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Background: Identifying genomic regions associated with traits of interest and
their biological processes provides valuable insights into the phenotypic
variability of these traits. This study aimed to identify candidate genes and
genomic regions associated with 16 traits currently evaluated by the Brazilian
Association of Zebu Breeders (ABCZ). These traits include reproductive traits such
as age at first calving (AFC), stayability (STAY), and scrotal circumference at 365
(SC365) and 450 days (SC450). Growth traits include birthweight (BW), expected
progeny difference for weight at 120days of age (EPD120), as well as weight at 120
(W120), 210 (W210), 365 (W365), and 450 days of age (W450). Carcass traits
include body conformation (BC), finishing score (FS), marbling (MARB),
muscularity (MUSC), finishing precocity (FP), and ribeye area (REA).

Methods: A dataset containing 304,782 Nellore cattle genotyped with
437,650 SNPs (after quality control) was used for this study. The Algorithm for
Proven and Young (APY), implemented in the PREGSF90 software, was used to
compute the G−1

APY matrix using 36,000 core animals (which explained 98% of the
variance in the genomic matrix). Subsequently, the SNP solutions were estimated
by back-solving the Genomic Estimated Breeding Values (GEBVs) predicted by
ABCZ using the single-step GBLUP method. Genomic regions were identified
using sliding windows of 175 consecutive SNPs, and the top 1% genomic
windows, ranked based on their proportion of the additive genetic variance,
were used to annotate positional candidate genes and genomic regions
associated with each of the 16 traits.

Results: The top 1% windows for all traits explained between 2.779% (STAY) to
3.158% (FP) of the additive genetic variance, highlighting the polygenic nature of
these traits. Functional analysis of the candidate genes and genomic regions
provided valuable insights into the genetic architecture underlying these traits in
Nellore cattle. For instance, our results revealed genes with important functions
for each trait, such as SERPINA14 (plays a key role for the endometrial epithelium)
identified for AFC, HSPG2 (associated with morphological development and
tissue differentiation) identified for BW, among others.

Conclusion:We identified genomic regions and candidate genes, some of which
have been previously reported in the literature, while others are novel discoveries
that warrant further investigation. These findings contribute to gene prioritization
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efforts, facilitating the identification of functional candidate genes that can enhance
genomic selection strategies for economically important traits in Nellore cattle.
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1 Introduction

Genome-wide association studies (GWAS) are paramount for
identifying genetic variants associated with complex traits in
livestock, thereby enhancing the accuracy of genomic predictions
(Sahana et al., 2023). By leveraging high-throughput genotyping,
GWAS enables the identification of candidate genes and genomic
regions associated with traits of interest in livestock by exploiting the
non-random association of alleles in the cattle genome (Mkize et al.,
2021; Wang et al., 2005). Many studies using small genomic datasets
for GWAS tend to report either fewer associations or a high number
of potentially spurious ones, particularly if adequate multiple-test
correction methods are not properly implemented (Galliou et al.,
2020). In contrast, research based on larger datasets typically
identifies a higher number of more reliable associations due to
their increased statistical power (Jiang et al., 2019), making them less
susceptible to the identification of false positives (Misztal
et al., 2021).

Nellore cattle, a Bos taurus indicus breed, play a vital role in the
global beef industry, representing over 80% of Brazil’s beef cattle
population and solidifying Brazil’s position as one of the world’s
largest beef exporters (Josahkian, 2000; USDA, 2011; 2019;
Carvalheiro et al., 2014). Various breeding programs focusing on
genomic selection aim to accelerate genetic progress, reduce
generational interval, and increase the accuracy of selection in
this breed (e.g., Carvalheiro, 2014; Albuquerque et al., 2018;
Fernandes Júnior et al., 2022). In this context, previous studies
have investigated genomic regions associated with key traits in
Nellore cattle, such as age at puberty in young bulls using
18,746 genotyped animals (Stafuzza et al., 2020); carcass quality
using 502 genotyped animals (Carvalho et al., 2020a); visual score
trait using 2,775 genotyped animals (Machado et al., 2022), and
scrotal circumference using 3,450 genotyped animals (Irano et al.,
2016). Additionally, Schmidt et al. (2023) used GWAS to identify
significant SNP markers located within genomic regions harboring
lethal haplotypes associated with heifer rebreeding, post-natal
mortality, and stayability in a population of 62,022 genotyped
animals. However, to the best of our knowledge, no GWAS to
date have yet used datasets exceeding 65,000 genotyped Nellore
animals. Performing GWAS using larger datasets could substantially
enhance the power to detect candidate genes associated with
economically important traits in Nellore cattle, avoiding the
spurious associations of small studies (Pocrnic et al., 2024).

The Brazilian Association of Zebu Breeders (ABCZ; Uberaba,
MG, Brazil) is a prominent cattle association that manages the
largest Zebu database in Brazil, with over 12 million registered
animals nationwide. The ABCZ monitors the genetic improvement
of more than 3,600 herds across the country, performing official
genetic and genomic evaluations for seven different dairy and beef
cattle Zebu breeds. The Nellore breeding program, established in the
1950s, is one of the largest breeding programs for this breed in the

world, with over 300,000 genotyped animals and more than
14 million animals in the pedigree (includes registered and non-
registered animals from commercial herds).

In the single-step genomic evaluations based on the Genomic
Best Linear Unbiased Prediction (GBLUP) approach, the most
computationally intensive step is the inversion of the genomic
relationship matrix (G), which is later combined with the inverse
of the pedigree-based relationship matrix (A) to build the inverse of
theHmatrix (Aguilar et al., 2010). For large genotyped populations,
directly inverting G becomes computationally infeasible, as the
complexity of these operations scales cubically with the number
of genotypes (Fragomeni et al., 2015a). However, with advanced
computational algorithms, these operations have been shown to be
possible for datasets with up to ~2.3 million genotyped individuals
(Fragomeni et al., 2015b; Masuda, 2019).

The Algorithm for Proven and Young (APY) allows for the
efficient implementation of large genotyped populations by
separating the genotyped animals into core and non-core groups;
the core group carries information about the independent
chromosome segments segregating in the population and is the
portion of G that demands direct inversion; however, it has limited
dimensionality, allowing an efficient inversion of G (Misztal et al.,
2014a; Misztal, 2015; Fernando et al., 2016; Pocrnic et al., 2016a;
Bradford et al., 2017). This method enables large-scale genomic
evaluations, allowing breeding programs to leverage the growing
amount of genomic data to accelerate genetic gain and optimize
selection process (Bradford et al., 2017; Doublet et al., 2019; Leite
et al., 2024). While APY has been widely used for genomic
predictions (e.g., Misztal et al., 2020), limited research has used
APY in GWAS (Leite et al., 2024; Aguilar et al., 2019; Misztal et al.,
2024). Consequently, our objective in this study is to performGWAS
using one of the world’s largest genotyped populations of Nellore
cattle, leveraging the APY algorithm to identify candidate genes and
genomic regions associated with the 16 traits currently
evaluated by ABCZ.

2 Materials and methods

Animal Care and Use Committee approval was not needed for
this study, as all data were obtained from an existing database.

2.1 Datasets

The Brazilian Association of Zebu Breeders (ABCZ; https://www.
abcz.org.br) provided the variance components, pedigree, genotypes,
and genomic estimated breeding values (GEBVs) from their December
2023 official genomic evaluation of Nellore cattle. This dataset includes
GEBVs for 304,782 Nellore animals across the 16 traits currently
analyzed in their national evaluation. The reproductive traits include
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age at first calving (AFC), stayability (STAY), and scrotal
circumference at 365 (SC365) and 450 days (SC450). Growth traits
include birthweight (BW), expected progeny difference for weight at
120days of age (EPD120), as well as weight at 120 (W120), 210 (W210),
365 (W365), and 450 days of age (W450). Carcass traits include body
conformation (BC), finishing score (FS), marbling (MARB),
muscularity (MUSC), finishing precocity (FP), and ribeye area
(REA) (Rizzo et al., 2015; Costa et al., 2020). Details about the
statistical models currently used by ABCZ to evaluate the
mentioned traits and quality control performed in the phenotypes
are available at the ABCZ website (https://www.abczstat.com.br/
comunicacoes/sumario/apresentacao/Sumario-racas-NEL.htm). In
summary, the GEBVs were predicted using the single-step Genomic
Best Linear Unbiased Prediction (ssGBLUP) method (Legarra et al.,
2009; Aguilar et al., 2010), using linear animal mixed models for all
traits (including visual score traits) except STAY (for STAY a threshold
model was used). The statistical model used for STAY incorporated
only the fixed effect of contemporary group and the additive genetic
random effect. The statistical model used for AFC incorporated the
fixed effects of contemporary group and age of the dam (in classes),
and the additive genetic random effect. For all other traits evaluated in
this study, the statistical models included the fixed effects of
contemporary group, animal age at the measurement (as a
covariable, nested in the contemporary group), age of the dam (in
classes), and the additive random effect. The covariable age at the
measurement is routinely used by ABCZ in their official genetic
evaluations to further correct for any residual age-related variation
that may persist despite the standard age adjustments. For the genomic
evaluation of weights recorded before weaning (i.e., BW, W120, and
W210), the statistical model additionally included maternal genetic
and permanent maternal environmental effects.

Pedigree information was available for approximately 14 million
Nellore animals raised in Brazil. Out of these, 309,640 animals were
genotyped using 14 commercially available single nucleotide
polymorphisms (SNP) panels, which ranged from low to high-
density. After defining the optimal imputation approach for this
population, imputation was performed using the FImpute v3
(Sargolzaei et al., 2014) software, considering pedigree
information. The imputation was performed in two steps: first,
all low and medium-density genotypes were imputed to a custom
SNP panel containing approximately 120 k SNPs, which was created
by combining the 50 k and 70 k panels (over 86 k animals in the
reference). Subsequently, the 120 k SNP panel was imputed to the
high-density SNP panel (777 k), using 1,962 animals genotyped with
high-density SNP panel in the reference. Quality control performed
before imputation kept only SNPs mapped in the autosomes with
call rate above 0.90, minor allele frequencies above 0.01, and
deviation from the Hardy–Weinberg equilibrium lower than 0.15.
Imputation accuracy was greater than 0.98 for the dataset used.

2.2 Genotypic quality control

Genotypic quality control was performed using the
QCF90 software from the BLUPF90 family of programs (Misztal
et al., 2002). After quality control, 179,575 SNPs were excluded
based on minor allele frequency (MAF) < 0.05, extreme deviation
from Hardy-Weinberg equilibrium (>0.15; calculated as the

difference between observed and expected heterozygote
frequencies; following Wiggans et al., 2009), and SNP markers
located on non-autosomal regions. Finally, a total of
304,782 animals and 437,650 SNPs distributed across the
29 autosomal chromosomes remained for further analysis.

2.3 Statistical analyses

2.3.1 Algorithm for proven and young
To facilitate obtaining the inverse of the genetic relationship

matrix (G), the Algorithm for Proven and Young (APY) was used in
the analysis (Misztal et al., 2014a; Mrode and Pocrnic, 2023). The
number of core animals in APY was identified using the
PREGSF90 program (Misztal et al., 2014b; Lourenco et al., 2022),
which assesses the number of eigenvalues of G that explains the
largest variance. For computational reasons, the eigenvalues are
obtained by squaring the singular values; therefore,
PREGSF90 performs the Singular Value Decomposition (SVD) of
the SNP content matrix, Z (Pocrnic et al., 2016b). Pocrnic et al.
(2016b) demonstrated that the number of core animals can be
determined by the number of eigenvalues of G that explain 98%–
99% of the variance in this matrix.

In this study, we found that about 36,000 core animals captured
98% of the variance in G, therefore, we randomly selected
36,000 core animals to ensure a representative sample of the
population, as suggested by Pocrnic et al. (2016a) and Garcia
et al. (2022). The relationships in G-1 APY (G−1

APY) were then
computed through recursions based on the core set, with linear
computation cost for noncore and cubic for core animals. The
inverse of the genomic relationship matrix with APY was
constructed as (Pocrnic et al., 2019; Leite et al., 2024):

G−1
APY � G−1

cc 0
0 0

[ ] + −G−1
cc Gcn

I
[ ]M−1

nn −GncG
−1
cc I[ ]

where G−1
APY is the inverse of the genomic relationship matrix with

APY, G−1
cc and M−1

nn are the inverses of the genomic relationship
matrix for core and diagonal for noncore animals respectively. The
Gcn is the genomic relationship matrix between core and noncore
animals, Gnc is the genomic relationship matrix between noncore
and core animals, and I is the identity matrix. TheM−1

nn is a diagonal
matrix, with its element derived as: Mnn � diag mnn,j{ } �
diag gjj − gjc′ G−1

cc gcj{ }, where gjj is the diagonal element of Gnn for
the jth animal, and gjc is the relationship between the jth noncore
animal with core animals. Using APY, the computational cost in
inverting a dense G is reduced to only inverting the genomic
relationship matrix for core animals (i.e., Gcc), which is sparse
(Pocrnic et al., 2019; Leite et al., 2024).

2.3.2 Genome-wide association studies
The POSTGSF90 program (Misztal et al., 2014b; Lourenco et al.,

2022) was used to obtain the SNP effects by back-solving the
genomic estimated breeding values (GEBVs) for each trait using
the following equation (VanRaden, 2008; Strandén and Garrick,
2009; Wang et al., 2012):

â � 1 − β( ) b σ2u
σ2a

Z′G−1
APY û,
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where â is the vector of estimated SNP effects, β is the blending
parameter (5%) to avoid singularity problems in G (VanRaden,
2008), b is a tuning parameter (Vitezica et al., 2011), σ2u is SNP
variance, σ2a is the genetic variance, Z is a matrix of SNP content
centered by two times the allele frequency (p), û is the vector of the
GEBVs provided by ABCZ, and G−1

APY is the inverse of the genomic
relationship matrix constructed using APY.

To identify important genomic regions associated with the
analyzed traits, we determined the percentage of variance
explained by moving windows of 175 adjacent SNPs. This
window size was chosen based on Pocrnic et al. (2024), who
analytically proved that 80% of QTL variance can be captured by
eight Stam segments. Following Pocrnic et al. (2024), the mean
length of a Stam segment (in Morgans) can be computed as 1

4Ne;
whereNe is the effective population size, which for this population is
to 196; therefore, the mean length of a Stam segment would be
0.00128 Morgans, and 8 Stam segments span over 0.0102 Morgans
or 1.02 Mb. Thus, our windows size contained 175 SNPs (using our
SNP panel after quality control). This approach balances the need to
capture genetic variance with minimizing noise from excessively
large or small window sizes (Fragomeni et al., 2014). The additive
genetic variance explained by the ith SNP (σ2a(i)) was estimated as
follows (Fragomeni et al., 2014; Zhang et al., 2010):

σ2a i( ) � â2i 2pi 1 − pi( ),
where â2i is the estimated effect of kth SNP for the analyzed trait, and all
other terms were previously defined. The total additive genetic variance
explained by each genomic window was calculated by summing the
variance explained by the 175 consecutive SNPs. Only windows
explaining the highest proportion of variance for each trait were
retained for further analysis. The top 1% windows for each trait
(i.e., n = 20 windows per trait) were used for gene annotation in
order to retrieve important genomic regions for all analyzed traits.

2.3.3 Genome annotation and functional
enrichment analyses

The top 1% windows for each trait were used for the annotation
of genes located within the windows. Gene annotation was
performed using the GALLO package (Fonseca et al., 2020)
available in the R software (R Core Team, 2024), based on the
Ensembl database (http://useast.ensembl.org/index.html; accessed
October 2024) using the ARS-UCD1.2 genome assembly (Rosen
et al., 2020). Additionally, the gprofiler2 package (Kolberg et al.,
2020) available in R (R Core Team, 2024) was used to perform the
functional analysis according to the similarity of the biological
process, molecular functions, cellular components, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
associated with the identified candidate genes with p-value <0.
05 were stated as significant.

3 Results

3.1 Genome windows and identification of
candidate genes

Manhattan plots showing the top 1% genomic windows
explaining the highest proportion of the additive genetic variance

are shown in Figure 1. The top 1% genomic windows and candidate
genes highlighted for all 16 traits are detailed in the sections below.

3.1.1 Age at first calving
The top 1% genomic window were located across

15 chromosomes as seen in Figure 1a (i.e., BTA2, BTA4, BTA5,
BTA6, BTA7, BTA8, BTA9, BTA10, BTA11, BTA14, BTA16,
BTA20, BTA21, BTA27, BTA28), explaining a minimum additive
genetic variance of 0.130% at BTA2 and maximum additive genetic
variance of 0.235% at BTA6. Collectively, these windows explained
3.010% of the total additive genetic variance for AFC. The top 1%
windows, along with their genomic positions, overlapped
225 positional candidate genes, classified as protein-coding (n =
144), long noncoding RNAs (n = 63), small noncoding RNAs (n =
9), and miscellaneous noncoding RNAs (n = 4), as detailed in
Supplementary Table S1A. In summary, nine molecular functions
which are statistically associated with the genes and related to age at
first calving in Nellore are highlighted in the
Supplementary Table S1B.

3.1.2 Birth weight
The top 1% genomic window were located across

17 chromosomes as seen in Figure 1b (i.e., BTA1, BTA2, BTA3,
BTA5, BTA6, BTA7, BTA10, BTA11, BTA13, BTA14, BTA15,
BTA16, BTA19, BTA20, BTA21, BTA24, BTA28), explaining a
minimum additive genetic variance of 0.135% at BTA21 and
maximum additive genetic variance of 0.237% at BTA20.
Together, these windows explained 3.087% of the total additive
genetic variance for BW. The top 1% windows, along with their
genomic positions, overlapped 286 positional candidate genes,
classified as protein-coding (n = 212), long noncoding RNAs
(n = 49), small noncoding RNAs (n = 5), miscellaneous
noncoding RNAs (n = 1), micro-RNA (n = 5), small nuclear
RNA (n = 9), and pseudogene (n = 5) as detailed in the
Supplementary Table S2A. In summary, a total of 16 biological
processes, 10 cellular components, one molecular function; and one
KEGG pathway are statistically associated with the genes related to
birthweight in Nellore and highlighted in the
Supplementary Table S2B.

3.1.3 Body conformation
The top 1% genomic window were located across

17 chromosomes as seen in Figure 1c (i.e., BTA2, BTA3,
BTA5, BTA6, BTA7, BTA8, BTA10, BTA11, BTA12, BTA14,
BTA16, BTA19, BTA20, BTA21, BTA22, BTA26), explaining a
minimum additive genetic variance of 0.129% at BTA20 and
maximum additive genetic variance of 0.208% at BTA5.
Together, these windows explained 2.964% of the total
additive genetic variance for BC. The top 1% windows, along
with their genomic positions, overlapped 991 positional
candidate genes, classified as protein-coding (n = 637), long
noncoding RNAs (n = 263), small noncoding RNAs (n = 14),
miscellaneous noncoding RNAs (n = 2), micro-RNA (n = 17),
small nuclear RNA (n = 45), and pseudogene (n = 11) as detailed
in the Supplementary Table S3A. In summary, a total of five
biological processes, and two molecular functions are statistically
associated with the genes related to body conformation in Nellore
as highlighted in the Supplementary Table S3B.
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3.1.4 Expected progeny difference for weight
at 120 days

The top 1% genomic window were located across
14 chromosomes as seen in Figure 1d (i.e., BTA2, BTA3, BTA6,
BTA7, BTA9, BTA11, BTA13, BTA14, BTA17, BTA22, BTA25,
BTA26, BT28, BTA29), explaining a minimum additive genetic
variance of 0.134% at BTA29 and maximum additive genetic
variance of 0.176% at BTA14. Together, these windows explained
2.978% of the total additive genetic variance for EPD_120. The top
1% windows, along with their genomic positions, overlapped
239 positional candidate genes, classified as protein-coding (N =
158), long noncoding RNAs (n = 50), small noncoding RNAs (n =
9), micro-RNA (n = 1), small nuclear RNA (n = 16), and pseudogene
(n = 4) as detailed in the Supplementary Table S4A. In summary, a

total of two biological process, two cellular process and four
molecular functions were statistically associated with the genes
related to EPD120 in Nellore as highlighted in the
Supplementary Table S4B.

3.1.5 Finishing score
The top 1% genomic window were located across

14 chromosomes as seen in Figure 1e (i.e., BTA2, BTA3, BTA4,
BTA6, BTA8, BTA9, BTA10, BTA11, BTA13, BTA14, BTA20,
BTA21, BTA23), explaining a minimum additive genetic variance
of 0.129% at BTA11 and maximum additive genetic variance of
0.240% at BTA14. Together, these windows explained 3.008% of the
total additive genetic variance for FS. The top 1% windows, along
with their genomic positions, overlapped 254 positional candidate

FIGURE 1
(Continued).
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genes, classified as protein-coding (n = 177), long noncoding RNAs
(n = 51), micro-RNA (n = 7), small nuclear RNA (n = 12), and
pseudogene (n = 5) as detailed in the Supplementary Table S5A. In
summary, a total of six biological process, two cellular process; and
two molecular functions were statistically associated with the genes
related to finishing score in Nellore as highlighted in the
Supplementary Table S5B.

3.1.6 Marbling
The top 1% genomic window were located across

13 chromosomes as seen in Figure 1f (i.e., BTA1, BTA2, BTA5,
BTA6, BTA7, BTA8, BTA9, BTA12, BTA14, BTA17, BTA22,
BTA23, BTA27), explaining a minimum additive genetic variance
of 0.128% at BTA12 and maximum additive genetic variance of

0.253% at BTA6. Together, these windows explained 2.995% of the
total additive genetic variance for MARB. The top 1% windows,
along with their genomic positions, overlapped with 368 positional
candidate genes, classified as protein-coding (n = 281), long
noncoding RNAs (n = 53), micro-RNA (n = 12), small nuclear
RNA (n = 10), small noncoding RNA (n = 8), and pseudogene (n =
3) as detailed in the Supplementary Table S6A. In summary, a total
of three biological process and two molecular functions were
statistically associated with the genes related to marbling in
Nellore as highlighted in the Supplementary Table S6B.

