusion of an unknown method ‘X’ is to highlight the
fact that CellSampler can, and will, be extended with additional segmentation methods.
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throughout, resulting in two implementations of Mesmer; these two
factors were chosen in the same manner as the Cellpose
parameter values.

2.4 StarDist

As with Cellpose, StarDist makes use of U-Net CNNs for nuclear
and cell segmentation but, uniquely, enforces that the shape of each
cell and nucleus can be characterized as a star-convex polygon. As
the option to load specific training weights exists within StarDist, it
also exists with CellSampler; however, we choose to progress
with the pre-trained models for this work. The pre-trained model we
select for use is the “2D_versatile_fluo” model, which is optimized
for the detection of cell nuclei from 2D single-channel data.

2.5 Watershed

Our implementation of the watershed detection algorithm uses a
Voronoi–Otsu binarization to separate the nuclei from their
background, finds the local maxima within the image as a
function of distance to the background, and finally uses the
watershed functionality from scikit-image to determine
individual nuclei from these maxima markers. For optimum
performance, we first preprocess the image by identifying any
pixels with a magnitude 10 times larger than the median values
of their five nearest neighbors and reassigning those “hot” pixels to
said median. We also subtract the background intensity from each
circular region in the image with a radius of 75 pixels. The
background intensity level is determined by smoothing the
circular region pixels with a Gaussian beam.

2.6 Dice-watershed

As a possible improvement to the standard watershed detection,
we also implement Dice-XMBD as a technique to segment the data
before performing the watershed detection. This suggests that
instead of performing watershed detection on the nuclear
channel, it is more effective to apply it to the Dice-XMBD
probability maps, which delineate each cell nucleus, cytoplasm,
and the slide background. Dice-XMBD requires both a nuclear
and a cytoplasm channel; however, as some imaging data either
lack sufficient resolution or are not specifically stained for cytoplasm
detection, CellSampler provides a “synthetic”
cytoplasm channel.

The synthetic cytoplasm channel is formed by smoothing the
nuclear channel image with a Gaussian and then using a Canny edge
detector to find the edges meant to represent the cell detection. The
nuclear and synthetic cytoplasm channels are combined and then
smoothed again (to prevent any dips in intensity between the
nucleus and cytoplasm edges) before being used as an input for
Dice-XMBD. As we intended to implement the same U-NET
architecture as Dice-XMBD and run it on the same trained
model as, we ensured that our combined nuclear and cytoplasm
data were preprocessed (including normalization and hot pixel
removal) according to the Dice-XMBD methodology.

2.7 Consensus segmentation

Our consensus segmentation is an extension of the consensus
approach proposed by Nguyen and Le (2022), tailored to fit the
specific task of cell segmentation. The following is an overview of the
algorithm proposed by Nguyen and Le (2022):

1. The local neighborhood of a single pixel is defined as the region
within s pixels of the 2D pixel position (x, y), e.g., [x − s: x + s,
y − s: y + s].

2. The Jaccard score is then calculated within the local
neighborhood between all the contributing nuclear
segmentation algorithms. The total Jaccard score for a single
method is the sum of all the Jaccard scores between that
method and the others.

3. The algorithm with the lowest total Jaccard score is eliminated
from the process, and then, in a second round of voting, the
new total Jaccard score is recalculated for the remaining
contributing algorithms.

4. A value is assigned to the pixel, based on the algorithm, with
the highest total Jaccard score.

5. Steps 2, 3, and 4 are repeated for every pixel within the
2D image.

We choose the minimum over maximum interpretation of the
Jaccard score (J) between two segmentation masks (Sm and Sn) in
our implementation, as shown in Equation 2:

J Sm, Sn( ) � Σi,j min Sm i, j( ), Sn i, j( )( )

Σi,j max Sm i, j( ), Sn i, j( )( )
. (2)