3.1.7 Muscularity
The top 1% genomic windows were located across

15 chromosomes as seen in Figure 1g (i.e., BTA3, BTA5, BTA6,

FIGURE 1
(Continued). (a–p) Manhattan plot showing the top 1% windows with the highest proportion of genetic variance explained across chromosomes.
The red dot represents the top 1% region associated with trait of interest. The Y axis represents “% of variance” explained for each chromosome.
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BTA8, BTA9, BTA10, BTA11, BTA13, BTA14, BTA15, BTA16,
BTA20, BTA23, BTA27, BTA28), explaining a minimum additive
genetic variance of 0.126% at BTA3 and maximum additive genetic
variance of 0.232% at BTA6. Together, these windows explained
3.013% of the total additive genetic variance for MUSC. The top 1%
windows, along with their genomic positions, overlapped with
202 positional candidate genes, classified as protein-coding (n =
129), long noncoding RNAs (n = 54), micro-RNA (n = 3), small
nuclear RNA (n = 11), and pseudogene (n = 2) as detailed in the
Supplementary Table S7A. In summary, only one biological process,
and one molecular function were statistically associated with the
genes related to muscularity in Nellore as highlighted in the
Supplementary Table S7B.

3.1.8 Ribeye area
The top 1% genomic window were located across

13 chromosomes as seen in Figure 1h (i.e., BTA1, BTA3, BTA4,
BTA6, BTA8, BTA9, BTA10, BTA11, BTA14, BTA15, BTA20,
BTA21, BTA23), explaining a minimum additive genetic variance
of 0.125% at BTA10 and maximum additive genetic variance of
0.186% at BTA1. Together, these windows explained 2.962% of the
total additive genetic variance for REA. The top 1% windows, along

with their genomic positions, overlapped with 238 positional
candidate genes, classified as protein-coding (n = 157), long
noncoding RNAs (n = 52), small noncoding RNAs (n = 8),
micro-RNA (n = 6), small nuclear RNA (n = 12), and
pseudogene (n = 3) as detailed in the Supplementary Table S8A.
In summary, one molecular function, and one KEGG pathway were
statistically associated with the genes related to ribeye area in Nellore
as highlighted in the Supplementary Table S8B.

3.1.9 Finishing precocity
The top 1% genomic window were located across

13 chromosomes as seen in Figure 1i (i.e., BTA1, BTA3,
BTA6, BTA7, BTA8, BTA9, BTA10, BTA14, BTA16, BTA20,
BTA21, BTA23, BTA27), explaining a minimum additive genetic
variance of 0.130% and maximum additive genetic variance of
0.243% at BTA6. Together, these windows explained 3.158% of
the total additive genetic variance for FP. The top 1% windows,
along with their genomic positions, overlapped with
217 positional candidate genes, classified as protein-coding
(n = 136), long noncoding RNAs (n = 60), small noncoding
RNAs (n = 3), miscellaneous noncoding RNAs (n = 1), micro-
RNA (n = 6), and small nuclear RNA (n = 12) as detailed in the

TABLE 1 Candidate genes located within the top 1% genomic windows associated with age at first calving in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,258,860–70,084,303 CHIC2, GSX2, PDGFRA, U6, bta-mir-4449 0.235

10 85,348,496–86,364,230 COQ6, ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1. FCF1,
YLPM1, PROX2, DLST, RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, Metazoa_SRP, MLH3

0.193

21 58,658,243–59,478,510 OTUB2, DDX24, ISG12(B), IFI27, IFI27L2, PPP4R4, SERPINA10, SERPINA6, SERPINA1, SERPINA11, SERPINA14,
SERPINA12, SERPINA5, SERPINA3-3

0.185

9 80,031,480–80,701,610 HIVEP2, AIG1, bta-mir-2284aa-4 0.171

14 41,537,492–42,576,327 PKIA, IL7 0.158

16 58,877,604–59,420,135 SEC16B 0.147

8 57,399,938–58,531,522 TLE1 0.146

21 35,060,169–35,613,940 STXBP6 0.146

4 90,187,337–90,743,037 GRM8 0.142

14 10,578,647–11,171,344 GSDMC, CYRIB, ASAP1 0.140

27 9,374,334–10,343,439 - 0.140

7 54,999,335–56,005,879 YIPF5, KCTD16 0.137

10 82,912,907–83,689,406 SIPA1L1, RGS6 0.137

20 9,527,068–10,621,897 BDP1, SERF1A, GTF2H2, TAF9, OCLN, MARVELD2, RAD17, AK6, CCDC125, CDK7, CENPH, CCNB1, SLC30A5, bta-mir-
7858, bta-mir-11986b, SMN2, NAIP, CARTPT, MCCC2

0.136

6 67,663,811–68,546,478 CWH43, DCUN1D4
LRRC66, SGCB, SPATA18, USP46, RASL11B, SCFD2

0.135

28 8,749,119–9,703,912 EDARADD, LGALS8, HEATR1, ACTN2, MTR, NID1, RYR2, GPR137B, ERO1B, U6 0.135

4 84,699,677–85,581,389 KCND2, CPED1, TSPAN12, ING3 0.135

5 9,286,252–10,492,733 MYF6, MYF5, LIN7A, PPP1R12A, OTOGL, PTPRQ 0.134

11 90,288,247–91,116,303 SOX11 0.132

2 68,983,135–71,193,227 EN1, MARCO, C1QL2, STEAP3, C2H2orf76, DBI, INSIG2, DDX18, CCDC93 0.130

Proportion of the trait variance explained by each window (%).
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Supplementary Table S9A. In summary, one biological process,
and one KEGG pathway, were statistically associated with the
genes related to finishing precocity in Nellore as highlighted in
the Supplementary Table S9B.

3.1.10 Scrotal circumference at 365 days
The top 1% genomic window were located across

14 chromosomes as seen in Figure 1j (i.e., BTA1, BTA2, BTA3,
BTA5, BTA6, BTA7, BTA8, BTA9, BTA10, BTA20, BTA21, BTA23,
BTA27, BTA28), explaining a minimum additive genetic variance of
0.130% at BTA27 andmaximum additive genetic variance of 0.197%
at BTA6. Together, these windows explained 3.005% of the total
additive genetic variance for SC365. The top 1% windows, along
with their genomic positions, overlapped with 286 positional
candidate genes, classified as protein-coding (n = 192), long
noncoding RNAs (n = 52), small noncoding RNAs (n = 7),
micro-RNA (n = 3), small nuclear RNA (n = 9), and pseudogene
(n = 4) as detailed in the Supplementary Table S10A. In summary, a
total of four biological process, five molecular functions, and one
KEGG pathway, were statistically associated with the genes related

to scrotal circumference at 365 days in Nellore as highlighted in the
Supplementary Table S10B.

3.1.11 Scrotal circumference at 450 days
The top 1% genomic window were located across

15 chromosomes as seen in Figure 1k (i.e., BTA1, BTA5, BTA6,
BTA7, BTA8, BTA9, BTA10, BTA15, BTA21, BTA23, BTA25,
BTA27, BTA28), explaining a minimum additive genetic variance
of 0.130% at BTA8 and maximum additive genetic variance of
0.197% at BTA10. Together, these windows explained 3.005% of
the total additive genetic variance for SC450. The top 1% windows,
along with their genomic positions, overlapped with 271 positional
candidate genes, classified as protein-coding (n = 184), long
noncoding RNAs (n = 68), small noncoding RNAs (n = 4),
micro-RNA (n = 2), small nuclear RNA (n = 7), and pseudogene
(6) as detailed in the Supplementary Table S11A. In summary, a total
of seven biological processes, five molecular functions, two cellular
components, and one KEGG pathway, were statistically associated
with the genes related to scrotal circumference at 450 days in Nellore
as highlighted in the Supplementary Table S11B.

TABLE 2 Candidate genes located within the top 1% genomic windows associated with birth weight in Nellore cattle.

BTA Position (BP) Candidate 1Var (%)

20 46,600,025–47,861,825 CDH9 0.237

19 40,595,675–42,117,748 TOP2A, IGFBP4, TNS4, KRT222, CCR7, KRT27, KRT24, KRT10, JUP, P3H4, FKBP10, NT5C3B, KLHL10, ACLY, ODAD4,
KRT12, KRT20, KRT23, KRT39, KRT40, HAP1, GAST, KRT14, KRT9, KRT16, GJD3, EIF1, KRTAP4-7, KRTAP9-2,
KRTAP16-1, KRT31, KRT37, KRT36, KRTAP3-3, KRTAP3-1, KRTAP17-1, U6, bta-mir-2285cb, SMARCE1, KRT28, KRT25,
KLHL11, KRT17, KRT42, KRT19, KRT15, KRT33A, KRT32

0.170

6 69,176,844–69,912,628 CHIC2, GSX2, PDGFRA, U6 0.169

5 39,344,450–40,374,767 PDZRN4, CNTN1 0.169

10 82,906,890–83,684,844 SIPA1L1, RGS6, Metazoa_SRP 0.160

13 24,138,006–25,149,812 MSRB2, PTF1A, OTUD1, KIAA1217 0.160

3 107,633,453–108,718,037 SF3A3, INPP5B, MTF1, C3H1orf122, YRDC, MANEAL, POU3F1, UTP11, FHL3, CDCA8, AIRIM, EPHA10, ZC3H12A,
RSPO1, SNIP1, GNL2, DNALI1, U6, MEAF6

0.160

1 62,577,819–63,381,533 - 0.159

2 130,353,122–131,738,344 WNT4, CDC42, CELA3B, HSPG2, USP48, RAP1GAP, ALPL, ECE1, EIF4G3, U6, U6 0.152

14 41,193,791–42,165,679 PKIA, IL7, U6 0.148

20 52,696,774–53,820,596 CDH18, bta-mir-2361 0.148

16 76,515,256–77,345,088 DENND1B, C16H1orf53, LHX9, NEK7 0.145

24 51,290,309–52,129,809 DCC 0.144

7 66,385,051–67,215,595 U6 0.143

15 70,947,433–71,871,075 - 0.139

21 49,649,455–50,547,021 - 0.139

11 73,959,275–75,270,350 DNMT3A, POMC, EFR3B, DNAJC27, ADCY3, CENPO, PTRHD1, NCOA1, ITSN2, FAM228A, FAM228B, PFN4, TP53I3,
SF3B6, FKBP1B, WDCP, MFSD2B, UBXN2A, ATAD2B, KLHL29, U3, bta-mir-1301

0.139

28 43,804,023–45,132,821 MARCHF8, ALOX5, ZNF22, DEPP1, RASSF4, TMEM72, CXCL12, CHAT, C28H10orf53, OGDHL, PARG, TIMM23,
NCOA4, MSMB, FAM21A, ZFAND4, OR13A1, OR6D16, SNORA74

0.136

14 9,011,203–9,987,316 KCNQ3, HHLA1, OC90, EFR3A, ADCY8 0.136

21 59,196,055–59,997,988 SERPINA12, SERPINA5, DICER1, bta-mir-2365, U6, bta-mir-2284a, SERPINA3-3 0.135

Proportion of the trait variance explained by each window (%).
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TABLE 3 Candidate genes located within the top 1% genomic windows associated with body conformation in Nellore cattle.

BTA Position Candidate genes 1Var (%)

5 39,344,450–40,374,767 PDZRN4, CNTN1 0.208

16 60,596,486–61,534,166 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6, U6, U2 0.207

10 82,899,590–83,683,111 SIPA1L1, RGS6, Metazoa_SRP 0.184

8 80,786,825–81,426,962 DAPK1, CTSL, FBP2, AOPEP, FBP1 0.177

7 66,097,903–66,885,302 GEMIN5, MRPL22, U6, U2, SNORA70, U6 0.156

11 70,009,223–70,492,069 FAM161A, REG3A, CCT4, B3GNT2, COMMD1, REG3G, SUCLG1, CTNNA2, LRRTM1, LRRTM4, C11H2orf74, AHSA2,
USP34, XPO1, U1, SNORA72, U6, U6, U1, Metazoa_SRP, 5S_rRNA, SNORA72, LGALSL, AFTPH, ACTR2, SPRED2,
GFPT1, C1D, PPP3R1, PNO1, CNRIP1, NFU1, AAK1, SERTAD2, PLEK, TMEM17, EHBP1, PCYOX1, SNRPG, EHD3,
CAPN14, SIX3, GALNT14, RMDN2, FBXO48, APLF, OTX1, WDPCP, MDH1, CYP1B1, LRPPRC, UGP2, VPS54, PELI1,
ANXA4, GMCL1, SIX2, PLEKHH2, MXD1, PCBP1, C11H2orf42, DYNC2LI1, TIA1, ABCG5, PROKR1, ABCG8,
ARHGAP25, EPAS1, BMP10, GKN2, GKN1, SRBD1, ANTXR1, CAPN13, PRKCE, LCLAT1, EPCAM, MEIS1, SLC10A6,
PPM1B, LBH, MSH2, YPEL5, KCNK12, MSH6, ALK, FBXO11, SLC1A4, TMEM247, ETAA1, ATP6V1E2, RHOQ, CEP68,
PIGF, RAB1A, CRIPT, SOCS5, MCFD2, TTC7A, ASPRV1, STPG4, CALM2, OXER1, HAAO, ZFP36L2, THADA, DNAAF10,
ATL2, SLC3A1, PREPL, CAMKMT, ARHGEF33, SOS1, CDKL4, MAP4K3, TMEM178A, THUMPD2, SLC8A1, HNRNPLL,
GALM, SRSF7, DHX57, MORN2, PKDCC, EML4, COX7A2L, KCNG3, MTA3, VIT, HEATR5B, GPATCH11, EIF2AK2,
SULT6B1, CEBPZOS, CEBPZ, NDUFAF7, PRKD3, QPCT, FAM136A, XDH, IL1RL2, IL1RL1, IL18R1, IL18RAP, SLC9A4,
CDC42EP3, SLC9A2, MFSD9, TMEM182, CRIM1, FEZ2, SRD5A2, MEMO1, MRPS9, FAM98A, TGFBRAP1, DPY30,
SPAST, SPR, DYSF, ZNF638, PAIP2B, NAGK, TEX261, ANKRD53, ATP6V1B1, VAX2, SLC4A5, MTHFD2, MOB1A,
EXOC6B, CD207, BOLA3, CLEC4F, FIGLA, C11H2orf49, ADD2, FHL2, SLC30A6, TACR1, NLRC4, YIPF4, TTC27, TET3,
DGUOK, ACTG2, STAMBP, C11H2orf78, DUSP11, TPRKB, ALMS1, TGFA, LTBP1, RASGRP3, EGR4, FBXO41, CYP26B1,
CCT7, PRADC1, SMYD5, NOTO, RAB11FIP5, SFXN5, EMX1, DOK1, LOXL3, HTRA2, AUP1, DQX1, TLX2, PCGF1, LBX2,
POLE4, HK2, SEMA4F, M1AP, POU3F3, CCDC142, MRPL53, MOGS, WBP1, RTKN, WDR54, C11H2orf81, MGC152281,
DCTN1, STRN, BIRC6, INO80B, ACYP2, C11H2orf73, SPTBN1, EML6, RTN4, FOXN2, STON1, GTF2A1L, LHCGR, FSHR,
RPS27A, MTIF2, PRORSD1, CCDC88A, NRXN1, CFAP36, PPP4R3B, PNPT1, EFEMP1, CCDC85A, ASB3, CHAC2,
ERLEC1, GPR75, PSME4, PPP1R21, CLHC1, EDAR, VRK2, FANCL, PSD4, SLC5A7, CCDC138, RANBP2, SH2D6, CAPG,
BCL11A, PAPOLG, REL, PUS10, PEX13, SANBR, ATOH8, RNF103, CHMP3, ELMOD3, RETSAT, TCF7L1, GCFC2,
MRPL19, LIMS1, PAX8, KCMF1, RMND5A, ST6GAL2, TMSB10, DNAH6, KDM3A
GCC2, EVA1A, SEPTIN10, SH3RF3, ECRG4, REEP1, MRPL35, IMMT, SULT1C2, SULT1C3, UXS1, EIF2AK3, SPMIP9,
FOXI3, PTCD3, POLR1A, RPIA, THNSL2, ST3GAL5, SFTPB, NCK2, TTL, POLR1B, USP39, C11H2orf68, RNF181,
TMEM150A, VAMP8, GGCX, MAT2A, CHCHD5, SLC20A1, IL1B, IL37, IL36G, IL36A, IL36RN, IL1F10, IL1RN, FABP1,
SMYD1, KRCC1, CD8B, CD8A, SOWAHC, SNORD94, SULT1C4, VAMP5

0.149

19 55,766,113–56,804,981 GRB2, SLC25A19, MIF4GD,MRPS7, GGA3, NUP85, SUMO2, NT5C, ARMC7, SLC16A5, KCTD2, ATP5PD, HID1, OTOP3,
OTOP2, USH1G, FADS6, FDXR, MRPL58, CDR2L, WBP2, UNC13D, UNK, H3-3B, SAP30BP, RECQL5, SMIM6, SMIM5,
GRIN2C, TMEM104, NAT9, NHERF1, RAB37, CD300E, LLGL2, TSEN54, CASKIN2, GALK1, ITGB4, JPT1, TMEM94

0.146

3 1,728,119–2,684,730 GPA33, MAEL, ILDR2, TADA1, POGK 0.142

3 95,973,132–97,127,451 ELAVL4 0.138

21 49,673,221–50,607,534 - 0.136

3 32,225,556–33,265,065 CD53, KCNA3, LAMTOR5, KCNA2, KCNA10, CYM, SLC16A4, RBM15, PROK1, CEPT1, DRAM2, LRIF1, KCNC4,
SLC6A17

0.135

26 42,777,934–43,470,582 IKZF5, PSTK, ACADSB, HMX3, HMX2, BUB3, GPR26 0.135

2 120,468,635–121,510,489 SYNC, RBBP4, ZBTB8OS, ZBTB8A, ZBTB8B, BSDC1, TSSK3, FAM229A, MARCKSL1, HDAC1, LCK, FAM167B, MTMR9,
EIF3I, TMEM234, DCDC2B, IQCC, CCDC28B, CLDN12, SHOX, TRIM62, AZIN2, AK2, RNF19B, TMEM54, HPCA,
FNDC5, S100PBP, YARS1, KIAA1522

0.135

6 69,176,844–69,912,628 CHIC2, GSX2, PDGFRA 0.133

12 84,446,733–85,726,570 COL4A1, COL4A2, RAB20, NAXD, CARS2, ING1, IRS2, ANKRD10, ARHGEF7, TEX29 0.133

14 34,928,777–36,067,306 EYA1, MSC, TRPA1, KCNB2 0.132

22 31,136,273–32,182,398 MDFIC2, MITF 0.131

14 10,584,341–11,176,477 GSDMC, CYRIB, ASAP1 0.130

5 40,610,629–41,720,384 SLC2A13, C12orf40, ABCD2, LRRK2 0.129

20 30,540,195–31,684,103 NIM1K, ZNF131, FGF10, NNT, PAIP1, C20H5orf34, TMEM267, CCL28, HMGCS1 0.129

Proportion of the trait variance explained by each window (%).
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3.1.12 Stayability
The top 1% genomic windows were located across

12 chromosomes as seen in Figure 1l (i.e., BTA4, BTA5, BTA6,
BTA9, BTA14, BTA15, BTA16, BTA17, BTA18, BTA23, BTA29),
explaining a minimum additive genetic variance of 0.123% and
maximum additive genetic variance of 0.164% at BTA5. Together,
these windows explained 2.779% of the total additive genetic
variance for STAY. The top 1% windows, along with their
genomic positions, overlapped with 215 positional candidate
genes, classified as protein-coding (n = 143), long noncoding
RNAs (n = 32), small noncoding RNAs (n = 2), micro-RNA
(n = 8), small nuclear RNA (n = 26), and pseudogene (n = 4) as
detailed in the Supplementary Table S12A. In summary, a total of
five biological process, four molecular functions, two cellular
component, and three KEGG pathways, were statistically
associated with the genes related to stayability in Nellore as
highlighted in the Supplementary Table S12B.

3.1.13 Weight at 120 days of age
The top 1% genomic window were located across

12 chromosomes as seen in Figure 1m (i.e., BTA3, BTA5, BTA6,
BTA7, BTA8, BTA10, BTA11, BTA14, BTA16, BTA19, BTA20,
BTA28), explaining a minimum additive genetic variance of 0.125%

at BTA8 and maximum additive genetic variance of 0.218% at
BTA10. Together, these windows explained 2.995% of the total
additive genetic variance of W120. The top 1% windows, along with
their genomic positions, overlapped with 373 positional candidate
genes, classified as protein-coding (n = 273), long noncoding RNAs
(n = 58), small noncoding RNAs (n = 6), miscellaneous noncoding
RNAs (n = 1), micro-RNA (n = 10), small nuclear RNA (n = 16), and
pseudogene (n = 8) as detailed in the Supplementary Table S13A. In
summary, a total of nine biological process, four cellular
components, three molecular functions, and one KEGG pathway,
were statistically associated with the genes related to weight at
120 days in Nellore as highlighted in the Supplementary Table S13B.

3.1.14 Weight at 210 days of age
The top 1% genomic windows were located across

14 chromosomes as seen in Figure 1n (i.e., BTA3, BTA5, BTA6,
BTA7, BTA8, BTA10, BTA11, BTA14, BTA16, BTA19, BTA20,
BTA21, BTA23, BTA28), explaining a minimum additive genetic
variance of 0.127% at BTA28 and maximum additive genetic
variance of 0.212% at BTA10. Together, these windows explained
2.980% of the total additive genetic variance of W210. The top 1%
windows, along with their genomic positions, overlapped with
305 positional candidate genes, classified as protein-coding (n =

TABLE 4Candidate genes locatedwithin the top 1% genomicwindows associatedwith expected progeny difference for weight at 120 days in Nellore cattle.

BTA Position Candidate genes 1Var (%)

14 27,356,198–28,167,750 GGH, TTPA, YTHDF3, NKAIN3 0.176

6 69,778,772–70,726,478 KDR, KIT 0.171

13 28,615,840–29,315,862 FRMD4A, FAM107B 0.168

11 48,548,918–50,040,146 SH2D6, CAPG, ATOH8, ELMOD3, RETSAT, TCF7L1, KCMF1, REEP1, MRPL35, IMMT, PTCD3, POLR1A, ST3GAL5,
SFTPB, USP39, C11H2orf68, RNF181, TMEM150A, VAMP8, GGCX, MAT2A, VAMP5

0.161

28 37,957,840–38,948,561 NRG3 0.157

2 62,334,550–63,428,637 CCNT2, ACMSD, TMEM163, MGAT5 0.155

6 8,015,259–8,845,830 TRAM1L1 0.155

14 26,403,506–27,038,720 CLVS1, ASPH, CHD7 0.153

25 3,538,408–4,345,274 CORO7, VASN, DNAJA3, NMRAL1, HMOX2, CDIP1, C16orf96, UBALD1, MGRN1, NUDT16L1, ANKS3, DNAAF8,
ZNF500, SEPTIN12, ROGDI, GLYR1, UBN1, PPL, SEC14L5, NAGPA, C25H16orf89, ALG1, EEF2KMT

0.150

9 43,483,890–44,256,176 CRYBG1, ATG5, PRDM1 0.150

3 925,689–1,727,273 MPZL1, RCSD1, CREG1, CD247, POU2F1, STYXL2, GPA33 0.146

11 69,551,444–70,200,016 LBH, YPEL5, ALK 0.145

7 55,928,192–56,837,004 - 0.142

22 33,115,385–35,314,908 SUCLG2, TAFA1, KBTBD8, LRIG1, SLC25A26 0.138

7 35,336,701–36,102,653 - 0.137

3 50,316,445–51,352,377 MTF2, DIPK1A, RPL5, EVI5, GFI1, RPAP2, GLMN, C3H1orf146, EPHX4, BTBD8 0.135

7 104,804,124–105,826,744 - 0.135

26 39,704,328–40,706,891 PLPP4, TIAL1, BAG3, INPP5F, MCMBP, SEC23IP 0.135

17 22,884,099–24,133,086 PABPC4L 0.134

29 4,736,334–6,190,309 CHORDC1, NAALAD2, TRIM77, TRIM64, FOLH1B, NOX4 0.134

Proportion of the trait variance explained by each window (%).
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221), long noncoding RNAs (n = 54), small noncoding RNAs (n =
4), micro-RNA (n = 4), small nuclear RNA (n = 15), and pseudogene
(n = 6) as detailed in the Supplementary Table S14A. In summary, a
total of 10 biological process, five cellular component, four
molecular functions, and two KEGG pathways, were statistically
associated with the genes related to weight at 210 days in Nellore as
highlighted in the Supplementary Table S14B.

3.1.15 Weight at 365 days of age
The top 1% genomic window were located across

14 chromosomes as seen in Figure 1o (i.e., BTA3, BTA5, BTA6,
BTA8, BTA10, BTA11, BTA14, BTA16, BTA19, BTA20, BTA21,
BTA23, BTA27, BTA28), explaining a minimum additive genetic
variance of 0.124% at BTA8 and maximum additive genetic variance
of 0.190%. At BTA6. Together, these windows explained 2.869% of
the total additive genetic variance of W365. The top 1% windows,
along with their genomic positions, overlapped with 351 positional
candidate genes, classified as protein-coding (n = 244), long
noncoding RNAs (n = 64), small noncoding RNAs (n = 4),
micro-RNA (n = 3), small nuclear RNA (n = 32), and
pseudogene (n = 3) as detailed in the Supplementary Table S15A.
In summary, a total of 10 biological process, eight cellular

component, nine molecular functions, and three KEGG
pathways, were statistically associated with the genes related to
weight at 365 days in Nellore as highlighted in the
Supplementary Table S15B.

3.1.16 Weight at 450 days of age
The top 1% genomic windows were located across

17 chromosomes as seen in Figure 1p (i.e., BTA1, BTA2,
BTA3, BTA5, BTA6, BTA7, BTA10, BTA11, BTA13, BTA14,
BTA15, BTA16, BTA19, BTA20, BTA21, BTA24, BTA28),
explaining a minimum additive genetic variance of 0.125% at
BTA21and maximum additive genetic variance of 0.196% at
BTA6. Together, these windows explained 2.867% of the total
additive genetic variance of W450. The top 1% windows, along
with their genomic positions, overlapped with 352 positional
candidate genes, classified as protein-coding (n = 245), long
noncoding RNAs (n = 58), small noncoding RNAs (n = 4),
micro-RNA (n = 5), small nuclear RNA (n = 35), and
pseudogene (n = 4) as detailed in the Supplementary Table
S15C. In summary, a total of 13 biological process, seven
cellular component, eight molecular functions, and three
KEGG pathways, were statistically associated with the genes

TABLE 5 Candidate genes located within the top 1% genomic windows associated with finishing score in Nellore cattle.

BTA Position (BP) Candidate genes Var (%)

14 27,187,105–27,959,583 ASPH, NKAIN3 0.240

14 25,982,859–26,706,002 CA8, RAB2A, CHD7 0.176

21 50,708,665–51,628,186 LRFN5 0.163

10 59,283,823–60,764,907 TNFAIP8L3, GABPB1, HDC, SLC27A2, AP4E1, ATP8B4, DTWD1, FAM227B, SPPL2A, TRPM7, USP50, USP8 0.162

20 9,802,407–10,745,794 BDP1, SERF1A, GTF2H2, TAF9, OCLN, MARVELD2, RAD17, AK6, CCDC125, CDK7, CENPH, CCNB1, SLC30A5, SMN2,
NAIP, CARTPT, MCCC2

0.157

6 69,343,468–70,257,540 CHIC2, GSX2, PDGFRA, KIT 0.157

6 32,912,211–33,991,326 CCSER1 0.154

23 28,398,875–29,002,896 TRIM15, TRIM10, TRIM40, TRIM31, RNF39, PPP1R11, POLR1H, ZFP57, MOG, GABBR1, ABCF1, RPP21, GNL1, TRIM39,
TRIM26, PRR3

0.150

9 43,583,627–44,776,539 PREP, CRYBG1, ATG5, PRDM1 0.148

9 13,346,364–14,401,787 - 0.146

3 25,432,126–26,066,448 TENT5C, VTCN1,MAN1A2 0.144

8 32,479,887–33,601,105 - 0.142

20 61,807,939–62,244,291 CTNND2 0.135

13 60,763,905–61,948,082 KIF3B, DEFB119, ASXL1, NOL4L, DEFB116, DEFB121, DEFB122A, DEFB122, DEFB123, DEFB124, REM1, HM13, ID1,
COX4I2, HCK, TM9SF4, PLAGL2, POFUT1, BCL2L1, TPX2, MYLK2, FOXS1, DUSP15, TTLL9, PDRG1, DEFB129, XKR7,
CCM2L, DEFB127, DEFB115

0.135

2 69,283,654–71,244,759 EN1, MARCO, C1QL2, STEAP3, C2H2orf76, DBI, TMEM37, SCTR, INSIG2, DDX18, CCDC93 0.135

4 103,764,705–104,758,316 SLC37A3, RAB19, MKRN1, DENND2A, ADCK2, NDUFB2, BRAF, TMEM178B, MRPS33 0.135

2 105,100,249–106,205,451 TNS1, RUFY4, CXCR2 0.134

9 27,857,764–28,620,652 SMPDL3A, FABP7, PKIB, TRDN, CLVS2 0.132

11 79,606,327–80,652,125 NT5C1B, RDH14 0.132

11 46,688,746–47,677,419 PSD4, PAX8, EIF2AK3, SPMIP9, FOXI3, RPIA, IL36A, IL36RN, IL1F10, IL1RN 0.129

Proportion of the trait variance explained by each window (%).
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related to weight at 450 days in Nellore as highlighted in the
Supplementary Table S15D.

4 Discussion

4.1 Use of APY for GWAS

Using a large number of genotyped animals in GWAS to
identify candidate genes and genomic regions associated with
key traits can increase the power of the study and lead to a
better understanding of the genetic architecture underlying
these traits (Li et al., 2021). While several studies have
investigated genomic regions associated with important traits in

Nellore cattle, none of these studies have used datasets with over
65,000 genotyped Nellore animals (Schmidt et al., 2023). Our
study, however, leverages the results from a single-step GEBV
approach with over 300,000 genotyped animals and more than
14 million pedigree records to identify the candidate genes
associated with key traits in Nellore cattle.

A major challenge when using large numbers of genotyped
animals in GWAS is the computational infeasibility of directly
inverting G for large populations. This limitation necessitates the
use of APY, which provides a computationally efficient method for
creating and storing the inverse ofG. While few studies have applied
APY in GWAS, they have focused on the Holstein and Angus breeds
(e.g., Leite et al., 2024; Aguilar et al., 2019; Misztal et al., 2024), and
none have used that for Nellore.

TABLE 6 Candidate genes located within the top 1% genomic windows associated with marbling in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 78,618,080–79,562,190 0.253

5 47,394,459–49,379,302 HMGA2, MSRB3, LEMD3, WIF1, TBC1D30, GNS, RASSF3, TBK1, XPOT, C5H12orf56, GRIP1, HELB, IRAK3, TMBIM4,
LLPH

0.193

6 79,585,576–80,176,126 TECRL 0.178

7 71,104,335–71,828,825 ADRA1B, TTC1, PWWP2A, CCNJL, FABP6 0.167

2 125,434,119–127,293,219 AHDC1, WASF2, GPR3, CD164L2, MAP3K6, SYTL1, TMEM222, WDTC1, SLC9A1, TENT5B, TRNP1, KDF1, NUDC,
NR0B2, FGR, GPATCH3, GPN2, SFN, ZDHHC18, PIGV, ARID1A, RPS6KA1, HMGN2, DHDDS, LIN28A, ZNF683,
CRYBG2, CD52, UBXN11, SH3BGRL3, CEP85, CATSPER4, CNKSR1, FAM110D, ZNF593, C1orf232, PDIK1L, TRIM63,
SLC30A2, EXTL1, PAFAH2, RPA2, THEMIS2, STMN1, PAQR7, MTFR1L, SELENON, PPP1R8, STX12, MAN1C1,
FAM76A, IFI6

0.160

14 23,402,733–24,474,202 SDR16C5, SDR16C6, PENK, BPNT2, FAM110B 0.152

27 9,400,186–10,347,573 - 0.151

2 27,761,184–28,585,153 STK39, B3GALT1 0.147

5 55,473,558–58,186,804 HSD17B6, PRIM1, NACA, PTGES3, ATP5F1B, BAZ2A, RBMS2, GLS2, SPRYD4, MIP, TIMELESS, APON, APOF, STAT2,
IL23A, PAN2, CNPY2, COQ10A, ANKRD52, SLC39A5, NABP2, RNF41, SMARCC2, MYL6B, ESYT1, ZC3H10, PA2G4,
ERBB3, RPS26, IKZF4, SUOX, RAB5B, CDK2, PMEL, DGKA, PYM1, MMP19, TMEM198B, DNAJC14, ORMDL2, GDF11,
CD63, RDH5, ITGA7, TMT1B, ATP23, CTDSP2, AVIL, TSFM, EEF1AKMT3, METTL1, CYP27B1, MARCHF9, CDK4,
TSPAN31, AGAP2, OS9, B4GALNT1, SLC26A10, ARHGEF25, DTX3, PIP4K2C, KIF5A, DCTN2, MBD6, DDIT3, MARS1,
ARHGAP9, GLI1, INHBE, INHBC
R3HDM2, STAC3, NDUFA4L2, SHMT2, NXPH4, LRP1, STAT6, NAB2, NEMP1, MYO1A, TAC3, ZBTB39, GPR182,
RDH16, SDR9C7, OR6C17, OR10P25, OR10P1, OR6C63, OR6C304, OR6C8, OR6C267, OR6C4, OR6C288, OR6C264,
OR6C22, OR6C4C, OR6C38, OR6C2F, OR6C277, OR6C202, OR6C278, CS, MYL6, SARNP, BLOC1S1

0.140

5 12,374,029–13,049,667 TMTC2 0.137

22 18,808,954–19,706,570 GRM7 0.136

8 81,874,543–82,796,028 FANCC, PTCH1, ERCC6L2 0.136

14 79,397,442–80,096,793 - 0.134

23 48,783,733–49,358,228 FARS2, NRN1, F13A1 0.133

1 145,647,961–146,394,034 PRMT2, COL6A1, COL6A2, FTCD, SPATC1L, LSS, MCM3AP, YBEY, PCNT, DIP2A, S100B 0.133

17 44,107,538–44,886,429 ZNF140, ZNF10, ZNF268, MBD3L1, ANHX, CHFR, GOLGA3, ANKLE2, PGAM5, POLE, P2RX2, LRCOL1, FBRSL1,
PXMP2, GALNT9

0.133

14 4,426,123–5,104,567 FAM135B 0.129

9 35,156,452–35,891,042 - 0.128

8 49,642,335–50,652,903 - 0.128

12 22,998,566–23,954,600 LHFPL6, NHLRC3, PROSER1, STOML3, FREM2, UFM1 0.128

Proportion of the trait variance explained by each window (%).
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4.2 Identification of candidate genes for
each trait

This section presents a detailed discussion of the key candidate
genes identified within each trait, emphasizing their potential roles
in the genetic architecture of the analyzed phenotypes in Nellore
cattle. By focusing on the top 1% of genomic windows, we
highlighted regions with the highest additive genetic variance
contributions, while selectively discussing a subset of candidate
genes from the broader list of candidate genes that are likely
influencing the polygenicity of these specific traits.

4.2.1 Age at first calving
Age at first calving is a key reproductive trait incorporated into

beef cattle breeding programs as an indicator of sexual precocity in
female cattle (Schmidt et al., 2018; Alves et al., 2022). Age at first
calving is calculated as the difference in months between the dam’s
date of birth and the date of birth of her first registered calf (Eler
et al., 2014). Sires with favorable breeding values for AFC are
preferred in selection, as this contributes to a shorter generation
interval, thereby enabling earlier calving in their progeny (Eler et al.,
2014). The top 1% genomic windows were spread in
15 chromosomes collectively explaining 3.012% of the additive
genetic variance for this trait with the regions responsible for

coding 225 genes as seen in Table 1. These results corroborate
with the findings reported by Sbardella et al. (2021), who identified
genomic windows (containing 10 consecutive SNPs, population
genotyped using 50 K) explaining 0.20%–1.11% of the additive
genetic variance for AFC (Sbardella et al., 2021).

A study by Dubon et al. (2021) investigating novel candidate
genes for AFC in Nellore cows, identified a genomic region between
58.9–59.7Mb on BTA21, which closely aligns with the 58.6–59.4 Mb
genomic region identified in our study (Dubon et al., 2021). The
latter author suggested this area as a potential novel region
influencing AFC, and both studies found that this region encodes
SERPINs, a superfamily of protease-inhibiting proteins (Heit et al.,
2013). Notably, SERPINA14, a hormonally induced protein secreted
by endometrial epithelium during pregnancy, was highlighted as a
potential candidate gene in this region (Padua et al., 2010). The role
of SERPINA14 in pregnancy, particularly in relation to AFC, was
further evidenced by Loux et al. (2019), who observed higher
expression of SERPINA14 in the cervical muscosa and
endometrium of mares during pregnancy than in estrus (Loux
et al., 2019). In addition, SERPINA5, another gene in this region,
showed higher expression in healthy follicles compared to atretic
follicles, which are crucial for reproduction (Hayashi et al., 2011).
Another relevant gene, SERPINA1, is associated with accelerated
follicular growth, as cows with 30% lower SERPINA1 levels in

TABLE 7 Candidate genes located within the top 1% genetic windows associated with muscularity in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,261,988–70,155,060 CHIC2, GSX2, PDGFRA 0.232

16 60,596,486–61,534,166 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.193

3 56,477,441–57,243,927 LMO4, HS2ST1, SELENOF 0.173

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.169

10 85,381,223–86,410,610 BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1, PROX2, DLST,
RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.168

9 80,031,480–80,701,610 HIVEP2, AIG1 0.167

28 38,520,118–39,377,854 GHITM, GPR15LG, CDHR1, LRIT2, LRIT1, RGR, CCSER2 0.166

5 40,610,629–41,720,384 SLC2A13, C12orf40, ABCD2, LRRK2 0.150

10 82,639,946–83,444,113 SIPA1L1, PCNX1 0.142

14 9,011,203–9,987,316 KCNQ3, HHLA1, OC90, EFR3A, ADCY8 0.142

27 22,145,571–23,213,576 SGCZ 0.138

23 11,542,777–13,065,602 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, MDGA1 0.136

15 57,685,620–58,434,538 FIBIN, BBOX1, CCDC34, LGR4, LIN7C, BDNF 0.135

14 4,003,143–4,546,888 COL22A1, FAM135B 0.134

14 41,537.492–42,576,327 PKIA, IL7 0.131

11 90,288,247–91,116,303 SOX11 0.129

8 80,792,014–81,428,622 DAPK1, CTSL, FBP2, AOPEP, FBP1 0.129

13 23,941,098–24.857,890 ARMC3, MSRB2, PTF1A, OTUD1 0.128

20 29,800,340–31,105,010 MRPS30, FGF10 0.127

3 25,473,297–26,095,766 TENT5C, VTCN1, MAN1A2 0.126

Proportion of the trait variance explained by each window (%).
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follicular fluids exhibited reduced fertility compared to cows with
normal fertility (Zachut et al., 2016).

A significant gene identified between the 69.2 and 70.0 Mb
genomic region of BTA 6 is the NEK9 gene, a NIMA family protein
kinase activated in mitosis by the binding of NEK6 and NEK7
(Belham et al., 2003). A likely novel candidate gene was also
found in this genomic window: CCNB1, which is essential for
spindle checkpoint regulation, meiosis, and mitosis (Tang et al.,
2017; Alfonso-Pérez et al., 2019). Another novel candidate gene
CARTPT highlighted in 9.5–10.6 Mb on BTA20 is seen to be
expressed in the oocyte and granulosa cell of the follicle (Juengel
et al., 2017). Additional candidate genes identified in this analysis are
related to functions such as molecular function regulator (GO:
0098772), serine-type endopeptidase inhibitor (GO:0004867),
peptidase regulator (GO:0061134), and enzyme regulator (GO:
0030234). These genomic regions enhance the phenotypic
expression of AFC by containing genes that regulate critical
processes like meiosis and follicular development, improving
reproductive efficiency and enabling earlier first calving in cattle.

4.2.2 Birth weight
Birth weight is an economically important trait in beef cattle, as

it is usually the first trait recorded in calves (Utsunomiya et al., 2013)

and is closely related to growth traits (Boligon et al., 2009). It is also
an important selection criterion for enhancing calving ease and adult
body weight (Bourdon and Brinks, 1982; Eriksson et al., 2004). The
top 1% genomic windows were found in 17 collectively explaining
3.087% of the additive genetic variance for birth weight and
responsible for coding 286 genes as seen in Table 2. Carvalho
et al. (2020a) and Terakado et al. (2018) reported genomic
windows explaining 2.32% and ~4%, respectively, for BW
(Terakado et al., 2018; Carvalho et al., 2020a).

A study by Carvalho et al. (2020b) performed to identify regions
associated with BW in Nellore cattle recognized important genomic
regions: 49.0–50.0Mb on BTA14 and 52.1–52.6Mb on BTA21, which
closely aligns with 41.19–42.17 Mb on BTA14 and 49.6–50.5 Mb on
BTA 21 identified in our study (Carvalho et al., 2020b). Different
regions of BTA14 were associated with stature in humans by
Utsunomiya et al. (2013) and birthweight in Nellore cattle by
Terakado et al. (2018) (Utsunomiya et al., 2013; Terakado et al.,
2018), however in our study, the genomic region 41.19–42.17 Mb on
BTA14 was seen to highlight IL7 (Interleukin-7), a gene known to be
associated with cell differentiation and cellular development,
particularly in B and T cell maturation (Chen et al., 2021).