The type of segmentation performed by Nguyen and Le (2022) is,
however, always binary (segmentation masks of only 0s and 1s),
indicating that this is again a simplification of the problem the
CellSampler consensus voting algorithm is trying to solve. In
binary segmentation, the task is to determine tissue samples from a
background of glass; in our case, we need to differentiate individual cells
from each other and from the background. Additionally, we aim to
allow the user to define themetric for an optimal segmentation based on
a quick visual inspection of a few tissue samples. Chen and Murphy
(2023) defined numerous metrics for evaluating the success of a
potential segmentation in the absence of ground truth. Two of these
metrics are 1) the number of cells detected and 2) the reciprocal of the
natural logarithm of σ(A)/ �

n
√

, where σ(A) is the standard deviation of
cell areas and n is the number of cells. If the user had prior
understanding of the number or consistency in size of the cells
expected, then these two metrics would be valuable additions to the
Jaccard score. It is worth noting, however, that using the incorrect
metric can result in poor segmentation. For example, using the standard
deviation of cell areas to inform the segmentation across a sample with a
wide distribution of cell sizes would result in a segmentation biased
toward a single common cell type. As the users have the greatest
understanding of the tissue samples under analysis, we leave the choice
ofmetric to them. Therefore, we propose the following alterations to the
algorithm proposed by Nguyen and Le (2022):

1. The local neighborhood of a single pixel is defined as before,
with s set to 40 pixels.
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2. The “metric of merit” is then calculated within the local
neighborhood between all the contributing nuclear
segmentation algorithms. The choices of metric are
a. the total Jaccard score (to compare the different nuclear

masks, all nuclear detections are converted to
binary masks),

b. the number of unique nuclei, and
c. 1

ln(σ(A)/ �
n

√ ).
3. For the algorithmwith the highest metric of merit, we select the

nuclear detections whose (x, y) pixel centers fall within the
neighborhood and save those nuclei to an array that stores the
nuclear pixel locations along with the method used to identify
each nucleus.

4. Steps 2 and 3 are repeated for every neighborhood within the
2D image.

5. The array of all the saved nuclei from Step 3 is then checked
for overlaps. Overlaps are first suggested as occurring when
more than one nucleus center is closer to each other than the
radius (assuming that the nucleus areas are the area of a
circle) of the largest nuclei in the overlap group. All
suggested overlaps are then checked against the original
segmentation masks to determine whether an overlap truly
occurs. If more than one method suggests a nucleus in the
same location on the image [an overlap of more than 5 % of
the 32nd percentile (1σ) of segmented nuclei areas], then this
is classified as an overlap.
a. In the case of an overlap, another neighborhood is defined

around the overlapping nuclei. The metric of merit is again
calculated between all the methods, but this time the winner
can only be chosen from the subset of methods that
contributed a nucleus to the overlap group in the first place.

6. After the removal of overlaps, the remaining nuclear detections
form the uber mask.

The functionality used to determine nuclear detection pixel
centers and areas is taken from the skimage.measure library.

2.8 Data

We make use of the publicly available BRCA2 dataset (Jackson
et al., 2020), which provides image mass cytometry (IMC) pathology
images from breast cancer patients along with ground truth
segmentations created using CellProfiler (Stirling et al., 2021).
Part of the CellSampler pipeline involves using a CNN
trained on 2D data with dimensions of 512 pixels by 512 pixels;
therefore, to optimize its performance, input images are required to
be of the same size. As the BRCA2 dataset is significant in size
(746 images), we can afford to select larger images and then just crop
them to the 512 pixel by 512 pixel area required for Dice-XMBD.We
also expand our selection criteria to only include those images with
over 400 cell detections, ensuring that the images processed contain
a sizable number of cells to challenge the segmentation algorithms.
These two requirements result in 258 images of 512 pixels by
512 pixels (pixel size 1 μm), which are used to assess the nuclear
segmentation algorithms.

Additionally, we include 49 fluorescent imaging samples from
the Akoya Vectra 3.0 dataset, which was made publicly available by

Aleynick et al. (2023). These data are derived from a selection of
human tissue samples, including lung, breast, pancreas, colon, ovary,
skin, tongue, and lymph node, and we selected the cropped images
(400 pixels by 400 pixels) that were stained with the DAPI antibody
and accompanied by ground-truth nuclear masks, which were
annotated by specialists and approved by a pathologist. Finally,
we show segmentations for two images provided by the IMC facility
within the CRUK Cambridge Institute. Both images are obtained
from mouse tissue, with one being lung tissue and the other being
ovarian tissue.

3 Evaluation

Within this analysis, we use four scores to assess the success of
each nuclear segmentation mask: the recall, precision, F1, and
Jaccard scores. Each score ranges from 0 to 1, with 1 being the
best possible result. These scores all rely on a ground-truth
segmentation mask, which is used to assess possible detections as
true positives (TPs), fake positives (FPs), and fake negatives (FNs).
The recall, precision, F1, and Jaccard scores can be calculated using
Equations 3–6, respectively:

Recall � TP
TP + FN

, (3)

Precision � TP
TP + FP

, (4)

F1 � 2 × Precision × Recall
Precision + Recall

, (5)

Jaccard � TP
TP + FP + FN

. (6)

We rely on the intersection over union (IOU) measurement
between a ground-truth nucleus and a predicted nucleus to
decide how to classify each of the predicted nuclei as TP, FN,
or FP. For the example of a ground-truth mask containing No

nuclei and a mask predicted using a nuclear segmentation
algorithm containing Np nuclei, an IOU matrix of the size of
No by Np would be constructed. For computational ease, we do
not calculate every element of the IOUmatrix; instead, we assume
that ground-truth and predicted nuclei with centers (x, y) more
than 80 pixels apart will not intersect and therefore assign them
an IOU value of 0.

First, we assessed the predicted nuclei: all those with IOU
values <0.1 were designated FPs. A predicted nucleus with IOU
values >0.1 was marked as a TP match for the one ground-truth
nucleus with which it shared its highest IOU value. That ground-
truth nucleus would then be marked as matched. If the highest
IOU (to two decimal places) for a predicted nucleus matched
more than one ground-truth nucleus, then this predicted nucleus
was marked as a merge error. Similarly, if the highest IOU value
for a predicted nucleus was matched to a ground-truth nucleus
that was already marked as matched, then this would be a split
error. Merge (one predicted nucleus matched to many ground-
truth nuclei) and split (multiple predicted nuclei matched to one
ground-truth nucleus) errors were both counted as FPs. Finally,
we went through the ground-truth nuclei, and any of these that
did not have an IOU value >0.1 with a predicted nuclei were
marked as FNs.
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3.1 BRCA2

To represent the nuclear channel, we use the average between
two DNA marker channels: those stained with iridium 193 and 191.
Figure 2 shows a subset of the nuclear channel IMC images from the
BRCA2 dataset; a variety of morphologies and intensities can be
observed, even within this small subset. As the ground-truth
segmentations are provided for the whole cell (not just the
nucleus), we expanded our nuclear prediction masks each by a
fixed number of pixels across all the images. As it can, sometimes, be
challenging to find a clear cytoplasmic marker present within the
IMC staining panels—and in some cases none are available—we
chose to implement the option of expanding the nuclear detections
to represent cell detections.

In this work, Cellpose and Cellpose v2 refer to Cellpose used
with a user-specified cell radius of 10 pixels and 6 pixels, respectively.
Mesmer and Mesmer v2 refer to Mesmer used with user-specified
scaling factors of 0.75 and 0.5 μm, respectively. The top row of
Figure 3 shows the cell detections within the uber mask for an
example image. Each segmented cell is colored according to the
prediction algorithm that provided the segmentation. The three
plots, from left to right, are the uber mask results for the three
possible metrics of merit: 1) the reciprocal of the natural logarithm
of the standard deviations of the nucleus areas, 2) the number of
nuclei detected, and 3) the Jaccard score. The middle row shows the
uber mask contours in red, overlaid onto the input image. It is clear
that the choice of metric makes a significant difference to the uber
mask produced. Although standard processes usually involve
making an educated guess on which segmentation method to
choose, the CellSampler pipeline allows the user to make an
informed decision on what segmentation quality they would like to
propagate into their data analysis from all the available methods. For
the example shown in Figure 3, the user can visually verify that the
uber mask produced using the criterion of the number of nuclei
detected best represents the ground truth. By examining the choice
of masks for a couple of images andmaking a couple of ground-truth
annotations, it would be observed that under-segmentation is the

key problem across the majority of regions and methods used in
this analysis.