The candidate gene SF3A3, identified in our study and located in
the 107.6–108.7 Mb region of BTA3, encodes a splicing factor 3a

TABLE 8 Candidate genes located within the top 1% genomic windows associated with finishing precocity in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,261,988–70,155,060 CHIC2, GSX2, PDGFRA 0.243

10 85,381,223–86,410,610 BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1, PROX2,
DLST, RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.233

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.194

9 80,031,480–80,701,610 HIVEP2, AIG1 0.167

16 60,596,486–61,534,166 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.166

3 56,477,441–57,243,927 LMO4, HS2ST1, SELENOF 0.163

1 127,925,159–128,739,175 SLC25A36, TRIM42, CLSTN2 0.161

3 95,993,334–97,202,518 ELAVL4 0.155

14 9,099,016–10,055,338 OC90, EFR3A, ADCY8 0.151

27 9,569,573–10,535,908 - 0.150

20 29,812,331–31,112,179 MRPS30, FGF10 0.150

7 37,262,036–38,807,831 UIMC1, NSD1, RAB24, PRELID1, MXD3, ZNF346, FGFR4, COMMD10, SEMA6A, UNC5A, HK3, FAF2, RNF44, CDHR2,
SNCB, EIF4E1B, TSPAN17, ARL10, NOP16, HIGD2A, CLTB, GPRIN1

0.149

1 3,954,394–4,499,092 TIAM1 0.144

3 25,262,583–25,968,219 WDR3, GDAP2, TENT5C, MAN1A2 0.141

10 82,639,946–83,444,113 SIPA1L1, PCNX1 0.133

23 11,558,107–13,089,738 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, MDGA1 0.133

21 35,060,169–35,613,940 STXBP6 0.132

14 41,543,268–42,586,262 PKIA, IL7 0.132

8 57,399,938–58,531,522 TLE1 0.132

6 28,927,865–29,651,751 UNC5C, BMPR1B 0.130

Proportion of the trait variance explained by each window (%).
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subunit 3, which has been associated with body weight in Indonesia
cattle breed (Putra et al., 2024).

Another notable candidate gene HSPG2 (Perlecan), spanning
130.4–131.7 Mb of BTA2, is responsible for the anatomical structure
morphogenesis, and reinforces its role in tissue morphogenesis,
differentiation. And development as this process plays a unique
role in organ function thereby influencing growth and weight of
animal at birth (Ocken et al., 2020). Additional candidate genes
highlighted in this study for BW are related to cellular
developmental process (GO:0048869), cell differentiation (GO:
0030154), tissue development (GO:0009888), epithelium
development (GO:0060429), cytoskeleton organization (GO:
0007010), epithelial cell differentiation (GO:0030855), skin
development (GO:0043588), and cellular component organization
(GO:0016043). These genomic regions contribute to the phenotypic
variation in birth weight by containing genes that regulate key
biological processes such as cellular differentiation, and tissue
morphogenesis, which influences development and overall body
size in cattle.

4.2.3 Body conformation
Body conformation traits are widely used as selection criteria in

Zebu cattle breeding programs due to their strong association with
carcass quality (Shiotsuki et al., 2009; Machado et al., 2022). Body

conformation is also closely related to health, productivity, and
cattle longevity (Wu et al., 2013; Machado et al., 2022). The top 1%
genomic windows for body conformation were spread in
17 chromosomes collectively explaining 2.964% of the additive
genetic variance for this trait. Similarly, Carreño et al. (2019) and
Machado et al. (2022) reported that the highest proportion of
additive genetic variance explained by the genomic windows was
less than 0.5% and 4%, respectively, for body conformation (Carreño
et al., 2019; Machado et al., 2022). The top 1% of genomic windows
in our study were responsible for coding 991 genes as seen in Table 3.

In both our study and that by Machado et al. (2022), the
genomic region on BTA14 between 34.9 and 36.1 Mb highlighted
the KCNB2 gene, a member of the potassium channel family
primarily expressed in smooth muscle cells and critical for
potassium ion transport across cell membranes (Bhat et al.,
2024). The candidate gene ILDR2 identified in the genomic
window 1.72–2.68 Mb of BTA 3, is a member of the B7 family
of immunomodulatory receptors. This gene is expressed in immune
cells and plays an important role in cellular metabolic and
biosynthetic processes, including homeostasis (Watanabe et al.,
2013). Another notable candidate gene on BTA3 is SLC6A17,
found in the 32.22–33.27 Mb window of BTA 3, which is a
member of the SLC6 family. The SLC6 family is known to act as
transporters for neurotransmitters and amino acid, playing an

TABLE 9 Candidate genes located within the top 1% genomic windows associated with ribeye area in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

1 22,881,541–23,663,115 ABCC13, RBM11, LIPI, ROBO2 0.186

3 53,158,842–53,791,569 LRRC8D, LRRC8C, LRRC8B, ZNF326 0.182

6 69,286,821–70215,009 CHIC2, GSX2, PDGFRA, KIT 0.180

20 29,797,692–31,090,381 MRPS30, FGF10 0.178

3 100,493,684–101,486,056 AKR1A1, PRDX1, MMACHC, CCDC163, TESK2, TOE1, MUTYH, HPDL, ZSWIM5, UROD, HECTD3, KIF2C, ARMH1,
TMEM53, EIF2B3, PTCH2, DYNLT4, BTBD19, PLK3, BEST4, RPS8, RNF220

0.170

10 82,605,716–83,416,877 SIPA1L1, PCNX1 0.161

9 79,980,066–80637,950 HIVEP2, AIG1 0.155

9 39,631,280–4,0212,035 CDK19, SLC22A16, DDO, METTL24, CDC40, WASF1 0.150

23 11,558,107–13,089,738 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, MDGA1 0.149

3 67,459,768–68,486,051 PIGK,ST6GALNAC5, ST6GALNAC3 0.141

3 5,391,773–6221,900 NUF2, RGS5 0.139

21 13,829,973–14,576,562 RGMA, ST8SIA2, FAM174B, CHD2 0.137

14 41,589,449–42,600,138 PKIA, IL7 0.135

1 114,032,073–114,997,565 P2RY1, RAP2B 0.134

4 62,848,985–64,673,068 PDE1C, BMPER, BBS9, RP9, NT5C3A, FKBP9, KBTBD2, AVL9, LSM5 0.131

8 25,904,409–27,055,794 ADAMTSL1,SH3GL2, CNTLN 0.130

15 57,651,202–58,404,974 FIBIN, BBOX1, CCDC34, LGR4, LIN7C, BDNF 0.128

11 5,791,339–6390,618 CNOT11, RNF149, NPAS2, RPL31, TBC1D8, RFX8, CREG2 0.127

14 36,637,187–37,728,473 STAU2, UBE2W, ELOC, TMEM70, LY96, JPH1, GDAP1, RDH10 0.125

10 57,834,717–58,921,372 MYO5A, MYO5C, GNB5, MAPK6, LEO1, TMOD3, TMOD2, LYSMD2, SCG3, DMXL2 0.125

Proportion of the trait variance explained by each window (%).
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important role in the regulation of glutamatergic synapses (Iqbal
et al., 2015). The likely novel candidate gene, CNTN1, annotated in
the genomic window 39.34–40.37 Mb of BTA 5, is from the CTNTN
family and mediates cell surface interactions essential for nervous
system development which can indirectly affect structural
organization, thereby resulting in notable changes in body
conformation (Um and Ko, 2017).

In the genomic window 70.09–70.49 Mb of BTA 11, three
candidate genes, WDPCP, SFTPB, and SERTAD were identified.
The WDPCP gene is involved in ciliogenesis, a process of building
cilia necessary for cell signaling, regulation of cellular proliferation,
and differentiation of developing limbs (Langhans et al., 2021). Loss
ofWDPCP function has been linked to developmental defects in the
heart, neural tube, and limbs (Langhans et al., 2021). The SFTPB
gene encodes surfactant protein B (SP-B), a protein known to help
with lung function and homeostasis (Leibel et al., 2019).
Interestingly, SFTPB deficiency in newborns can lead to lethal
respiratory distress syndrome (Leibel et al., 2019). Another
candidate gene in this region, SERTAD2, is a member of the
SERTAD family, known to be involved in the regulation of cell
growth. This gene has also been found to be prioritized as a
functional gene for reproduction traits in our previous study

(Ogunbawo et al., 2024). This finding highlights the gene’s
pleiotropic effect, which may influence the expression of both
body conformation and reproductive traits (Darwish et al., 2007;
Ogunbawo et al., 2024).

Gene Ontology terms related to body conformation include ear
morphogenesis (GO:0042471) and inner ear morphogenesis (GO:
0042472), processes that generate and organize the ear’s anatomical
structures, and may contribute to crucial components of body
conformation (de Haan et al., 2024; Li et al., 2023). The PAX
eight gene, associated GO terms (GO:0044237, GO:0008152) play
a fundamental role in cell differentiation (Di Palma et al., 2013).
Additional candidate genes highlighted in this study for BC are
related to post-Golgi vesicle-mediated transport (GO:0006892) and
Golgi to plasma membrane transport (GO:0006893), responsible for
directedmovement of substances from the Golgi to other parts of the
cell and plasma membrane, growth factor receptor binding (GO:
0070851) responsible for binding to a growth factor were also seen to
be related to body conformation traits. These genomic regions
contribute to the phenotypic expression of body conformation
traits by regulating key biological process such as cellular
differentiation, and structural organization, which are essential
for overall body morphology in cattle.

TABLE 10 Candidate genes located within the top 1% genomic windows associated with scrotal circumference at 365days in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,356,875–70295,716 CHIC2, GSX2, PDGFRA, KIT 0.197

10 82,639,946–83,444,113 SIPA1L1, PCNX1 0.193

23 11,550,429–13,086,890 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, MDGA1 0.166

7 40,783,586–41,958,721 TRIM58, OR2W3, GCSAML, OR2AJ9, OR2L2B, OR2L2C, OR2L3C, OR2L13, OR2T22, OR2M16, OR2M4, OR9E2, OR5AE4,
OR5AE3, OR6F1, OR2AK3, OR2T62, OR2T63, OR2T16, OR2T60, OR6AA1, OR6AN1, OR11L1, OR2L3, OR14P2, OR2L2,
OR2AO1, OR2T54, OR2W3D, OR2W53, OR2C3, OR2C3B, OR2G27, OR2G28, OR2G3

0.166

1 116,725,563–117,854,869 MED12L, P2RY12, P2RY13, GPR87, P2RY14, GPR171, CLRN1, MINDY4B, SIAH2, ERICH6, SELENOT, EIF2A, SERP1,
TSC22D2

0.161

28 8,872,423–9797,980 EDARADD, LGALS8, HEATR1, ACTN2, MTR, RYR2, GPR137B, ERO1B 0.159

20 29,753,913–31,057,622 MRPS30, FGF10 0.157

2 112,874,857–113,544,553 DOCK10, NYAP2 0.154

3 50,416,005–5,1,431,993 DIPK1A, RPL5, EVI5, GFI1, RPAP2, GLMN, C3H1orf146, EPHX4, BRDT, BTBD8 0.150

9 43,539,013–44,445,325 CRYBG1, ATG5, PRDM1 0.149

23 1,419,021–2439,750 - 0.142

7 39,069,981–39,942,634 RMND5B, NHP2, HNRNPAB, PHYKPL, B4GALT7, N4BP3, TMED9, COL23A1, CLK4, ZNF354A, PROP1, OR7A129 0.141

21 35,060,169–35,613,940 STXBP6 0.137

9 87,926,162–88,656,403 CCDC170, PLEKHG1, MTHFD1L, ZBTB2, RMND1, ARMT1, AKAP12 0.136

5 9,302,435–10500,596 MYF6, MYF5, LIN7A, PPP1R12A, OTOGL, PTPRQ 0.136

8 67,228,816–68,010,954 SLC18A1, ATP6V1B2, LZTS1 0.135

8 103,366,368–104,185,685 ATP6V1G1, TMEM268, TNFSF15, TNFSF8, AKNA, WHRN, COL27A1, ORM1 0.133

10 85,072,909–85,955,384 PNMA1, MIDEAS, PTGR2, ZNF410, FAM161B, COQ6, ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN,
SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, DNAL1

0.132

8 34,236,056–35,005,404 - 0.131

27 37,477,404–38,273,045 CHRNB3, CHRNA6, THAP1, RNF170, HOOK3, FNTA, POMK, HGSNAT, INTS10, CSGALNACT1, SH2D4A 0.130

Proportion of the trait variance explained by each window (%).
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4.2.4 Expected progeny difference at weight 120
The expected Progeny Difference (EPD) for weight at 120 days

reflects a sire’s genetic potential to produce offspring with superior/
inferior weight at 120 days of age compared to that of progeny from
other sires (Spangler, 2011; Bessin and Bullock, 2014). In practice,
EPD are used to make a prediction of how the future offspring of an
animal are anticipated to perform in comparison to the offspring of
other animals recorded in the database, assuming the sires mated
cows of similar genetic potential and the offspring are managed
under similar environments (Bessin and Bullock, 2014; Spangler,
2011). EPD is an important selection tool in the beef industry, used
for decades to estimate the genetic value of an animal as a parent
(Bessin and Bullock, 2014). EPDs are expressed in the same unit that
the trait was measured and can be positive or negative (Bessin and
Bullock, 2014; NC State, 2023). The top 1% genomic windows were
found in 14 chromosomes collectively accounting for 2.978% of
additive genetic variance. These genomic regions encompass
239 genes as seen in Table 4.

The candidate gene TMEM163, highlighted in the window
62.33–63.43 Mb of BTA 2, is a member of the solute carrier 30
(SLC30) family. The TMEM163 is known to act as a zinc-binding

protein that helps transports zinc in cells, thereby ensuring zinc
homeostasis (critical, as abnormal zinc homeostasis can cause
growth retardation; Cuajungco et al., 2021; Fukada et al., 2011).
Another candidate gene, CREG1, found in the 0.9–1.72 Mb window
of BTA3, is a gene involved in cellular growth, differentiation, and
homeostasis regulation. The study performed by Song et al. (2024)
suggested that CREG1 may also be a target for skeletal muscle
regeneration, potentially impacting EPD at 120 days (Song et al.,
2024). The gene TMEM150A, located at 48.55–50.04Mb on BTA 11,
plays an important role in homeostasis by regulating production of
phosphatidylinositol (4,5)-bisphosphate [PI (4,5) P] through
modifying the composition of phosphatidylinositol 4-kinase (PI4K)
at the plasma membrane. Phosphatidylinositol 4-kinase (PI4K) is a
lipid kinase that plays a crucial role in the synthesis of
phosphatidylinositol (4,5)-bisphosphate, a phospholipid required in
membrane-associated signaling functions (Borges-Araújo and
Fernandes, 2020; Li et al., 2021). The gene FRMD4A, located at
28.6–29.3 Mb on BTA13 is seen to be involved in cell structure,
transport and regulating cell polarity which is important in
transmitting weight by playing an important role in the activation
of ARF6 which modulates cell polarity in neurons (Fine et al., 2015).

TABLE 11 Candidate genes located within the top 1% genomic windows associated with scrotal circumference at 450 days in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

10 82,639,946–83,444,113 SIPA1L1, PCNX1 0.183

8 57,399,938–58,531,522 TLE1 0.159

6 69,283,831–70211,678 CHIC2, GSX2, PDGFRA, KIT 0.159

21 35,060,169–35,613,940 STXBP6 0.154

28 8,749,119–9703,912 EDARADD, LGALS8, HEATR1, ACTN2, MTR, NID1, RYR2, GPR137B, ERO1B 0.152

7 55,928,192–56,837,004 - 0.151

10 85,072,909–85,955,384 PNMA1, MIDEAS, PTGR2, ZNF410, FAM161B, COQ6, ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN,
SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, DNAL1

0.149

7 40,783,586–41,958,721 TRIM58, OR2W3, GCSAML, OR2AJ9, OR2L2B, OR2L2C, OR2L3C, OR2L13, OR2T22, OR2M16, OR2M4, OR9E2, OR5AE4,
OR5AE3, OR6F1, OR2AK3, OR2T62, OR2T63, OR2T16, OR2T60, OR6AA1, OR6AN1, OR11L1, OR2L3, OR14P2, OR2L2,
OR2AO1, OR2T54, OR2W3D, OR2W53, OR2C3, OR2C3B, OR2G27, OR2G28, OR2G3

0.149

5 9,302,435–10500,596 MYF6, MYF5, LIN7A, PPP1R12A, OTOGL, PTPRQ 0.144

8 34,236,056–35,005,404 - 0.142

15 57,675,730–58,418,857 FIBIN, BBOX1, CCDC34, LGR4, LIN7C, BDNF 0.141

23 11,550,429–13,086,890 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, MDGA1 0.140

23 1,419,021–2439,750 - 0.137

8 103,366,368–104,185,685 ATP6V1G1, TMEM268, TNFSF15, TNFSF8, AKNA, WHRN, COL27A1, ORM1 0.135

25 22,300,037–23,104,738 ZKSCAN2, TNRC6A, SLC5A11, ARHGAP17, LCMT1, AQP8 0.132

9 43,539,013–44,445,325 CRYBG1, ATG5, PRDM1 0.132

27 9,383,429–10346,575 - 0.132

21 58,457,450–59,106,537 ASB2, CCDC197, OTUB2, DDX24, ISG12(B), IFI27, FAM181A, IFI27L2, PPP4R4, SERPINA10, SERPINA6, SERPINA1 0.130

1 116,725,563–117,854,869 MED12L, P2RY12, P2RY13, GPR87, P2RY14, GPR171, CLRN1, MINDY4B, SIAH2, ERICH6, SELENOT, EIF2A, SERP1,
TSC22D2

0.129

8 94,078,634–95,205,174 NIPSNAP3A, ABCA1, SLC44A1, OR13F1, OR13C2E, OR13C2D, OR13F1B, OR13C2, OR13D2, OR13C2C, OR13D2C,
OR13C8

0.126

Proportion of the trait variance explained by each window (%).
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Other candidate genes identified are associated with various
cellular processes, such as transcription by RNA polymerase I
(GO:0006360), cytolytic granule (GO:0044194), intracellular
anatomical structure (GO:0005622), zinc ion binding (GO:
0008270), ubiquitin-protein ligase (GO:0061630), ubiquitin-
protein transferase (GO:0004842), and transition metal ion
binding (GO:0046914). These genomic regions contribute to
the phenotypic expression of this trait by regulating essential
biological processes such as zinc homeostasis, and membrane
signaling, ultimately influencing the sire’s genetic potential to
produce offspring with superior/inferior weight at
120 days of age.

4.2.5 Finishing score
Frame scoring, a method for measuring cattle skeletal size,

reflects the potential mature size of an animal, and is used to
project mature size and determine the potential and nutritional
requirements of cattle (Dhuyvetter, 1995). The frame scoring system
recommended by the Beef Improvement Federation (BIF) ranges
from 1 to 10, with most scores ranging from two to 9 (Dhuyvetter,
1995). The top 1% genomic windows were spread across
14 chromosomes and collectively explained 3.008% of the
additive genetic variance for the finishing score. These regions
code 255 genes as seen in Table 5.

A candidate gene, FABP7, located in the genomic window
27.86–28.62 Mb of BTA9, is a fatty acid-binding protein involved
in fatty acid uptake, transportation, metabolism, and storage (Wang
et al., 2023; George Warren et al., 2024). FABP7 plays a role in
regulating lipid metabolism and is involved in the proliferation of
astrocytes by controlling cellular fatty acid homeostasis (Hamilton
et al., 2023). Another candidate gene, RDH14, located in the
genomic region 79.61–80.65 Mb of BTA11, is involved in
osteoblast differentiation, a function directly related to the
finishing score. For instance, osteoblasts are essential for skeletal
development and require precise regulation during differentiation to
ensure proper skeletal formation (Ponzetti and Rucci, 2021). The
region between 60.7 and 61.9Mb of BTA13 annotates multiple genes
from the beta-defensin family (DEFB123, DEFB124, DEFB127,
DEFB115, DEFB116, DEFB121), which possess cationic
antimicrobial properties (Lehrer et al., 2007; Yamaguchi and
Ouchi, 2012) and contribute to the innate immune response and
reaction to external stimuli (Zhang et al., 2024). The candidate gene
in region 27.18–27.96 Mb of BTA14 highlighted ASPH gene that
encodes a protein that regulate the process of excitation-contraction
in muscles associated to finishing score (Endo et al., 2022). Another
highlighted gene, LRFN5 (also known as SALM5), located in the
window 50.7–51.6 Mb on BTA21, is involved in the regulation of
neural and synaptic development and organization (Xu et al., 2023).

TABLE 12 Candidate genes located within the top 1% genomic windows associated with stayability in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

5 78,607,994–79,944,005 TMTC1, SINHCAF, CAPRIN2, IPO8 0.164

23 24,526,787–24,904,607 EFHC1, TRAM2, IL17A, IL17F,MCM3,PAQR8 0.162

14 3,3,091,989–33,880,130 PRDM14, NCOA2, SLCO5A1, SULF1 0.153

23 30,895,043–31,650,938 H2BC15, H2AC14, H1-5, ZNF391, PRSS16, H2BC11, ZNF322, ABT1, HMGN4, BTN1A1, BTN2A2, OR2B2D 0.149

9 67,833,164–69,283,710 ARHGAP18, TMEM244, L3MBTL3, SAMD3, TMEM200A, SMLR1, EPB41L2, AKAP7 0.147

17 21,573,140–22,618,247 - 0.147

9 71,985,266–72,925,757 SGK1, TCF21, TBPL1, SLC2A12 0.147

5 75,925,896–77,024,658 ALG10, SYT10, PKP2, CARD10, USP18 0.141

6 73,353,617–74,233,590 - 0.140

18 16,130,241–16,971,062 SIAH1, N4BP1, ABCC12, ABCC11, LONP2 0.137

16 20,711,754–21,471,499 GPATCH2, SPATA17 0.136

18 37,992,979–40242,188 ZFHX3, PMFBP1, DHX38, TXNL4B, HP, DHODH, PKD1L3, IST1, ZNF821, ATXN1L, AP1G1, PHLPP2, MARVELD3, TAT,
CHST4, ZNF19, ZNF23, TLE7, CMTR2, CALB2, POP4

0.135

23 3,4,391,772–35,702,735 PRP1, GHE4, PRP9,PRP-VII,PRP3,CSH2,PRL,HDGFL1 0.134

4 42,001,110–4,3,481,949 MAGI2, PHTF2, TMEM60, RSBN1L 0.132

15 34,513,822–34,997,350 SERGEF, KCNC1, MYOD1, OTOG, USH1C 0.131

29 3,1,041,924–32,854,344 ETS1, BARX2, KCNJ5,FLI1,ARHGAP32,KCNJ1 0.130

6 94,115,285–94,845,910 ANTXR2, GK2 0.124

14 63,437,379–64,320,590 PABPC1, SNX31, ANKRD46, RNF19A, SPAG1, POLR2K, FBXO43, RGS22 0.124

14 52,760,875–54,016,467 - 0.123

5 69,094,374–70688,878 NUAK1, CKAP4, TCP11L2, POLR3B, RFX4, RIC8B, TMEM263, MTERF2, CRY1, BTBD11 0.123

Proportion of the trait variance explained by each window (%).
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Other candidate genes identified are associated with immune
response (GO:0006955), innate immune response (GO:0045087),
response to external stimulus (GO:0009605), lumenal side of
endoplasmic reticulum membrane (GO:0098553), growth factor
receptor binding (GO:0070851), and biological process involved
in interspecies interaction between organisms (GO:0044419). These
genomic regions contribute to phenotypic variation of this trait by
encoding genes that regulate key processes such as skeletal
development, immune response, and muscle function, ultimately
influencing the overall finishing potential of the cattle.