As shown in Figure 4, the recall, precision, Jaccard, and F1 scores
are calculated for all five segmentation algorithms, along with the
three versions of the uber mask:

• UM(1): the mask formed using the reciprocal of the natural
logarithm of the standard deviations of the nucleus areas as the
criteria of merit,

• UM(2): the mask formed using the number of nuclei detected
as the criterion of merit, and

• UM(3): the mask formed using the Jaccard score as the
criterion of merit.

The recall score is focused on how many true positives can be
detected using an algorithm, and in this case, the methods that
produce the largest number of overall cell detections tend to perform
the best. Cellpose v2 and StarDist, as used in their “vanilla” mode,
i.e., without any specific training on this dataset, perform the worst,
having identified the fewest number of cells altogether. Under-
segmentation is perhaps one of the easiest issues to identify
without ground-truth masks, through visual inspection of
segmentation contours overlaid on the nuclear image. The uber
mask, version UM(2), which maximizes the number of nuclei
detections, has, unsurprisingly, the highest recall score. The
precision score, however, focuses on how accurate an algorithm’s
cell detections are and actively penalize methods that propose false
positives. Conversely, the two methods that produce the fewest cell
detections have the highest precision as generating fewer total
predictions also results in fewer false-positive suggestions. The
Jaccard and F1 scores are more comprehensive as they both
include an assessment of true positives, false positives, and false
negatives. For both these scores, the watershed, Mesmer, and UM(2)
uber masks have the highest scores, only differing from each other
by 0.01, which is well within their error bars (shown in the lower plot
of Figure 4) across the full dataset of 258 images. For all the methods,
it is observed that in the BRCA2 images, split errors (multiple

FIGURE 2
Ten example images (nuclear channel) from the BRCA2 dataset.
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predicted nuclei matching a single ground-truth nucleus) are far
more common than merge errors (a single predicted nucleus
matching multiple ground-truth nuclei).

The results presented in Figure 4 relate to an IOU threshold of
0.1. Table 1 shows that changing this threshold value alters the
results but not the performance of the uber mask. As the threshold
defines the overlap percentage required for a match between the
segmentation and the ground truth, increasing the threshold results
in fewer matches and fewer split and merge errors. The top two
methods in this analysis remain the same—Mesmer and
watershed—and the UM(2) uber mask performs as well as these
methods within their margin of error.

It is worth noting that the metric of merit is not the only user-
defined parameter required for the creation of the uber mask; the
user must also choose the size of the local neighborhoods within
which the metric of merit is calculated. For the results shown in this
section, a pixel size of 40 was used to define the local neighborhoods.

We also investigated the use of a neighborhood size of 20 and
80 pixels for the UM(2) uber mask; the scores for each pixel size (s)
are stated in Table 1. The scores are all consistent to within 0.01,
regardless of the neighborhood size used, signifying that the uber
mask is fairly robust to the choice of local neighborhood—as long as
the choice is larger than the average expected cell radius.

Splitting the image into neighborhoods smaller than a single cell
would prevent the CellSampler pipeline from converging on a
solution for a single-cell prediction. For the image analysis carried
out in this paper, typical cell diameters were approximately 10 pixels,
and to ensure that at least two cells were present within each
neighborhood, we restricted the minimum neighborhood size to
20 by 20 pixels. Conversely, setting the neighborhood size too large
would result in a single method being chosen across a large number
of pixels, thus defeating the purpose of CellSampler, which
aims to benefit from combining the strengths of multiple methods.
We chose to investigate a maximum neighborhood size of 80 pixels

FIGURE 3
Top row: the cell detections selected from each method using the uber mask for our example image. Middle row: the uber mask contours in red,
overlaid on the input image. From left to right: the uber mask made using 1) the reciprocal of the natural logarithm of the standard deviations of the
nucleus areas, 2) the number of nuclei detected, and 3) the Jaccard score as the score of merit. Bottom row: the ground-truth mask.
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as our samples were only slightly more than six times larger in length
(512 pixels). The user has control over the neighborhood size, but we
have shown that this parameter has only a minor impact on the
segmentation when used within a logical range.

The Wilcoxon signed-rank test can be used on the concatenated
Jaccard and F1 scores for each method to identify statistically
significant differences between the three methods that possess the
highest average F1 and Jaccard scores. The Wilcoxon p-values
between both the watershed method and UM(2) and the
watershed method and Mesmer are negligibly small. The
Wilcoxon p-value between UM(2) and Mesmer, however, shows

a notable difference at 0.054. The negligible p-value between the
watershed and Mesmer is interesting as these are very different
segmentation algorithms by design. However, it appears that they
concur on which images are straightforward to segment and which
are more troublesome. The uber mask will be constructed primarily
from the ‘best’ methods, so it is unsurprising that there are strong
correlations within the individual image Jaccard and F1 scores
between UM(2) and both the watershed and Mesmer. The
negligible p-value between the watershed method scores and the
UM(2) scores reveals that the uber mask for the BRCA2 dataset
consists mainly of watershed segmentations.

FIGURE 4
Top left: comparison between the median scores for all the nuclear masks of the IMC dataset. Top right: the percentage of split and merge errors in
our 258 images. Bottom row: the same as the top left but as a bar chart, where the error bars are the mean absolute deviation values for the scores.

TABLE 1 F1 and Jaccard scores for Mesmer, watershed, and the UM(2) uber mask using different IOU threshold values and different pixels sizes to define the
local neighborhood.

IOU F1 Jaccard

Watershed Mesmer UM(2) Watershed Mesmer UM(2)

0.1 0.82 0.82 s = 20 ↦ 0.81 0.70 0.69 s = 20 ↦ 0.69

s = 40 ↦ 0.82 s = 40 ↦ 0.70

s = 80 ↦ 0.82 s = 80 ↦ 0.70

0.3 0.81 0.80 0.81 0.69 0.67 0.67

0.5 0.67 0.67 0.65 0.50 0.50 0.48
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3.2 Fluorescent imaging data

We apply CellSampler to the DAPI channel of the multiplex
fluorescent imaging samples to perform nuclear segmentation. Since
the images are 400 pixels by 400 pixels, we choose to apply all the
methods except Dice-XMBD as this method works optimally on
images of 512 pixels by 512 pixels.

Figure 5 shows the recall, precision, F1, and Jaccard scores
between the annotated nuclear masks and our segmentation
methods. As before, we focus on the Jaccard and F1 scores as
they assess the numbers of true positives, false positives, and false
negatives. We use an IOU threshold of 0.1, and for the bar chart, we
plot the median score using the median absolute deviation for the
error bars. For this dataset, the highest Jaccard and F1 scores are
attained using the Mesmer algorithm (both with a 0.5 and 0.75 μm
image resolution) and the UM(3) uber mask. These three methods
display the same Jaccard and F1 scores within their error bars,
showing that the uber mask functionality performs equally well on
both IMC and fluorescent imaging data.

3.3 Qualitative results

In this section, we take a closer look at the performance of the
uber mask on two specific IMC images: one showing a section of

the lung and another showing a section within the ovaries. We
perform nuclear segmentation on the average between two
nuclear maker channels: one stained with iridium 193 and
another with iridium 191. We have no ground-truth
annotations for these two IMC images; instead, we assess the
nuclear detections visually using segmentations overlaid onto the
input images. Figure 6 shows both the lung and ovarian IMC
images. The lung sample was chosen for this analysis because it
contained a metastatic lesion that presented fainter, more
difficult-to-segment nuclei. The ovarian sample presents both
thin, long nuclei and the standard circular nuclei observed in the
BRCA2 samples.