4.2.6 Marbling
Marbling, defined as the appearance of evenly distributed white

flecks or streaks of fatty tissue intermingled among muscle fibers, is
an important trait determining meat quality and is one of the
primary factors the consumers consider when buying meat (Kruk
et al., 2002; Qiao et al., 2007; Cheng et al., 2015). Meat marbling is
currently being evaluated by several techniques such as visual

appraisal, chemical analysis, and other instrumental techniques to
determine the degree of marbling depending on the standard of
marbling evaluation in each country (Cheng et al., 2015). The top 1%
genomic windows for this trait were spread in 13 chromosomes and
collectively explained 2.995% of the additive genetic variance for
marbling. These regions are responsible for coding 369 genes as seen
in Table 6.

Arikawa et al. (2024) performed genome-wide association
studies for meat quality traits and identified a window in BTA7
(64.6–65.6 Mb) close to the region identified in our study
(71.1–71.8 Mb on BTA7), also explaining the largest variance for
marbling (Arikawa et al., 2024). The window reported for BTA7 in
their study includes the genes PWWP2A and FABP6, which are
known to be responsible for enabling chromatin binding, bile acid
binding, and histone binding activity–functions that are crucial for
high-quality marbling in beef cattle (Hendrick et al., 2016; Link et al.,
2018). In addition, the region 22.9–23.9 Mb of BTA12, identified in
our study, highlights PROSER1, a probable novel gene that regulates

TABLE 13 Candidate genes located within the top 1% genomic windows associated with weight at 120 days of age in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

10 82,912,907–83,689,406 SIPA1L1, RGS6 0.218

5 39,340,288–40373,980 PDZRN4, CNTN1 0.191

6 69,176,844–69,912,628 CHIC2, GSX2,PDGFRA 0.177

20 29,800,340–31,105,010 MRPS30, FGF10 0.175

11 29,718,581–30428,257 EPCAM, MSH2,KCNK12,MSH6,FBXO11 0.162

19 40,595,675–42,117,748 TOP2A, IGFBP4, TNS4, KRT222, CCR7, KRT27, KRT24, KRT10, JUP, P3H4, FKBP10, NT5C3B, KLHL10, ACLY, ODAD4,
KRT12, KRT20, KRT23, KRT39, KRT40, HAP1, GAST, KRT14, KRT9, KRT16, GJD3, EIF1, KRTAP4-7, KRTAP9-2,
KRTAP16-1, KRT31, KRT37, KRT36, KRTAP3-3, KRTAP3-1, KRTAP17-1, SMARCE1, KRT28, KRT25, KLHL11, KRT17,
KRT42, KRT19, KRT15, KRT33A, KRT32

0.157

8 67,230,723–68,017,522 SLC18A1, ATP6V1B2, LZTS1 0.156

10 85,365,431–86,375,387 ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1,
PROX2, DLST, RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.154

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.149

5 40,614,933–41,734,874 SLC2A13, C12orf40,ABCD2,KIF21A,LRRK2 0.143

16 60,666,257–61,711,110 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.143

7 66,369,626–67,211,667 - 0.135

28 43,952,431–45,154,855 MARCHF8, ALOX5, ZNF22, DEPP1, RASSF4, TMEM72, CXCL12, PARG, TIMM23, NCOA4, MSMB, FAM21A, ZFAND4,
OR13A1, OR6D16

0.134

19 37,595,473–39,850,336 SKAP1, SNX11, CBX1, NFE2L1, COPZ2, LASP1, CDK5RAP3, FBXO47, PRR15L, PNPO, SP2, SNF8, UBE2Z, ATP5MC1,
SPMAP1, RPL23, HOXB9, HOXB8, HOXB7, SP6, SCRN2, LRRC46, MRPL10, OSBPL7, CALCOCO2, TTLL6, HOXB4,
HOXB5, HOXB3, HOXB2, HOXB1, HOXB13, PLXDC1, CACNB1, RPL19, STAC2, FBXL20, MED1, MLLT6, ARHGAP23,
SRCIN1, EPOP, PCGF2, PSMB3, PIP4K2B, CWC25, TBKBP1, KPNB1, NPEPPS, MRPL45, GPR179, SOCS7, TBX21,
LASP1NB, HOXB6

0.133

14 10,584,341–11,176,477 GSDMC, CYRIB, ASAP1 0.133

3 32,282,358–33,320,159 CD53, KCNA3, LAMTOR5, KCNA2, KCNA10, CYM, SLC16A4, RBM15, PROK1, DRAM2, LRIF1, KCNC4, SLC6A17, UBL4B 0.132

14 21,415,611–22,184,329 TCEA1, LYPLA1, MRPL15, OPRK1, RB1CC1, RGS20, ATP6V1H, NPBWR1 0.127

14 41,527,200–42,563,372 PKIA, IL7 0.127

14 4,009,175–4550,266 COL22A1, FAM135B 0.126

8 8,0,792,014–81,428,622 DAPK1, CTSL, FBP2, AOPEP, FBP1 0.125

Proportion of the trait variance explained by each window (%).
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chromatin (required in muscling) association of TET, a key player in
DNA methylation. This regulation is essential for muscle
development, as excessive demethylation can cause
developmental malformations (Wang et al., 2021).

Interestingly, Carvalho et al. (2019) identified a genomic window
at 70.77–70.78Mb onBTA6 associatedwithmarbling, while our study
pinpointed a different region on BTA6, from 78.62 to 79.56 Mb
(Carvalho et al., 2019). This region (in our study) includes TECRL, a
protein localized in the endoplasmic reticulum and specifically
expressed in heart and skeletal muscle tissues (Geng et al., 2024),
suggesting potential functional relevance in marbling. Additionally,
the candidate gene SELENON was identified in the window
125.43–127.73 Mb of BTA2. Thus, the gene localized in the
endoplasmic reticulum provides instructions for making
selenoprotein, which are involved in oxidation-reduction activities
essential for protecting cells from oxidative stress (Chernorudskiy
et al., 2020). This gene is very important in marbling, as the mutation
in selenoprotein, as shown by the study performed by Bouman et al.
(2021), can cause selenoprotein-related myopathy, a rare congenital
myopathy that causes muscle weakness (Bouman et al., 2021). Other
GO terms identified include the terpenoid metabolic process (GO:

0006721), diterpenoid metabolic process (GO:0016101), and
isoprenoid metabolic process (GO:0006720), which is known to
have anti-inflammatory effect which can be beneficial to the
muscle as it promotes transdermal absorption (Mohammadi-
Cheraghabadi and Hazrati, 2023). These genomic regions
contribute to the phenotypic expression of marbling by encoding
genes that regulate key processes such as chromatin modification,
muscle development, and oxidative stress response, ultimately
influencing intramuscular fat deposition and meat quality in cattle.

4.2.7 Muscularity
Muscling, defined as the degree of thickness relative to an

animal’s frame size, is typically assessed using the muscle score
(McKiernan, 2017). The top 1% genomic windows associated with
muscularity were spread in 15 chromosomes and collectively
explained 3.013% of the additive genetic variance for muscularity.
These regions are responsible for coding 203 genes as seen in
Table 7. Similarly, the maximum additive genetic variance
explained by 1 MB window of adjacent SNPs (population
genotyped using the 777 K SNP panel) was approximately 0.4%
in Carreño et al. (2019) for muscularity (Carreño et al., 2019).

TABLE 14 Candidate genes located within the top 1% genomic windows associated with weight at 210 days of age in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

10 82,912,907–83,689,406 SIPA1L1, RGS6 0.212

6 69,176,844–69,912,628 CHIC2, GSX2, PDGFRA 0.185

5 39,325,569–40371,388 PDZRN4, CNTN1 0.176

10 85,381,223–86,410,610 BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1, PROX2, DLST,
RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.170

20 29,800,340–31,105,010 MRPS30, FGF10 0.169

16 60,618,654–61,579,318 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.165

11 29,718,581–30428,257 EPCAM, MSH2, KCNK12, MSH6,FBXO11 0.152

5 40,614,933–41,734,874 SLC2A13, C12orf40, ABCD2, KIF21A,LRRK2 0.148

8 67,230,723–68,017,522 SLC18A1, ATP6V1B2, LZTS1 0.148

14 41,527,200–42,563,372 PKIA, IL7 0.138

14 10,584,341–11,176,477 GSDMC, CYRIB, ASAP1 0.137

3 32,225,556–33,265,065 CD53, KCNA3, LAMTOR5, KCNA2, KCNA10, CYM, SLC16A4, RBM15, PROK1, CEPT1, DRAM2, LRIF1, KCNC4, SLC6A17 0.136

19 40,615,001–42,124,668 TOP2A, IGFBP4, TNS4, KRT222, CCR7, KRT27, KRT24, KRT10, JUP, P3H4, FKBP10, NT5C3B, KLHL10, ACLY, ODAD4,
KRT12, KRT20, KRT23, KRT39, KRT40, HAP1, GAST, KRT14, KRT9, KRT16, EIF1, KRTAP4-7, KRTAP9-2, KRTAP16-1,
KRT31, KRT37, KRT36, KRTAP3-3, KRTAP3-1, KRTAP17-1, SMARCE1, KRT28, KRT25, KLHL11, KRT17, KRT42, KRT19,
KRT15, KRT33A, KRT32

0.135

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.135

28 8,749,119–9703,912 EDARADD, LGALS8, HEATR1, ACTN2, MTR, NID1, RYR2, GPR137B, ERO1B 0.132

21 35,060,169–35,613,940 STXBP6 0.131

23 12,674,482–13,935,150 DNAH8, GLP1R, SAYSD1, KCNK5, KCNK17, KCNK16, KIF6, DAAM2, MOCS1 0.130

7 66,369,626–67,211,667 - 0.128

14 4,009,175–4550,266 COL22A1, FAM135B 0.127

28 43,952,431–45,154,855 MARCHF8, ALOX5, ZNF22, DEPP1, RASSF4, TMEM72, CXCL12, PARG, TIMM23, NCOA4, MSMB, FAM21A, ZFAND4,
OR13A1, OR6D16

0.127

Proportion of the trait variance explained by each window (%).
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The study performed by Machado et al. (2022) identified
genomic regions associated with muscularity, and highlighted
windows located on BTA9 and BTA16, which were consistent
with the findings from our study (Machado et al., 2022). In
addition, the BTA3, BTA5, BTA20, and BTA23 highlighted in
the study by Carreño et al. (2019) on candidate genes for
muscling traits, also overlapped with our findings (Carreño et al.,
2019). One noteworthy gene, FGF10, located in the genomic window
29.8–31.1 MB of BTA20, plays a critical role in maintaining tissue
homeostasis, myogenesis and coordinating alveolar smooth muscle
cell formation (Zhang et al., 2006; Nurgulsim et al., 2023).
Disruptions in FGF10 are linked to defects in limb development
and organ branching (Bellusci et al., 1997; Arman et al., 1999; Sekine
et al., 1999). A likely novel candidate gene,HS2ST1, was found in the
genomic region 56.4–57.2 Mb on BTA3, is involved in cell signaling
and development and has a known role in fibroblast growth factor
binding (Schneeberger et al., 2020).

The ADAMTSL1 gene, also known as Punctin, was identified in
the genomic window 25.9–27.0 Mb on BTA8. As a member of the
ADAMTS family, ADAMTSL1 is implicated in muscle function,

particularly in binding extracellular matrix substrates (Kuno et al.,
1999; Hirohata et al., 2002). Additionally, it shows potential as a
treatment target for muscular dystrophy (Du et al., 2017; Wang
et al., 2021). Several other candidate genes identified are associated
with GO terms like metanephric glomerulus development (GO:
0072224), and fructose 1,6-bisphosphate 1-phosphatase activity
(GO:0042132). These genomic regions contribute to the
phenotypic expression of muscularity by encoding genes that
regulate the key biological processes such as extracellular matrix
organization, muscle cell development, and fibroblast growth factor,
which enhances muscle growth and overall meat quality in cattle.

4.2.8 Ribeye area
Ribeye area is an important trait to evaluate carcass quality

(Zhao et al., 2022) and holds significant value for cattle producers by
helping to determine production efficiency, beef yield, and economic
return (Goodall and Schmutz, 2007; Meirelles et al., 2011). The top
1% genomic windows were spread across 13 chromosomes and
jointly explained 2.962% of the additive genetic variance for the
ribeye area. These regions are responsible for coding 238 genes as

TABLE 15 Candidate genes located within the top 1% genomic windows associated with weight at 365 days of age in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,245,821–70037493 CHIC2,GSX2,PDGFRA 0.190

16 60,596,486–61,534,166 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.189

10 82,912,907–83,689,406 SIPA1L1, RGS6 0.181

10 85,381,223–86,410,610 BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1, PROX2, DLST,
RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.156

20 29,800,340–31,105,010 MRPS30, FGF10 0.152

5 39,325,569–40371,388 PDZRN4, CNTN1 0.150

11 29,718,581–30428,257 EPCAM, MSH2, KCNK12, MSH6, FBXO11 0.145

28 8,749,119–9703,912 EDARADD, LGALS8, HEATR1, ACTN2, MTR, NID1, RYR2, GPR137B, ERO1B 0.142

14 41,537,492–42,576,327 PKIA, IL7 0.140

14 8,999,569–9960,007 KCNQ3, HHLA1, OC90, EFR3A, ADCY8 0.135

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.134

8 67,230,723–68,017,522 SLC18A1, ATP6V1B2, LZTS1 0.134

27 39,570,348–40785,408 OXSM, NGLY1, TOP2B, RARB 0.130

19 41,383,415–43,525,430 COASY, MLX, PSMC3IP, RETREG3, TUBG2, PLEKHH3, CCR10, EZH1, RAMP2, VPS25, WNK4, COA3, CNTD1, BECN1,
PSME3, AOC2, AOC3, G6PC1, JUP, P3H4, FKBP10, NT5C3B, KLHL10, ACLY, ODAD4, CNP, DNAJC7, NKIRAS2,
ZNF385C, DHX58, KAT2A, HSPB9, RAB5C, KCNH4, HCRT, GHDC, STAT5B, STAT5A, AARSD1, AARSD1, RUNDC1,
RPL27, STAT3, IFI35, VAT1, RND2, BRCA1, NBR1, TMEM106A, CAVIN1, ATP6V0A1, NAGLU, HSD17B1, ARL4D, DHX8,
ETV4, HAP1, GAST, KRT14, KRT9, KRT16, EIF1, KRTAP9-2, KRTAP16-1, KRT31, KRT37, KRT36, KRTAP17-1, TUBG1,
CNTNAP1, KLHL11, KRT17, KRT42, KRT19, KRT15, KRT33A, KRT32

0.129

23 11,607,995–13,214,326 ZFAND3, BTBD9, GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, KCNK17, KCNK16, KIF6, MDGA1 0.129

3 95,983,147–97,150,304 ELAVL4 0.128

3 32,225,556–33,265,065 CD53, KCNA3, LAMTOR5, KCNA2, KCNA10, CYM, SLC16A4, RBM15, PROK1, CEPT1, DRAM2, LRIF1, KCNC4, SLC6A17 0.128

21 35,060,169–35,613,940 STXBP6 0.127

14 10,584,341–11,176,477 GSDMC, CYRIB, ASAP1 0.126

8 8,0,792,014–81,428,622 DAPK1, CTSL, FBP2,AOPEP,FBP1 0.124

Proportion of the trait variance explained by each window (%).
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seen in Table 9. Interestingly, the additive genetic variance explained
for the ribeye area ranged from 0.71% to 1.24% in the study
performed by Arikawa et al. (2024), which differs from the
maximum additive genetic variance of 0.186% found in our
study. This difference can likely be attributed to factors such as
the Nellore population, differences in the statistical model, and the
window type and size used for estimating the proportion of variance
explained by the SNPs (Arikawa et al., 2024).

Santana et al. (2015) identified candidate genes associated with
ultrasound-derived measurements of the ribeye area, specifically at
BTA1, BTA3, BTA4, BTA8, BTA20, and BTA21. While these
chromosomes were also detected in our study, the associated
windows differed. For instance, the window 53.1–53.7 Mb of
BTA 3, highlights the LRRC8D gene, which facilitates the
permeation of organic substrates (Nakamura et al., 2020). The
window located on 13.8–14.5 Mb of BTA21 is related to CHD2,
a gene that plays a vital role in chromatin structure (Lewis et al.,
2022). Interestingly, Santana et al. (2015) also highlighted a window
on BTA20 without gene annotation (Santana et al., 2015), while our
study identified a nearby window (29.8–31.09 Mb), which includes

FGF10, a gene essential for tissue homeostasis and alveolar smooth
muscle formation (Zhang et al., 2006).

Arikawa et al. (2024) found regions at 115.7 Mb on BTA3 and
79.2 Mb on BTA9 associated with the ribeye area (Arikawa et al.,
2024). In contrast, our study identified the window
100.49–101.49 Mb on BTA3 and 79.98–80.64 Mb on BTA9.
Notably, HIVEP2, a transcription factor involved in neural
development, was annotated in both the 79.2 Mb region of
BTA9 from Arikawa et al. (2024) and our BTA9 window (Park
et al., 2023; Arikawa et al., 2024). Reis et al. (2023) also identified
BTA1, BTA8, BTA9, and BTA11 as linked to the ribeye area, with
different windows highlighted in our study (Reis et al., 2023). For
example, the gene ROBO2 at 22.88–23.66 Mb on BTA1 acts as a
stroma suppressor gene by restraining myofibroblast activation
and T-cell infiltration (Pinho et al., 2018). Additionally,
ADAMTSL1, annotated at 25.9–27.1 Mb on BTA8 for ribeye
area, plays a role in muscle function and binds to extracellular
matrix substrates (Kuno et al., 1999; Hirohata et al., 2002). The
window 57.83–58.92 Mb on BTA10 includes two myosin
superfamily genes, MYO5A and MYO5C, both of which are

TABLE 16 Candidate genes located within the top 1% genomic windows associated with weight at 450 days of age in Nellore cattle.

BTA Position (BP) Candidate genes 1Var (%)

6 69,245,821–70037493 CHIC2, GSX2, PDGFRA 0.196

16 60,596,486–61,534,166 SOAT1, AXDND1, NPHS2, TDRD5, FAM163A, TOR1AIP2, TOR1AIP1, CEP350, QSOX1, LHX4, ACBD6 0.194

10 82,998,446–83,815,442 SIPA1L1, RGS6 0.183

10 85,365,431–86,375,387 ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1,
PROX2, DLST, RPS6KL1, PGF, EIF2B2, ACYP1, ZC2HC1C, NEK9, TMED10, MLH3

0.176

20 29,800,340–31,105,010 MRPS30, FGF10 0.145

11 29,718,581–30428,257 EPCAM, MSH2, KCNK12, MSH6, FBXO11 0.140

28 8,749,119–9703,912 EDARADD, LGALS8, HEATR1, ACTN2, MTR, NID1, RYR2, GPR137B, ERO1B 0.140

5 39,325,569–40371,388 PDZRN4, CNTN1 0.140

8 25,904,409–27,055,794 ADAMTSL1, SH3GL2, CNTLN 0.135

23 12,674,482–13,935,150 DNAH8, GLP1R, SAYSD1, KCNK5, KCNK17, KCNK16, KIF6, DAAM2, MOCS1 0.133

14 41,537,492–42,576,327 PKIA, IL7 0.133

14 10,584,341–11,176,477 SDMC, CYRIB, ASAP1 0.132

19 41,383,415–43,525,430 COASY, MLX, PSMC3IP, RETREG3, TUBG2, PLEKHH3, CCR10, EZH1, RAMP2, VPS25, WNK4, COA3, CNTD1, BECN1,
PSME3, AOC2, AOC3, G6PC1, JUP, P3H4, FKBP10, NT5C3B, KLHL10, ACLY, ODAD4, CNP, DNAJC7, NKIRAS2, ZNF385C,
DHX58, KAT2A, HSPB9, RAB5C, KCNH4, HCRT, GHDC, STAT5B, STAT5A, AARSD1, AARSD1, RUNDC1, RPL27, STAT3,
IFI35, VAT1, RND2, BRCA1, NBR1, TMEM106A, CAVIN1, ATP6V0A1, NAGLU, HSD17B1, ARL4D, DHX8, ETV4, HAP1,
GAST, KRT14, KRT9, KRT16, EIF1, KRTAP9-2, KRTAP16-1, KRT31, KRT37, KRT36,KRTAP17-1, TUBG1, CNTNAP1,
KLHL11, KRT17, KRT42, KRT19, KRT15, KRT33A, KRT32

0.130

3 32,225,556–33,265,065 CD53, KCNA3, LAMTOR5, KCNA2, KCNA10, CYM, SLC16A4, RBM15, PROK1, CEPT1, DRAM2, LRIF1, KCNC4, SLC6A17 0.128

5 40,614,933–41,734,874 SLC2A13, C12orf40, ABCD2, KIF21A, LRRK2 0.128

28 38,562,781-39439768 GHITM, GPR15LG, CDHR1, LRIT2, LRIT1, RGR, CCSER2 0.128

14 8,999,569-9960007 KCNQ3, HHLA1, OC90, EFR3A, ADCY8 0.127

27 39,570,348-40785408 OXSM, NGLY1, TOP2B, RARB 0.127

9 80,031,480-80701610 HIVEP2, AIG1 0.126

21 35,060,169-35613940 STXBP6 0.125

Proportion of the trait variance explained by each window (%).
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involved in actin-based cellular functions (Jacobs et al., 2009;
Carew et al., 2023).

Other candidate genes identified in our study are associated to
volume-sensitive anion channel activity (GO:0005225), and
Spliceosome (KEGG:03,040). The identified genomic regions
contribute to the phenotypic expression of ribeye area as the
encoding genes in these regions were seen to regulate key
biological processes such as chromatin remodeling and
extracellular matrix organization, ultimately influencing the
carcass composition in cattle.

4.2.9 Finishing precocity
Finishing precocity trait is an important trait used to estimate

the time it takes an animal to reach slaughter from birth (Everling
et al., 2014). The top 1% of genomic windows were spread across
13 chromosomes (BTA1, BTA 3, BTA 6, BTA 7, BTA 8, BTA 9, BTA
10, BTA 14, BTA 16, BTA 20, BTA 21, BTA 23, BTA 27), and jointly
explained 3.158% of the additive genetic variance for finishing
precocity. These genomic regions are responsible for coding
217 genes as seen in Table 8. Notably the maximum additive
genetic variance explained of approximately 0.40% associated
with finishing precocity in the study by Carreño et al. (2019)
seems to be comparable to the maximum additive genetic
variance of 0.243% identified for finishing precocity in our study.

A study performed by Carreño et al. (2019), also identified the
BTA16 and BTA23 as chromosomes associated with finishing
precocity, although different genomic locations were identified in
our study (Carreño et al., 2019). The study by Machado et al. (2022)
identified the genomic region 11.56–12.44 Mb located on BTA 23
(Machado et al., 2022), as a region associated with precocity traits.
Interestingly, this region was also found in our study,
i.e., 11.56–13.09 Mb on BTA 23. This region was significant for
both finishing precocity, muscularity, and ribeye area, and contained
eight genes common across these traits, including ZFAND3, BTBD9,
GLO1, DNAH8, GLP1R, SAYSD1, KCNK5, and MDGA1. Of these,
ZFAND3 enables DNA binding and zinc ion binding activity,
supporting findings by Hlongwane et al. (2020), who reported
associations with meat and growth traits in pigs (Hlongwane
et al., 2020).

The genomic window 60.5–61.5 Mb on BTA16 highlights the
SOAT1 gene, which plays a role in lipoprotein and cholesterol
absorption, crucial for maintaining membrane microstructures
(Tu et al., 2023). Another genomic region, 25.2–25.9 Mb on
BTA3, features the MAN1A2 gene. In a study by Flanigan et al.
(2021) on Duchennemuscular dystrophy,MAN1A2 was found to be
important for muscle ion channel function, cell adhesion, and
muscle stem cell function (Flanigan et al., 2021). Reducing
MAN1A2 expression, which involves the removal of sialic acid,
was shown to alleviate muscular dystrophy symptoms, suggesting its
potential importance in finishing precocity (Flanigan et al., 2021).

Additional candidate genes identified in this study are related to
cellular component organization (GO:0016043) and Rap1 signaling
pathway (KEGG:04,015), which regulates responses to external
stimuli, controls processes such as cell adhesion, cell-cell junction
formation, and cell polarity which are involved in cytoskeleton
dynamics (Hilbi and Kortholt, 2019). These genomic regions
contribute to the phenotypic expression of the finishing precocity
traits as the encoding genes in these regions were seen to regulate key

biological processes such as lipid metabolism, and cellular signaling,
ultimately enhancing the animals ability to reach market weight.

4.2.10 Scrotal circumference at 365days and
450 days of age

Scrotal circumference is an important selection criterion for
selecting bulls, as it is correlated with daily sperm production (Soren,
2021), and it is a useful predictor of age at puberty, and has high
heritability (Knights et al., 1984). Improved scrotal circumference is
beneficial for the reproductive performance in the beef cattle
industry (Menegassi et al., 2019). The top 1% genomic windows
were spread in 14 chromosomes for SC365, and 15 chromosomes for
SC450. Interestingly, the top 1% windows jointly explained 3.005%
of the additive genetic variance for both SC365 and SC450. However,
the genomic regions related to SC365 are responsible for codifying
268 genes (Table 10., Supplementary Material S10), while the top
genomic regions related to SC450 are responsible for codifying
272 genes (Table 11., Supplementary Table S1). Although many
of the same genomic windows are annotated at both ages, BTA2,
BTA3, and BTA20 are exclusive to SC365, while BTA15 and
BTA25 are exclusive to SC450. The additive genetic variance
explained for SC365 and SC450 ranged from 0.1% to 0.84%, and
from 0.1% to 2.78%, respectively, in the study performed by
Sbardella et al. (2021).

Our findings align with previous studies that identified
chromosomes associated with scrotal circumference, though
with different windows. For instance, Irano et al. (2016)
identified BTA8 and BTA23; Utsunomiya et al. (2014) identified
BTA6, BTA10, and BTA 21; and Sbardella et al. (2021) identified
BTA7, and BTA27 for SC365, and BTA5 and BTA23 for SC450,
supporting the association of these chromosomes with scrotal
circumference (Irano et al., 2016; Sbardella et al., 2021;
Utsunomiya et al., 2014). One of the candidate genes
highlighted in our study located in the window 50.4–51.4 Mb of
BTA 3, the EVI5 gene, is highlighted to be a novel centrosomal
protein involved in centrosome stability, a vital organelle that plays
a key role in fertilization and early embryonic development (Faitar
et al., 2005). Another candidate gene, BRDT, identified in the
window 50.4–51.4 Mb at BTA3 in our study, regulates meiotic
division and it is essential for male germ cell differentiation (Shang
et al., 2007). The probable novel gene KIT, annotated in the
window 69.4–70.3 Mb located at BTA6, which has been known
to be associated with coat color (Fontanesi et al., 2010) has also
been associated with the male germ cell (Nakai et al., 2005). The
candidate gene CCDC34 annotated for SC450 in the window
57.6–58.4 Mb of BTA15, is involved in spermatogenesis and
intraflagellar transport, which is very important for the
formation of sperm flagella (Cong et al., 2022). A study
performed by Rasool et al. (2023) showed that a loss in the
candidate gene LCMT1 is related to prostate cancer (Rasool
et al., 2023). Other genes candidate genes linked to SC365 and
SC450 are involved in sensory perception (GO:0050906), detection
of chemical stimulus GO:0009593, biological regulation GO:
0065007, regulation of cellular process (GO:0050794), and
regulation of biological process (GO:0050789). These genomic
regions contribute to the phenotypic expression of scrotal
circumference for age at 365 and 450days by encoding genes
that regulate the key biological processes such as germ cell
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differentiation, sperm flagella formation and centrosome stability,
which are essential for male fertility, and reproductive efficiency
in cattle.

4.2.11 Stayability
Stayability was defined by Hudson and Van Vleck (1981) as the

ability of a cow to remain in the herd until a specific age, similar to
longevity in dairy cattle (Hudson and Van Vleck, 1981). Stayability
is a reproductive trait related to the cow’s ability to produce a
certain number of calves over a given period, and it plays a major
role in the overall profitability of the beef cattle industry
(Buzanskas et al., 2010; Ramos et al., 2020). The top 1%
genomic widows for stayability were spread in 11 chromosomes
which jointly explained 2.779% of the additive genetic variance for
stayability. These genomic regions are responsible for coding
216 genes as seen in Table 12. Notably the additive genetic
variance explained for STAY ranged from 0.05% to 2.40% in
the study performed by Sbardella et al. (2021).

The study by Sbardella et al. (2021), which aimed to identify
candidate genes and biological pathways associated with
stayability in Nellore cattle, highlighted BTA4, BTA9, and
BTA15, which were also highlighted in our study (Sbardella
et al., 2021). For instance, the SNP located on 43.3 Mb of
BTA 4 identified by Sbardella et al. (2021) was found to be
similar with the genomic window located between 42.2 and
43.4 Mb of BTA 4 identified in our study (Sbardella et al.,
2021). Moreover, one of the candidate genes highlighted in
our study, ARHGAP18, located within the window
67.8–69.2 Mb of BTA9, is a protective gene known to
maintain endothelial cell alignments. The deletion of
ARHGAP18 could lead to a loss of endothelial cells, which
could affect the overall health and longevity of the animal
(Lay et al., 2019). Candidate gene KCNC1, annotated within
the window 34.5–34.9 Mb of BTA15, is a member of the
family of integral proteins that mediate the control of the flow
of potassium ions across biological membranes, thereby
regulating membrane excitability (Alam et al., 2023).
Potassium is an essential nutrient for animals, important for
muscle contraction and normal cardiac function, especially in
ensuring the longevity of animals (Dabbir and Rajavolu, 2024).
Other candidate genes highlighted for stayability are associated
with lactation (GO:0007595), female pregnancy (GO:0007565),
mammary gland development (GO:0030879), regulation of
secretion (GO:0051046), nucleic acid binding (GO:0003676),
Prolactin signaling pathway (KEGG:04,917) and DNA binding
(GO:0003677). These genomic regions contribute to the
phenotypic expression of stayability by encoding genes that
regulate essential physiological processes such as endothelial
cell maintenance, ion transport, and lactation, which are
essential for enhancing cow longevity, productivity and overall
herd profitability.

4.2.12 Weights at 120, 210, 365 and 450 days
Body weight is a common criterion considered in beef cattle

production, as it is easily measured and responds well to selection
due to its moderate to high heritability estimates (Yokoo et al., 2007;
Boligon et al., 2009). In this study, standardized weight records were
taken at 120, 210, 365 and 450 days of age (W120, W210, W365, and

W450, respectively). The top 1% genomic windows, associated with
weight at various ages, were distributed across multiple
chromosomes. For weight at 120 days, these windows spanned
12 chromosomes (BTA3, BTA5, BTA6, BTA7, BTA8, BTA10,
BTA11, BTA14, BTA16, BTA19, BTA20, BTA28) and explained
2.995% of the additive genetic variance, coding 373 genes (Table 13,
Supplementary Table S13). At 210 days, the top 1% genomic
windows spanned 14 chromosomes (BTA3, BTA5, BTA6, BTA7,
BTA8, BTA10, BTA11, BTA14, BTA16, BTA19, BTA20, BTA21,
BTA23, BTA28) and explained 2.980% of the additive genetic
variance, coding 306 genes (Table 14., Supplementary Table S14).
For weight at 365 days, the top 1% genomic windows were found
across 14 chromosomes (BTA3, BTA5, BTA6, BTA8, BTA10,
BTA11, BTA14, BTA16, BTA19, BTA20, BTA21, BTA23, BTA27,
BTA28), and explained 2.869% of the additive genetic variance,
coding for 352 genes (Table 15., Supplementary Table S15A).
Finally, for weight at 450 days, the top 1% genomic windows
were found in 15 chromosomes (BTA1, BTA2, BTA3, BTA5,
BTA6, BTA7, BTA10, BTA11, BTA13, BTA14, BTA15, BTA16,
BTA19, BTA20, BTA21, BTA24, BTA28) and explained 2.867% of
the additive genetic variance, coding 353 genes (Table 16.,
Supplementary Table S15B)

It is noteworthy that similar genomic windows were observed
across weights taken at different ages. For instance, all genomic
windows identified for W120 were also identified at the other ages.
Interestingly, the windows found for W210 also included the ones
reported in BTA21 and BTA23, in addition to the ones observed for
W120. Similarly, for W365, a genomic region on BTA27 was
observed together with the regions annotated for W210 (i.e., all
identified for W120 plus the ones located in BTA21, BTA23, and
BTA27). For W450, the genomic regions identified in BTA21,
BTA24, and BTA28 were added to the regions also annotated for
W120. As the proportion of the total variance explained by the top
1% windows remains similar across the ages, this finding suggests
that weight taken at older ages can be even more polygenic than
weights taken at young ages.

The candidate gene DAAM2, located in the window
12.6–13.9 Mb on BTA23, is known to enable actin-binding
activity and regulation of the Wnt signaling pathway, which is
required for various processes during development (Alliance of
Genome Resources, April 2022). The candidate gene NGLY1,
located in window 39.5–40.7 Mb of BTA27, is a gene that plays a
key role in the proteasome-mediated degradation of misfolded
glycoproteins and has been shown to affect the development and
physiology of animals in cases of deficiency (Pandey et al., 2022).
The candidate gene TOP2B, located in the window 39.5–40.7 Mb of
BTA27 is essential in vertebrate development (Austin et al., 2018).

Other candidate genes highlighted for weights at different ages
are related to intermediate filament organization (GO:0000245),
potassium ion transport (GO:0000377), supramolecular fiber
organization GO:0006397, epithelial cell differentiation (GO:
0007010), epithelium development (GO:0006996), organelle
organization (GO:0070672), cell body membrane GO:0008076,
determination of adult lifespan (GO:0005686), and cellular
component organization (GO:0006813). These genomic regions
contribute to the phenotypic expression of body weight across
different ages by encoding genes that regulate biological processes
such as actin-binding, ion transport and cellular organization, all of
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which are essential for skeletal growth, muscle development and
overall body mass accumulation in cattle.

5 Conclusion

This study is the first GWAS using over 300k genotyped animals
from the Nellore population. We used the APY to identify the top
1% genomic windows for each trait and annotated the positional
candidate genes and genomic regions within them. The traits
included in this study are currently evaluated by ABCZ. The top
1% windows for all traits explained between 2.779% (stayability) to
3.158% additive genetic variance (finishing score), underscoring the
polygenic characteristic of these traits. The functional analysis of the
candidate genes and genomic regions revealed several functionally
significant genes that enhance our understanding of the genetic
architecture underlying these important traits in Nellore cattle.
Notably, some identified regions have been previously reported
in the literature, while others are novel discoveries that warrant
further investigation. These findings may facilitate gene
prioritization efforts, helping to identify functional candidate
genes that can enhance genomic selection strategies for
economically important traits in Nellore cattle. Ultimately, this
research lays a foundation for future studies aimed at improving
genetic selection and advancing the productivity and profitability of
Nellore cattle breeding programs.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the study involving
animals in accordance with the local legislation and institutional
requirements because Animal Care and Use Committee approval
was not needed for this study, as all data were obtained from an
existing database.

Author contributions

Adebisi Racheal AO: Conceptualization, Data curation, Formal
Analysis, Investigation, Methodology, Writing – original draft,
Writing – review and editing. JH: Investigation, Methodology,
Writing – review and editing. HM: Methodology,
Writing – review and editing. Eula R EC: Investigation,
Methodology, Writing – review and editing. Henrique T HV:

Data curation, Writing – review and editing. Nadson O NS: Data
curation, Writing – review and editing. DL: Conceptualization,
Investigation, Methodology, Software, Writing – review and
editing. Hinayah Rojas De HO: Conceptualization, Investigation,
Methodology, Supervision, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors thank the Brazilian Association of Zebu Breeders
(ABCZ) and registered breeders of this association for data
recording. We would also like to thank Gabriel Soares Campos
for his help with imputation of the genomic data and Matias
Bermann for his contribution in modifying the
BLUPF90 programs for our use.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2025.1549284/
full#supplementary-material

References

ABCZ (2024). History of ABCZ. Available online at: https://www.abcz.org.br/a-abcz/
historia (Accessed November 2, 2024).

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J. (2010).
Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic

information for genetic evaluation of Holstein final score. J. Dairy Sci. 93, 743–752.
doi:10.3168/jds.2009-2730

Aguilar, I., Legarra, A., Cardoso, F. F., Masuda, Y., Lourenco, D., and Misztal, I.
(2019). Frequentist p-values for large-scale single step genome-wide association, with an

Frontiers in Genetics frontiersin.org25

Ogunbawo et al. 10.3389/fgene.2025.1549284

https://www.frontiersin.org/articles/10.3389/fgene.2025.1549284/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2025.1549284/full#supplementary-material
https://www.abcz.org.br/a-abcz/historia
https://www.abcz.org.br/a-abcz/historia
https://doi.org/10.3168/jds.2009-2730
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1549284


application for birth weight in American Angus cattle. Gene. Selec. Evolu. 51 (1), 69.
doi:10.1186/s12711-019-0469-3

Alam, K. A., Svalastoga, P., Martinez, A., Glennon, J. C., and Haavik, J. (2023).
Potassium channels in behavioral brain disorders. Molecular mechanisms and
therapeutic potential: a narrative review. Neurosci. & Biobehav. Rev. 152, 105301.
doi:10.1016/j.neubiorev.2023.105301

Albuquerque, L., Fernandes Júnior, G., and Carvalheiro, R. (2018). Beef cattle
genomic selection in Tropical environments.

Alfonso-Pérez, T., Hayward, D., Holder, J., Gruneberg, U., and Barr, F. A. (2019).
MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle
checkpoint signaling. J. Cell Biol. 218, 1108–1117. doi:10.1083/jcb.201808015

Alves, A. A. C., Da Costa, R. M., Fonseca, L. F. S., Carvalheiro, R., Ventura, R. V., Rosa,
G. J. D. M., et al. (2022). A random Forest-based genome-wide scan reveals fertility-
related candidate genes and potential Inter-Chromosomal Epistatic regions associated
with age at first calving in Nellore cattle. Front. Genet. 13, 834724. doi:10.3389/fgene.
2022.834724

Arikawa, L. M., Mota, L. F. M., Schmidt, P. I., Frezarim, G. B., Fonseca, L. F. S.,
Magalhães, A. F. B., et al. (2024). Genome-wide scans identify biological and metabolic
pathways regulating carcass and meat quality traits in beef cattle.Meat Sci. 209, 109402.
doi:10.1016/j.meatsci.2023.109402

Arman, E., Haffner-Krausz, R., Gorivodsky, M., and Lonai, P. (1999). Fgfr2 is required
for limb outgrowth and lung-branching morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 96,
11895–11899. doi:10.1073/pnas.96.21.11895

Austin, C. A., Lee, K. C., Swan, R. L., Khazeem, M. M., Manville, C. M., Cridland, P.,
et al. (2018). TOP2B: the first Thirty Years. Int. J. Mol. Sci. 19, 2765. doi:10.3390/
ijms19092765

Belham, C., Roig, J., Caldwell, J. A., Aoyama, Y., Kemp, B. E., Comb, M., et al. (2003).
A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and
Nek7 kinases. J. Biol. Chem. 278, 34897–34909. doi:10.1074/jbc.M303663200

Bellusci, S., Grindley, J., Emoto, H., Itoh, N., and Hogan, B. L. M. (1997). Fibroblast
Growth Factor 10 (FGF10) and branching morphogenesis in the embryonic mouse
lung. Dev. Engl. 124 (23), 4867–4878. doi:10.1242/dev.124.23.4867

Bessin, S., and Bullock, D. (2014). Expected progeny differences trait Definitions and
Utilizing percentile Tables. Available online at: https://publications.ca.uky.edu/sites/
publications.ca.uky.edu/files/ASC211.pdf.

Bhat, S., Rousseau, J., Michaud, C., Lourenço, C. M., Stoler, J. M., Louie, R. J., et al.
(2024). Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused
by altered channel inactivation. Am. J. Hum. Genet. 111, 761–777. doi:10.1016/j.ajhg.
2024.02.014

Boligon, A. A., Albuquerque, L. G. D., Mercadante, M. E. Z., and Lôbo, R. B. (2009).
Herdabilidades e correlações entre pesos do nascimento à idade adulta em rebanhos da
raça Nelore. R. Bras. Zootec. 38, 2320–2326. doi:10.1590/S1516-35982009001200005

Borges-Araújo, L., and Fernandes, F. (2020). Structure and lateral organization of
phosphatidylinositol 4,5-bisphosphate. Molecules 25, 3885. doi:10.3390/
molecules25173885

Bouman, K., Groothuis, J. T., Doorduin, J., van Alfen, N., Udink ten Cate, F. E. A., van
den Heuvel, F. M. A., et al. (2021). Natural history, outcome measures and trial
readiness in LAMA2-related muscular dystrophy and SELENON-related myopathy in
children and adults: protocol of the LAST STRONG study. BMCNeurol. 21, 313. doi:10.
1186/s12883-021-02336-z

Bourdon, R. M., and Brinks, J. S. (1982). Genetic, environmental and phenotypic
relationships among gestation length, birth weight, growth traits and age at first calving
in beef cattle. J. Animal Sci. 55, 543–553. doi:10.2527/jas1982.553543x

Bradford, H. l., Pocrnić, I., Fragomeni, B. o., Lourenco, D. a. l., and Misztal, I. (2017).
Selection of core animals in the Algorithm for Proven and Young using a simulation
model. J. Animal Breed. Genet. 134, 545–552. doi:10.1111/jbg.12276

Buzanskas, M. E., Grossi, D. A., Baldi, F., Barrozo, D., Silva, L. O. C., Torres Júnior, R.
A. A., et al. (2010). Genetic associations between stayability and reproductive and
growth traits in Canchim beef cattle. Livest. Sci. 132, 107–112. doi:10.1016/j.livsci.2010.
05.008

Carew, J. A., Cristofaro, V., Goyal, R. K., and Sullivan, M. P. (2023). Differential
Myosin 5a splice variants in innervation of pelvic organs. Front. Physiol. 14, 1304537.
doi:10.3389/fphys.2023.1304537

Carreño, L. O. D., Da Conceição Pessoa, M., Espigolan, R., Takada, L., Bresolin, T.,
Cavani, L., et al. (2019). Genome association study for visual scores in Nellore cattle
measured at weaning. BMC Genomics 20, 150. doi:10.1186/s12864-019-5520-9

Carvalheiro, R. (2014). “Genomic selection in Nelore cattle in Brazil,” in Proceedings
of 10th world Congress of genetics applied to livestock production, Canada, 2014,
American Society of animal Science 1-6. Performance, carcass, and meat traits of
locally adapted Brazilian cattle breeds under feedlot conditions. Available online at:
https://www.asas.org/docs/default-source/wcgalp-proceedings-oral/258_paper_10329_
manuscript_1314_0.pdf?sfvrsn=2.