In Figure 7, we focus on the metastatic lesion within the lung.
For this image, under-segmentation was a problem, and
therefore, the uber mask was formed using the number of
nuclear detections for the criteria of merit (neighborhood size
of 40 pixels). The three algorithms that contributed to the
majority of the uber mask detections were Cellpose v2,
Mesmer, and watershed; the nuclear detections from these
three methods and for the uber mask have been plotted as red
contours over the input image. In Figure 8, we illustrate exactly
how the uber mask is constructed by showing several nuclear
detections within the lung sample. Within the region shown in
Figure 8, the uber mask consists of nuclear segmentations from
Cellpose v2, Mesmer, and watershed. The segmentations for

FIGURE 5
Top left: comparison between the median scores for all the nuclear masks created for the fluorescent imaging dataset of 49 images. Top right: the
percentage of split andmerge errors in our 49 images. Bottom row: the same as the top left but as a bar chart, where the error bars are themean absolute
deviation values for the scores.
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Cellpose v2 are shown as purple contours overlaid onto the input
image, the Mesmer segmentations are shown as teal contours,
and the watershed segmentations are shown in light brown. The
uber mask is made up of contours from all of these methods,
choosing Mesmer and Cellpose v2 over the watershed technique
for the specific areas where they detect a higher number of nuclei
than the watershed technique.

In Figure 9, we focus on a fairly typical region within the
ovarian sample; this tissue sample was chosen as it contains both
circular and elliptical-shaped nuclei. For this sample, under-
segmentation was not observed to be a problem; the challenge for
the segmentation algorithms was in simultaneously identifying
two strikingly different cell structures. The uber mask was
formed using the Jaccard score for the criteria of merit
(neighborhood size of 40 pixels). The four algorithms that
contributed to the majority of the uber mask detections were
Cellpose, Cellpose v2, Mesmer, and Mesmer v2; the nuclear
detections from these four methods and for the uber mask
have been plotted as red contours over the input image. For
the specific region shown in Figure 10, the uber mask consists of
nuclear segmentations from Cellpose, shown as light blue
contours overlaid onto the input image, Cellpose v2 given as
purple contours, Mesmer segmentations shown as teal contours,
and Mesmer v2 segmentations shown in light green. The uber
mask can strike a balance between identifying all the nuclei
clearly visible to the eye while avoiding over-segmentation and
the misclassification of background noise as a genuine signal.

These two examples explicitly show the advantage of a
consensus segmentation method in optimally capturing as
many genuine nuclear detections as possible while avoiding
over-segmentation for a variety of cell types. Assessing
segmentations without expert human annotations to serve as
ground-truth masks can sometimes be too complex to perform
by eye alone; therefore, the CellSampler code repository
includes diagnostic plots to help researchers assess
performance. Figure 11 shows a sample of diagnostic plots for

the IMC mouse-lung image, the histogram distribution for
nuclei areas, a k-nearest neighbor nuclear density plot, and
the mean intensities per nucleus within the two IMC
channels. The UM(2) uber mask and the watershed technique
can detect the highest number of nuclei, but while the Cellpose
v2, Mesmer, and UM(2) nuclei share similar areas, the watershed
method finds more nuclei with slightly larger areas. Examining
cell counts and cell areas provides insights into which method
identifies the highest number of nuclei without segmenting
individual nuclei into several smaller pieces. The uber mask
nuclear density plot shows N/(πR2), where N is the number of
nearest neighbors (50 in this case) and R is the average distance
between these neighbors; this plot can be used to assess the
regions within the tissue sample that contain the highest number
of nuclei across the smallest distances. Additionally, any
multiplex dataset will contain several channels of
information, so the intensities measured across different
channels can be calculated using the segmentation
determined from the nuclear channel. An example of this is
shown in the bottom left plot of Figure 11, where the brightest
nuclei from channels CD68 (a macrophage marker) and CD11b
(a monocytic marker) are plotted in cyan and magenta,
respectively. Here, the term “brightest” means the nuclei that
have a mean intensity value larger than the 68th percentile
intensity for the whole tissue sample in that channel.