Carvalheiro, R., Boison, S. A., Neves, H. H. R., Sargolzaei, M., Schenkel, F. S.,
Utsunomiya, Y. T., et al. (2014). Accuracy of genotype imputation in Nelore cattle.
Genet. Sel. Evol. 46, 69. doi:10.1186/s12711-014-0069-1

Carvalho, F. E., Espigolan, R., Berton, M. P., Neto, J. B. S., Silva, R. P., Grigoletto, L.,
et al. (2020a). Genome-wide association study and predictive ability for growth traits in
Nellore cattle. Livest. Sci. 231, 103861. doi:10.1016/j.livsci.2019.103861

Carvalho, F. E., Espigolan, R., Berton, M. P., Neto, J. B. S., Silva, R. P., Grigoletto, L.,
et al. (2020b). Genome-wide association study and predictive ability for growth traits in
Nellore cattle. Livest. Sci. 231, 103861. doi:10.1016/j.livsci.2019.103861

Carvalho, M. E., Baldi, F. S., Alexandre, P. A., Santana, M. H. A., Ventura, R. V.,
Bueno, R. S., et al. (2019). Research Article Genomic regions and genes associated with
carcass quality in Nelore cattle. Genet. Mol. Res. 18. doi:10.4238/gmr18226

Chen, D., Tang, T.-X., Deng, H., Yang, X.-P., and Tang, Z.-H. (2021). Interleukin-7
Biology and its effects on immune cells: Mediator of generation, differentiation, survival,
and homeostasis. Front. Immunol. 12, 747324. doi:10.3389/fimmu.2021.747324

Cheng, W., Cheng, J.-H., Sun, D.-W., and Pu, H. (2015). Marbling analysis for
evaluating meat quality: methods and techniques. Compr. Rev. Food Sci. Food Saf. 14,
523–535. doi:10.1111/1541-4337.12149

Chernorudskiy, A., Varone, E., Colombo, S. F., Fumagalli, S., Cagnotto, A., Cattaneo,
A., et al. (2020). Selenoprotein N is an endoplasmic reticulum calcium sensor that links
luminal calcium levels to a redox activity. Proc. Natl. Acad. Sci. U.S.A. 117,
21288–21298. doi:10.1073/pnas.2003847117

Cong, J., Wang, X., Amiri-Yekta, A., Wang, L., Kherraf, Z.-E., Liu, C., et al. (2022).
Homozygous mutations in CCDC34 cause male infertility with
oligoasthenoteratozoospermia in humans and mice. J. Med. Genet. 59, 710–718.
doi:10.1136/jmedgenet-2021-107919

Costa, E. V., Ventura, H. T., Veroneze, R., Silva, F. F., Pereira, M. A., and Lopes, P. S.
(2020). Estimated genetic associations among reproductive traits in Nellore cattle using
Bayesian analysis. Animal reproduction Sci. 214, 106305. doi:10.1016/j.anireprosci.2020.
106305

Cuajungco, M. P., Ramirez, M. S., and Tolmasky, M. E. (2021). Zinc:
Multidimensional effects on living organisms. Biomedicines 9, 208. doi:10.3390/
biomedicines9020208

Dabbir, B., and Rajavolu, S. (2024). “New trends in the treatment of hypokalemia in
cows,”In latest scientific findings in ruminant nutrition - research for practical
implementation. Editor L. Babinszky 1st ed. (IntechOpen). doi:10.5772/intechopen.
1004617

Darwish, H., Cho, J. M., Loignon, M., and Alaoui-Jamali, M. A. (2007).
Overexpression of SERTAD3, a putative oncogene located within the
19q13 amplicon, induces E2F activity and promotes tumor growth. Oncogene 26,
4319–4328. doi:10.1038/sj.onc.1210195

de Haan, S., Corbat, A. A., Cederroth, C. R., Autrum, L. G., Hankeova, S., Driver, E. C.,
et al. (2024). Jag1 represses Notch activation in lateral supporting cells and inhibits an
outer hair cell fate in the medial cochlea. Cambridge, England: Development. 151 (21),
dev202949. doi:10.1242/dev.202949

Dhuyvetter, J. (1995). Beef cattle frame scores. NDSu Ext. Circ. Available online at:
https://library.ndsu.edu/ir/handle/10365/9229 (Accessed October 27, 2024).

Di Palma, T., Filippone, M. G., Pierantoni, G. M., Fusco, A., Soddu, S., and Zannini,
M. (2013). Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death
Dis. 4, e729. doi:10.1038/cddis.2013.262

Doublet, A.-C., Croiseau, P., Fritz, S., Michenet, A., Hozé, C., Danchin-Burge, C., et al.
(2019). The impact of genomic selection on genetic diversity and genetic gain in three
French dairy cattle breeds. Genet. Sel. Evol. GSE 51, 52. doi:10.1186/s12711-019-0495-1

Du, H., Shih, C.-H., Wosczyna, M. N., Mueller, A. A., Cho, J., Aggarwal, A., et al.
(2017). Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat.
Commun. 8, 669. doi:10.1038/s41467-017-00522-7

Dubon, M. A. C., Pedrosa, V. B., Feitosa, F. L. B., Costa, R. B., De Camargo, G. M. F.,
Silva, M. R., et al. (2021). Identification of novel candidate genes for age at first calving in
Nellore cows using a SNP chip specifically developed for Bos taurus indicus cattle.
Theriogenology 173, 156–162. doi:10.1016/j.theriogenology.2021.08.011

Eler, J. P., Bignardi, A. B., Ferraz, J. B. S., and Santana, M. L. (2014). Genetic
relationships among traits related to reproduction and growth of Nelore females.
Theriogenology 82, 708–714. doi:10.1016/j.theriogenology.2014.06.001

Endo, Y., Groom, L., Celik, A., Kraeva, N., Lee, C. S., Jung, S. Y., et al. (2022). Variants
in ASPH cause exertional heat illness and are associated with malignant hyperthermia
susceptibility. Nat. Commun. 13, 3403. doi:10.1038/s41467-022-31088-8

Eriksson, S., Näsholm, A., Johansson, K., and Philipsson, J. (2004). Genetic
parameters for calving difficulty, stillbirth, and birth weight for Hereford and
Charolais at first and later parities1. J. Animal Sci. 82, 375–383. doi:10.2527/2004.
822375x

Everling, D. M., Bresolin, T., Rorato, P. R., Araujo, R. O., Boligon, A. A., Weber, T.,
et al. (2014). Finishing precocity visual score and genetic associations with growth traits
in Angus beef cattle. GMR 13 (3), 7757–7765. doi:10.4238/2014.September.26.13

Faitar, S. L., Dabbeekeh, J. T. S., Ranalli, T. A., and Cowell, J. K. (2005). EVI5 is a novel
centrosomal protein that binds to α- and γ-tubulin. Genomics 86, 594–605. doi:10.1016/
j.ygeno.2005.06.002

Fernandes Júnior, G. A., Peripolli, E., Schmidt, P. I., Campos, G. S., Mota, L. F. M.,
Mercadante, M. E. Z., et al. (2022). Current applications and perspectives of genomic

Frontiers in Genetics frontiersin.org26

Ogunbawo et al. 10.3389/fgene.2025.1549284

https://doi.org/10.1186/s12711-019-0469-3
https://doi.org/10.1016/j.neubiorev.2023.105301
https://doi.org/10.1083/jcb.201808015
https://doi.org/10.3389/fgene.2022.834724
https://doi.org/10.3389/fgene.2022.834724
https://doi.org/10.1016/j.meatsci.2023.109402
https://doi.org/10.1073/pnas.96.21.11895
https://doi.org/10.3390/ijms19092765
https://doi.org/10.3390/ijms19092765
https://doi.org/10.1074/jbc.M303663200
https://doi.org/10.1242/dev.124.23.4867
https://publications.ca.uky.edu/sites/publications.ca.uky.edu/files/ASC211.pdf
https://publications.ca.uky.edu/sites/publications.ca.uky.edu/files/ASC211.pdf
https://doi.org/10.1016/j.ajhg.2024.02.014
https://doi.org/10.1016/j.ajhg.2024.02.014
https://doi.org/10.1590/S1516-35982009001200005
https://doi.org/10.3390/molecules25173885
https://doi.org/10.3390/molecules25173885
https://doi.org/10.1186/s12883-021-02336-z
https://doi.org/10.1186/s12883-021-02336-z
https://doi.org/10.2527/jas1982.553543x
https://doi.org/10.1111/jbg.12276
https://doi.org/10.1016/j.livsci.2010.05.008
https://doi.org/10.1016/j.livsci.2010.05.008
https://doi.org/10.3389/fphys.2023.1304537
https://doi.org/10.1186/s12864-019-5520-9
https://www.asas.org/docs/default-source/wcgalp-proceedings-oral/258_paper_10329_manuscript_1314_0.pdf?sfvrsn=2
https://www.asas.org/docs/default-source/wcgalp-proceedings-oral/258_paper_10329_manuscript_1314_0.pdf?sfvrsn=2
https://doi.org/10.1186/s12711-014-0069-1
https://doi.org/10.1016/j.livsci.2019.103861
https://doi.org/10.1016/j.livsci.2019.103861
https://doi.org/10.4238/gmr18226
https://doi.org/10.3389/fimmu.2021.747324
https://doi.org/10.1111/1541-4337.12149
https://doi.org/10.1073/pnas.2003847117
https://doi.org/10.1136/jmedgenet-2021-107919
https://doi.org/10.1016/j.anireprosci.2020.106305
https://doi.org/10.1016/j.anireprosci.2020.106305
https://doi.org/10.3390/biomedicines9020208
https://doi.org/10.3390/biomedicines9020208
https://doi.org/10.5772/intechopen.1004617
https://doi.org/10.5772/intechopen.1004617
https://doi.org/10.1038/sj.onc.1210195
https://doi.org/10.1242/dev.202949
https://library.ndsu.edu/ir/handle/10365/9229
https://doi.org/10.1038/cddis.2013.262
https://doi.org/10.1186/s12711-019-0495-1
https://doi.org/10.1038/s41467-017-00522-7
https://doi.org/10.1016/j.theriogenology.2021.08.011
https://doi.org/10.1016/j.theriogenology.2014.06.001
https://doi.org/10.1038/s41467-022-31088-8
https://doi.org/10.2527/2004.822375x
https://doi.org/10.2527/2004.822375x
https://doi.org/10.4238/2014.September.26.13
https://doi.org/10.1016/j.ygeno.2005.06.002
https://doi.org/10.1016/j.ygeno.2005.06.002
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1549284


selection in Bos indicus (Nellore) cattle. Livest. Sci. 263, 105001. doi:10.1016/j.livsci.
2022.105001

Fernando, R. L., Cheng, H., and Garrick, D. J. (2016). An efficient exact method to
obtain GBLUP and single-step GBLUP when the genomic relationship matrix is
singular. Genet. Sel. Evol. 48, 80. doi:10.1186/s12711-016-0260-7

Fine, D., Flusser, H., Markus, B., Shorer, Z., Gradstein, L., Khateeb, S., et al. (2015). A
syndrome of congenital microcephaly, intellectual disability and dysmorphism with a
homozygous mutation in FRMD4A. Eur. J. Hum. Genet. 23, 1729–1734. doi:10.1038/
ejhg.2014.241

Flanigan, K. M., Waldrop, M. A., Martin, P. T., Alles, R., Dunn, D. M., Alfano, L. N.,
et al. (2021). Candidate gene modifiers of dystrophinopathy identified by the uniform
application of genome-wide datasets to novel GWAS-identified loci. doi:10.1101/2021.
11.03.21265899

Fonseca, P. A. S., Suárez-Vega, A., Marras, G., and Cánovas, Á. (2020). GALLO: an R
package for genomic annotation and integration of multiple data sources in livestock for
positional candidate loci. GigaScience 9, giaa149. doi:10.1093/gigascience/giaa149

Fontanesi, L., Scotti, E., and Russo, V. (2010). Analysis of SNPs in the KIT gene of
cattle with different coat Colour Patterns and perspectives to Use these markers for
breed Traceability and Authentication of beef and dairy products. Italian J. Animal Sci.
9, e42. doi:10.4081/ijas.2010.e42

Fragomeni, B. de O., Misztal, I., Lourenco, D. L., Aguilar, I., Okimoto, R., and Muir,
W. M. (2014). Changes in variance explained by top SNP windows over generations for
three traits in broiler chicken. Front. Genet. 5, 332. doi:10.3389/fgene.2014.00332

Fragomeni, B. O., Lourenco, D. A. L., Tsuruta, S., Masuda, Y., Aguilar, I., Legarra, A.,
et al. (2015a). Hot topic: use of genomic recursions in single-step genomic best linear
unbiased predictor (BLUP) with a large number of genotypes. J. Dairy Sci. 98,
4090–4094. doi:10.3168/jds.2014-9125

Fragomeni, B. O., Lourenco, D. A. L., Tsuruta, S., Masuda, Y., Aguilar, I., Legarra, A.,
et al. (2015b). Hot topic: use of genomic recursions in single-step genomic best linear
unbiased predictor (BLUP) with a large number of genotypes. J. Dairy Sci. 98,
4090–4094. doi:10.3168/jds.2014-9125

Fukada, T., Yamasaki, S., Nishida, K., Murakami, M., and Hirano, T. (2011). Zinc
homeostasis and signaling in health and diseases: zinc signaling. J. Biol. Inorg. Chem. 16,
1123–1134. doi:10.1007/s00775-011-0797-4

Galliou, J. M., Kiser, J. N., Oliver, K. F., Seabury, C. M., Moraes, J. G. N., Burns, G. W.,
et al. (2020). Identification of loci and pathways associated with heifer Conception rate
in U.S. Holsteins. Genes 11, 767. doi:10.3390/genes11070767

Garcia, A., Aguilar, I., Legarra, A., Tsuruta, S., Misztal, I., and Lourenco, D. (2022).
Theoretical accuracy for indirect predictions based on SNP effects from single-step
GBLUP. Genet. Sel. Evol. 54 (1), 66. doi:10.1186/s12711-022-00752-4

Geng, S., Liu, S.-B., He, W., Pan, X., Sun, Y., Xue, T., et al. (2024). Deletion of TECRL
promotes skeletal muscle repair by up-regulating EGR2. Proc. Natl. Acad. Sci. U.S.A.
121, e2317495121. doi:10.1073/pnas.2317495121

GeorgeWarren, W., Osborn, M., Yates, A., and O’Sullivan, S. E. (2024). The emerging
role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov. Today 29, 103980.
doi:10.1016/j.drudis.2024.103980

Goodall, J. J., and Schmutz, S. M. (2007). IGF2 gene characterization and association
with rib eye area in beef cattle. Anim. Genet. 38, 154–161. doi:10.1111/j.1365-2052.2007.
01576.x

Hamilton, H. L., Kinscherf, N. A., Balmer, G., Bresque, M., Salamat, S. M., Vargas, M.
R., et al. (2023). FABP7 drives an inflammatory response in human astrocytes and is
upregulated in Alzheimer’s disease. GeroScience 46, 1607–1625. doi:10.1007/s11357-
023-00916-0

Hayashi, K.-G., Ushizawa, K., Hosoe, M., and Takahashi, T. (2011). Differential gene
expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in
follicular growth and atresia. Reprod. Biol. Endocrinol. 9, 72. doi:10.1186/1477-7827-9-72

Heit, C., Jackson, B. C., McAndrews, M., Wright, M.W., Thompson, D. C., Silverman,
G. A., et al. (2013). Update of the human and mouse SERPINgene superfamily. Hum.
Genomics 7, 22. doi:10.1186/1479-7364-7-22

Hendrick, A. G., Müller, I., Willems, H., Leonard, P. M., Irving, S., Davenport, R., et al.
(2016). Identification and investigation of novel binding Fragments in the fatty acid
binding protein 6 (FABP6). J. Med. Chem. 59, 8094–8102. doi:10.1021/acs.jmedchem.
6b00869

Hilbi, H., and Kortholt, A. (2019). Role of the small GTPase Rap1 in signal
transduction, cell dynamics and bacterial infection. Small GTPases 10, 336–342.
doi:10.1080/21541248.2017.1331721

Hirohata, S., Wang, L.W., Miyagi, M., Yan, L., Seldin, M. F., Keene, D. R., et al. (2002).
Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol.
Chem. 277, 12182–12189. doi:10.1074/jbc.M109665200

Hlongwane, N. L., Hadebe, K., Soma, P., Dzomba, E. F., and Muchadeyi, F. C. (2020).
Genome wide assessment of genetic variation and population Distinctiveness of the pig
family in South Africa. Front. Genet. 11, 344. doi:10.3389/fgene.2020.00344

Hudson, G. F. S., and Van Vleck, L. D. (1981). Relationship between production and
stayability in Holstein cattle. J. Dairy Sci. 64, 2246–2250. doi:10.3168/jds.S0022-
0302(81)82836-6

Iqbal, Z., Willemsen, M. H., Papon, M.-A., Musante, L., Benevento, M., Hu, H., et al.
(2015). Homozygous SLC6A17 mutations cause autosomal-Recessive intellectual
disability with progressive Tremor, Speech Impairment, and behavioral problems.
Am. J. Hum. Genet. 96, 386–396. doi:10.1016/j.ajhg.2015.01.010

Irano, N., Camargo, G. M. F. de, Costa, R. B., Terakado, A. P. N., Magalhães, A. F. B.,
Silva, R. M. de O., et al. (2016). Genome-wide association study for indicator traits of
sexual precocity in Nellore cattle. PLOS ONE 11, e0159502. doi:10.1371/journal.pone.
0159502

Jacobs, D. T., Weigert, R., Grode, K. D., Donaldson, J. G., and Cheney, R. E. (2009).
Myosin Vc is a molecular Motor that functions in secretory granule Trafficking. Mol.
Biol. Cell 20, 4471–4488. doi:10.1091/mbc.E08-08-0865

Jiang, J., Ma, L., Prakapenka, D., VanRaden, P. M., Cole, J. B., and Da, Y. (2019). A
large-scale genome-wide association study in U.S. Holstein cattle. Front. Genet. 10, 412.
doi:10.3389/fgene.2019.00412

Josahkian, A. L. (2000). Programa de Melhoramento Genetico Das Racas Zebuinas.

Juengel, J., French, M., Quirke, L., Kauff, A., Smith, G., and Johnstone, P. (2017).
Differential expression of CART in ewes with differing ovulation rates. Reproduction
153, 471–479. REP-16. doi:10.1530/REP-16-0657

Knights, S. A., Baker, R. L., Gianola, D., and Gibb, J. B. (1984). Estimates of
heritabilities and of genetic and phenotypic correlations among growth and
reproductive traits in yearling Angus bulls. J. Animal Sci. 58, 887–893. doi:10.2527/
jas1984.584887x

Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J., and Peterson, H. (2020). gprofiler2 -- an
R package for gene list functional enrichment analysis and namespace conversion
toolset g:Profiler. F1000Research 9. doi:10.12688/f1000research.24956.2

Kruk, Z., Pitchford, W., Siebert, B., Deland, M., and Bottema, C. (2002). Factors
affecting estimation of marbling in cattle and the relationship between marbling scores
and intramuscular fat.