3.4 Technical details

CellSampler works on sample directories that can contain
multiple regions of interest (ROIs). For a sample directory that
contains four ROIs of sizes (3,054 × 3551), (1,529 × 3561),
(4,251 × 2161), and (2,793 × 3926) pixels, the runtime using
40 CPUs, 1 GPU, and 55 GB of RAM is 1 h and 40 min. This
operational time includes the production of segmentation masks
for five different methods (~104 single nuclei detections), the

FIGURE 6
Two IMC images of mouse tissue: lung tissue on the left and ovarian tissue on the right.
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formation of the uber mask, and the documentation of notable
nuclei properties (area, intensity, and orientation, for example)
within 49 IMC channels. Running a single method only, such as
Cellpose, would produce four segmentation masks (for the four
ROIs) within 12 min. The approach of running multiple methods
and using statistical properties to highlight the best
methodologies across different sample regions was taken to
save staff hours at an earlier stage of segmentation
method selection.

CellSampler can be installed using the Python package
management system pip; upon installation, CellSampler will
install all the sub-packages required for a successful run. For this
initial software release, these include the segmentation tools
Cellpose, Mesmer, StarDist, Watershed, and DICE-XMBD.

4 Discussion

We have presented a new consensus voting technique that is
capable of combing multiple segmentation algorithms for the
segmentation of a single image. Our consensus voting is
applicable to a wide range of spatial genomic imagery; we show
results for IMC and fluorescence images in this study. Algorithms
such as Cellpose and StarDist have been trained on H&E images, so
CellSampler can also be used for these types of images. The
consensus technique presented in this work specifically divides the
single image into local neighborhoods, allowing for different
algorithms to lead the segmentation across different, localized
regions. We have shown that, for the BRCA2 dataset, the
consensus uber mask, which votes based on the number of cell

FIGURE 7
Specific region of the lung IMC sample. The nuclei segmented through Cellpose v2, Mesmer, watershed, and the uber mask are shown as red
contours overlaid onto the nuclear channel data.
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detections within a local neighborhood, produces the joint highest
F1 and Jaccard scores, along with the winning algorithms (Mesmer
and watershed for this analysis). For the Aleynick et al. (2023)
dataset, the consensus uber mask, which votes based on the Jaccard
score within a local neighborhood, produces the joint highest F1 and
Jaccard scores, along with the winning algorithm (Mesmer for this
analysis). We have also demonstrated the ability of the uber mask to
capture the optimal number of nuclear detections across a selection
of different IMC images presenting different cell types and supply
diagnostic plots, such as cell area and channel intensity distributions,
to help assess the segmentation masks when no ground truths
are available.

The CellSampler pipeline can optimize cell segmentation for
large sample size image sets by enabling researchers to quickly test a
variety of segmentation algorithms, identify the key strength in what
would appear to be the optimum method through a visual
comparison of several segmented images, and then construct a
reliable segmentation for all of their hundreds/thousands of
images through an uber mask optimized to make choices based
on the user-selected key strength. This is a marked improvement
over the standard process of identifying one single preferred method
through a quick visual inspection and then either relying on this
single method or painstakingly verifying visually that it has
performed optimally on each of the several hundred images.

FIGURE 8
Specific region of the lung IMC sample. The top left image shows the uber mask nuclear detections as contours over the original image. The
contours are colored according to the method that detected them. The top right, bottom left, and bottom right images show the Cellpose v2, Mesmer,
and watershed detections in purple, teal, and light brown, respectively.
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As more segmentation techniques become publicly available,
they will be incorporated into CellSampler, ensuring that the
pipeline shown in this study continually evolves and maintains

quality alongside the field’s latest cutting-edge advances. Future
work will also include extending the uber mask functionality from
2D to 3D. This can be implemented in a straightforward manner by

FIGURE 9
Specific region of the ovarian IMC sample. The nuclei segmented through Cellpose, Cellpose v2, Mesmer, Mesmer v2, and the uber mask are shown
as red contours overlaid onto the nuclear channel data.
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FIGURE 10
Specific region of the ovarian IMC sample. The top left image shows the uber mask nuclei detections as contours over the original image. The
contours are colored according to the method that detected them. The top right, middle left, middle right, and bottom left images show the Cellpose,
Cellpose v2, Mesmer, and Mesmer v2 detections in light blue, purple, teal, and light green, respectively.
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either realigning 2D segmentation masks back into 3D volumes or
adapting CellSampler to use the existing 3D functionality of
methods such as Cellpose and StarDist.
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