Kuno, K., Terashima, Y., and Matsushima, K. (1999). ADAMTS-1 is an active
Metalloproteinase associated with the extracellular matrix. J. Biol. Chem. 274,
18821–18826. doi:10.1074/jbc.274.26.18821

Langhans, M. T., Gao, J., Tang, Y., Wang, B., Alexander, P., and Tuan, R. S. (2021).
Wdpcp regulates cellular proliferation and differentiation in the developing limb via
hedgehog signaling. BMC Dev. Biol. 21, 10. doi:10.1186/s12861-021-00241-9

Lay, A. J., Coleman, P. R., Formaz-Preston, A., Ting, K. K., Roediger, B., Weninger,
W., et al. (2019). ARHGAP18: a flow-Responsive gene that regulates endothelial cell
Alignment and Protects against Atherosclerosis. J. Am. Heart Assoc. 8, e010057. doi:10.
1161/JAHA.118.010057

Legarra, A., Aguilar, I., andMisztal, I. (2009). A relationshipmatrix including full pedigree
and genomic information. J. Dairy Sci. 92, 4656–4663. doi:10.3168/jds.2009-2061

Lehrer, R. I., Bevins, C. L., and Ganz, T. (2007). Defensins and other antimicrobial
Peptides and proteins. Mucosal Immunol. 95, 95–110. doi:10.1016/B978-012491543-5/
50010-3

Leibel, S. L., Winquist, A., Tseu, I., Wang, J., Luo, D., Shojaie, S., et al. (2019). Reversal
of surfactant protein B deficiency in Patient specific human induced Pluripotent stem
cell derived lung Organoids by gene therapy. Sci. Rep. 9, 13450. doi:10.1038/s41598-019-
49696-8

Leite, N. G., Bermann, M., Tsuruta, S., Misztal, I., and Lourenco, D. (2024). Marker
effect p-values for single-step GWAS with the algorithm for proven and young in large
genotyped populations. Genet. Sel. Evol. 56, 59. doi:10.1186/s12711-024-00925-3

Lewis, E. M. A., Chapman, G., Kaushik, K., Determan, J., Antony, I., Meganathan, K.,
et al. (2022). Regulation of human cortical interneuron development by the chromatin
remodeling protein CHD2. Sci. Rep. 12, 15636. doi:10.1038/s41598-022-19654-y

Li, Y., Huang, M., Wang, Z., Liu, X., He, S., Wang, T., et al. (2023). Genomic selection
analysis of morphological and adaptation traits in Chinese indigenous dog breeds.
Front. Veteri. Sci. 10, 1237780. doi:10.3389/fvets.2023.1237780

Li, Y., Mikrani, R., Hu, Y., Faran Ashraf Baig, M. M., Abbas, M., Akhtar, F., et al.
(2021). Research progress of phosphatidylinositol 4-kinase and its inhibitors in
inflammatory diseases. Eur. J. Pharmacol. 907, 174300. doi:10.1016/j.ejphar.2021.
174300

Link, S., Spitzer, R. M. M., Sana, M., Torrado, M., Völker-Albert, M. C., Keilhauer, E.
C., et al. (2018). PWWP2A binds distinct chromatin moieties and interacts with an
MTA1-specific core NuRD complex. Nat. Commun. 9, 4300. doi:10.1038/s41467-018-
06665-5

Lourenco, D., Tsuruta, S., Masuda, Y., Bermann, M., Legarra, A., and Misztal, I.
(2022). Recent updates in the BLUPF90 software suite. WCGALP_Lourenco_public.pdf.
Available online at: http://nce.ads.uga.edu/wp-content/uploads/2022/07/WCGALP_
Lourenco_public.pdf (Accessed December 18, 2024).

Loux, S. C., Dini, P., Ali, H. E.-S., Kalbfleisch, T., and Ball, B. A. (2019).
Characterization of the placental transcriptome through mid to late gestation in the
mare. PLOS ONE 14, e0224497. doi:10.1371/journal.pone.0224497

Machado, P. C., Brito, L. F., Martins, R., Pinto, L. F. B., Silva, M. R., and Pedrosa, V. B.
(2022). Genome-wide association analysis reveals novel loci related with visual score
traits in Nellore cattle raised in Pasture–based systems. Animals 12, 3526. doi:10.3390/
ani12243526

Frontiers in Genetics frontiersin.org27

Ogunbawo et al. 10.3389/fgene.2025.1549284

https://doi.org/10.1016/j.livsci.2022.105001
https://doi.org/10.1016/j.livsci.2022.105001
https://doi.org/10.1186/s12711-016-0260-7
https://doi.org/10.1038/ejhg.2014.241
https://doi.org/10.1038/ejhg.2014.241
https://doi.org/10.1101/2021.11.03.21265899
https://doi.org/10.1101/2021.11.03.21265899
https://doi.org/10.1093/gigascience/giaa149
https://doi.org/10.4081/ijas.2010.e42
https://doi.org/10.3389/fgene.2014.00332
https://doi.org/10.3168/jds.2014-9125
https://doi.org/10.3168/jds.2014-9125
https://doi.org/10.1007/s00775-011-0797-4
https://doi.org/10.3390/genes11070767
https://doi.org/10.1186/s12711-022-00752-4
https://doi.org/10.1073/pnas.2317495121
https://doi.org/10.1016/j.drudis.2024.103980
https://doi.org/10.1111/j.1365-2052.2007.01576.x
https://doi.org/10.1111/j.1365-2052.2007.01576.x
https://doi.org/10.1007/s11357-023-00916-0
https://doi.org/10.1007/s11357-023-00916-0
https://doi.org/10.1186/1477-7827-9-72
https://doi.org/10.1186/1479-7364-7-22
https://doi.org/10.1021/acs.jmedchem.6b00869
https://doi.org/10.1021/acs.jmedchem.6b00869
https://doi.org/10.1080/21541248.2017.1331721
https://doi.org/10.1074/jbc.M109665200
https://doi.org/10.3389/fgene.2020.00344
https://doi.org/10.3168/jds.S0022-0302(81)82836-6
https://doi.org/10.3168/jds.S0022-0302(81)82836-6
https://doi.org/10.1016/j.ajhg.2015.01.010
https://doi.org/10.1371/journal.pone.0159502
https://doi.org/10.1371/journal.pone.0159502
https://doi.org/10.1091/mbc.E08-08-0865
https://doi.org/10.3389/fgene.2019.00412
https://doi.org/10.1530/REP-16-0657
https://doi.org/10.2527/jas1984.584887x
https://doi.org/10.2527/jas1984.584887x
https://doi.org/10.12688/f1000research.24956.2
https://doi.org/10.1074/jbc.274.26.18821
https://doi.org/10.1186/s12861-021-00241-9
https://doi.org/10.1161/JAHA.118.010057
https://doi.org/10.1161/JAHA.118.010057
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.1016/B978-012491543-5/50010-3
https://doi.org/10.1016/B978-012491543-5/50010-3
https://doi.org/10.1038/s41598-019-49696-8
https://doi.org/10.1038/s41598-019-49696-8
https://doi.org/10.1186/s12711-024-00925-3
https://doi.org/10.1038/s41598-022-19654-y
https://doi.org/10.3389/fvets.2023.1237780
https://doi.org/10.1016/j.ejphar.2021.174300
https://doi.org/10.1016/j.ejphar.2021.174300
https://doi.org/10.1038/s41467-018-06665-5
https://doi.org/10.1038/s41467-018-06665-5
http://nce.ads.uga.edu/wp-content/uploads/2022/07/WCGALP_Lourenco_public.pdf
http://nce.ads.uga.edu/wp-content/uploads/2022/07/WCGALP_Lourenco_public.pdf
https://doi.org/10.1371/journal.pone.0224497
https://doi.org/10.3390/ani12243526
https://doi.org/10.3390/ani12243526
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1549284


Masuda, Y. (2019). Single-step GBLUP including more than 2 million genotypes with
missing pedigrees for production traits in US Holstein. Available online at: https://
interbull.org/static/web/10_30_Masuda_final.pdf.

McKiernan, B. (2017). Muscle scoring beef cattle. Available online at: https://www.
dpi.nsw.gov.au/__data/assets/pdf_file/0006/103938/muscle-scoring-beef-cattle.pdf.

Meirelles, S. L., Gouveia, G. V., Gasparin, G., Alencar, M. M., Gouveia, J. J. S., and
Regitano, L. C. A. (2011). Candidate gene region for control of rib eye area in Canchim
beef cattle. Genet. Mol. Res. 10, 1220–1226. doi:10.4238/vol10-2gmr1175

Menegassi, S. R. O., Pereira, G. R., McManus, C., Roso, V. M., Bremm, C., Koetz, C.,
et al. (2019). Evaluation and prediction of scrotal circumference in beef bulls.
Theriogenology 140, 25–32. doi:10.1016/j.theriogenology.2019.08.008

Misztal, I. (2015). Inexpensive computation of the inverse of the genomic relationship
matrix in populations with small effective population size. Genetics 202 (2), 401–409.
doi:10.1534/genetics.115.182089

Misztal, I., Aguilar, I., Lourenco, D., Ma, L., Steibel, J. P., and Toro, M. (2021).
Emerging issues in genomic selection. J. Animal Sci. 99, skab092. doi:10.1093/jas/
skab092

Misztal, I., Legarra, A., and Aguilar, I. (2014a). Using recursion to compute the inverse
of the genomic relationship matrix. J. Dairy Sci. 97, 3943–3952. doi:10.3168/jds.2013-
7752

Misztal, I., Lourenco, D., Aguilar, I., and Legarra, A. (2014b). Manual for
BLUPF90 family of programs. Available online at: http://nce.ads.uga.edu/wiki/lib/
exe/fetch.php?media=blupf90_all.pdf.

Misztal, I., Lourenco, D., and Bermann, M. (2024). Progress in GWAS for large
datasets with GBLUP and single-step GBLUP. Available online at: http://nce.ads.uga.
edu/wp-content/uploads/2024/01/pag_gwas_24_2nd_IgnacyMisztal.pdf.

Misztal, I., Lourenco, D., and Legarra, A. (2020). Current status of genomic
evaluation. J. Animal Sci. 98, skaa101. doi:10.1093/jas/skaa101

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. H. (2002).
BLUPF90 and related programs (BGF90).

Mkize, N., Maiwashe, A., Dzama, K., Dube, B., and Mapholi, N. (2021). Suitability of
GWAS as a tool to discover SNPs associated with Tick resistance in cattle: a review.
Pathogens 10, 1604. doi:10.3390/pathogens10121604

Mohammadi-Cheraghabadi, M., and Hazrati, S. (2023). “Chapter 5 Terpenoids,
steroids, and phenolic compounds of medicinal plants,” in Phytochemicals in
Medicinal Plants. Editors C. Arora, D. K. Verma, J. Aslam, and P. K. Mahish (De
Gruyter), 105–130. doi:10.1515/9783110791891-005

Mrode, R., and Pocrnic, I. (2023). Linear models for the prediction of the genetic Merit
of animals. 4th Edition. CABI.

Nakai, Y., Nonomura, N., Oka, D., Shiba, M., Arai, Y., Nakayama, M., et al. (2005).
KIT (c-kit oncogene product) pathway is constitutively activated in human testicular
germ cell tumors. Biochem. Biophysical Res. Commun. 337, 289–296. doi:10.1016/j.bbrc.
2005.09.042

Nakamura, R., Numata, T., Kasuya, G., Yokoyama, T., Nishizawa, T., Kusakizako, T.,
et al. (2020). Cryo-EM structure of the volume-regulated anion channel LRRC8D
isoform identifies features important for substrate permeation. Commun. Biol. 3 (1),
240. doi:10.1038/s42003-020-0951-z

NC State (2023). Using expected progeny differences for beef cattle genetic
improvement. NC State Extension Publications. Available online at: https://content.
ces.ncsu.edu/using-expected-progeny-differences-for-beef-cattle-genetic-improvement
(Accessed November 5, 2024).

Nurgulsim, K., Khan, R., Raza, S. H. A., Ayari-Akkari, A., Jeridi, M., Ahmad, I., et al.
(2023). Bioinformatics and genetic variants analysis of FGF10 gene promoter with their
association at carcass quality and body measurement traits in Qinchuan beef cattle.
Anim. Biotechnol. 34, 1950–1959. doi:10.1080/10495398.2022.2059667

Ocken, A. R., Ku, M. M., Kinzer-Ursem, T. L., and Calve, S. (2020). Perlecan
Knockdown significantly Alters extracellular matrix composition and organization
during Cartilage development. Mol. and Cell. Proteomics 19, 1220–1235. doi:10.
1074/mcp.RA120.001998

Ogunbawo, A. R., Mulim, H. A., Campos, G. S., and Oliveira, H. R. (2024). Genetic
foundations of Nellore traits: a gene prioritization and functional Analyses of genome-
wide association study results. Genes 15, 1131. doi:10.3390/genes15091131

Padua, L., Pasquale, A. D., Pazzaglia, C., Liotta, G. A., Librante, A., and Mondelli, M.
(2010). Systematic review of pregnancy-related carpal tunnel syndrome. Muscle Nerve
42, 697–702. doi:10.1002/mus.21910

Pandey, A., Adams, J. M., Han, S. Y., and Jafar-Nejad, H. (2022). NGLY1 deficiency, a
congenital disorder of Deglycosylation: from disease gene function to Pathophysiology.
Cells 11, 1155. doi:10.3390/cells11071155

Park, K., Sikes, M., and Wenger, T. (2023). P352: Expanding the neurodevelopmental
phenotype of HIVEP2-related disorder. Genet. Med. Open 1, 100380. doi:10.1016/j.
gimo.2023.100380

Pinho, A. V., Van Bulck, M., Chantrill, L., Arshi, M., Sklyarova, T., Herrmann, D.,
et al. (2018). ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β
signalling. Nat. Commun. 9, 5083. doi:10.1038/s41467-018-07497-z

Pocrnic, I., Lourenco, D., and Misztal, I. (2024). Single nucleotide polymorphism
profile for quantitative trait nucleotide in populations with small effective size and its
impact on mapping and genomic predictions. GENETICS 227, iyae103. doi:10.1093/
genetics/iyae103

Pocrnic, I., Lourenco, D. A., Masuda, Y., Legarra, A., and Misztal, I. (2016a). The
dimensionality of genomic information and its effect on genomic prediction. Genetics
203 (1), 573–581. doi:10.1534/genetics.116.187013

Pocrnic, I., Lourenco, D. A. L., Masuda, Y., and Misztal, I. (2016b).
Dimensionality of genomic information and performance of the Algorithm for
Proven and Young for different livestock species. Genet. Sel. Evol. 48, 82. doi:10.
1186/s12711-016-0261-6

Pocrnic, I., Lourenco, D. A. L., Masuda, Y., and Misztal, I. (2019). Accuracy of
genomic BLUP when considering a genomic relationship matrix based on the number
of the largest eigenvalues: a simulation study. Genet. Sel. Evol. 51, 75. doi:10.1186/
s12711-019-0516-0

Ponzetti, M., and Rucci, N. (2021). Osteoblast differentiation and signaling:
established Concepts and emerging Topics. Int. J. Mol. Sci. 22, 6651. doi:10.3390/
ijms22136651

Putra, W. P. B., Hartati, H., Mariyono, M., Noor, R. R., Sumantri, C., and Margawati,
E. T. (2024). Early detection of candidate genes for body weight in Indonesian cattle
breeds with genome-wide association study (GWAS). Acta Veterinaria 74, 246–260.
doi:10.2478/acve-2024-0017

Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C., and Prasher, S. O. (2007). Pork quality
and marbling level assessment using a hyperspectral imaging system. J. Food Eng. 83,
10–16. doi:10.1016/j.jfoodeng.2007.02.038

Ramos, P. V. B., e Silva, F. F., da Silva, L. O. C., Santiago, G. G., Menezes, G. R. de O.,
Soriano Viana, J. M., et al. (2020). Genomic evaluation for novel stayability traits in
Nellore cattle. Reproduction Domest. Animals 55, 266–273. doi:10.1111/rda.13612

Rasool, R., ur, O., Connor, C. M., Das, C. K., Alhusayan, M., Verma, B. K., et al.
(2023). Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive
prostate cancer progression and therapy resistance. Nat. Commun. 14, 5253. doi:10.
1038/s41467-023-40760-6

R Core Team (2024). R: a Language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available online at: https://
www.R-project.org/.

Reis, H. B. D., Carvalho, M. E., Espigolan, R., Poleti, M. D., Ambrizi, D. R., Berton, M.
P., et al. (2023). Genome-wide association (GWAS) applied to carcass and meat traits of
Nellore cattle. Metabolites 14, 6. doi:10.3390/metabo14010006

Rizzo, E. C., Neto, F. R., Diaz, I. D., Dias, M. M., Costa, R. B., Ventura, H. T., et al.
(2015). Genetic association of productive and reproductive traits with stayability in
Nellore cattle: analysis using Bayesian models. GMR 14 (4), 14956–14966. doi:10.4238/
2015.November.24.3

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., et al.
(2020). De novo assembly of the cattle reference genome with single-molecule
sequencing. GigaScience 9, giaa021. doi:10.1093/gigascience/giaa021

Sahana, G., Cai, Z., Sanchez, M. P., Bouwman, A. C., and Boichard, D. (2023). Invited
review: Good practices in genome-wide association studies to identify candidate
sequence variants in dairy cattle. J. Dairy Sci. 106, 5218–5241. doi:10.3168/jds.2022-
22694

Santana, M. H. A., Ventura, R. V., Utsunomiya, Y. T., Neves, H. H. R., Alexandre, P.
A., Oliveira Junior, G. A., et al. (2015). A genomewide association mapping study using
ultrasound-scanned information identifies potential genomic regions and candidate
genes affecting carcass traits in Nellore cattle. J. Anim. Breed. Genet. 132, 420–427.
doi:10.1111/jbg.12167

Sargolzaei, M., Chesnais, J. P., and Schenkel, F. S. (2014). A new approach for efficient
genotype imputation using information from relatives. BMC Genomics 15, 478. doi:10.
1186/1471-2164-15-478

Sbardella, A. P., Watanabe, R. N., Da Costa, R. M., Bernardes, P. A., Braga, L. G., Baldi
Rey, F. S., et al. (2021). Genome-wide association study provides insights into important
genes for reproductive traits in Nelore cattle. Animals 11, 1386. doi:10.3390/
ani11051386

Schmidt, P. I., Campos, G. S., Lôbo, R. B., Souza, F. R. P., Brauner, C. C., and Boligon,
A. A. (2018). Genetic analysis of age at first calving, accumulated productivity,
stayability and mature weight of Nellore females. Theriogenology 108, 81–87. doi:10.
1016/j.theriogenology.2017.11.035

Schmidt, P. I., Mota, L. F. M., Fonseca, L. F. S., Dos Santos Silva, D. B., Frezarim, G. B.,
Arikawa, L. M., et al. (2023). Identification of candidate lethal haplotypes and genomic
association with post-natal mortality and reproductive traits in Nellore cattle. Sci. Rep.
13, 10399. doi:10.1038/s41598-023-37586-z

Schneeberger, P. E., von Elsner, L., Barker, E. L., Meinecke, P., Marquardt, I., Alawi,
M., et al. (2020). Bi-Allelic Pathogenic variants in HS2ST1 cause a syndrome
Characterized by developmental Delay and Corpus Callosum, skeletal, and Renal
Abnormalities. Am. J. Hum. Genet. 107, 1044–1061. doi:10.1016/j.ajhg.2020.10.007

Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., et al.
(1999). Fgf10 is essential for limb and lung formation. Nat. Genet. 21, 138–141. doi:10.
1038/5096

Frontiers in Genetics frontiersin.org28

Ogunbawo et al. 10.3389/fgene.2025.1549284

https://interbull.org/static/web/10_30_Masuda_final.pdf
https://interbull.org/static/web/10_30_Masuda_final.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/103938/muscle-scoring-beef-cattle.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/103938/muscle-scoring-beef-cattle.pdf
https://doi.org/10.4238/vol10-2gmr1175
https://doi.org/10.1016/j.theriogenology.2019.08.008
https://doi.org/10.1534/genetics.115.182089
https://doi.org/10.1093/jas/skab092
https://doi.org/10.1093/jas/skab092
https://doi.org/10.3168/jds.2013-7752
https://doi.org/10.3168/jds.2013-7752
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all.pdf
http://nce.ads.uga.edu/wp-content/uploads/2024/01/pag_gwas_24_2nd_IgnacyMisztal.pdf
http://nce.ads.uga.edu/wp-content/uploads/2024/01/pag_gwas_24_2nd_IgnacyMisztal.pdf
https://doi.org/10.1093/jas/skaa101
https://doi.org/10.3390/pathogens10121604
https://doi.org/10.1515/9783110791891-005
https://doi.org/10.1016/j.bbrc.2005.09.042
https://doi.org/10.1016/j.bbrc.2005.09.042
https://doi.org/10.1038/s42003-020-0951-z
https://content.ces.ncsu.edu/using-expected-progeny-differences-for-beef-cattle-genetic-improvement
https://content.ces.ncsu.edu/using-expected-progeny-differences-for-beef-cattle-genetic-improvement
https://doi.org/10.1080/10495398.2022.2059667
https://doi.org/10.1074/mcp.RA120.001998
https://doi.org/10.1074/mcp.RA120.001998
https://doi.org/10.3390/genes15091131
https://doi.org/10.1002/mus.21910
https://doi.org/10.3390/cells11071155
https://doi.org/10.1016/j.gimo.2023.100380
https://doi.org/10.1016/j.gimo.2023.100380
https://doi.org/10.1038/s41467-018-07497-z
https://doi.org/10.1093/genetics/iyae103
https://doi.org/10.1093/genetics/iyae103
https://doi.org/10.1534/genetics.116.187013
https://doi.org/10.1186/s12711-016-0261-6
https://doi.org/10.1186/s12711-016-0261-6
https://doi.org/10.1186/s12711-019-0516-0
https://doi.org/10.1186/s12711-019-0516-0
https://doi.org/10.3390/ijms22136651
https://doi.org/10.3390/ijms22136651
https://doi.org/10.2478/acve-2024-0017
https://doi.org/10.1016/j.jfoodeng.2007.02.038
https://doi.org/10.1111/rda.13612
https://doi.org/10.1038/s41467-023-40760-6
https://doi.org/10.1038/s41467-023-40760-6
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3390/metabo14010006
https://doi.org/10.4238/2015.November.24.3
https://doi.org/10.4238/2015.November.24.3
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.3168/jds.2022-22694
https://doi.org/10.3168/jds.2022-22694
https://doi.org/10.1111/jbg.12167
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.3390/ani11051386
https://doi.org/10.3390/ani11051386
https://doi.org/10.1016/j.theriogenology.2017.11.035
https://doi.org/10.1016/j.theriogenology.2017.11.035
https://doi.org/10.1038/s41598-023-37586-z
https://doi.org/10.1016/j.ajhg.2020.10.007
https://doi.org/10.1038/5096
https://doi.org/10.1038/5096
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1549284


Shang, E., Nickerson, H. D., Wen, D., Wang, X., and Wolgemuth, D. J. (2007). The
first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-
bromodomain-containing proteins, is essential for male germ cell differentiation.
Development 134, 3507–3515. doi:10.1242/dev.004481

Shiotsuki, L., Silva, J. A. V. I. I., Tonhati, H., and Albuquerque, L. G. (2009). Genetic
associations of sexual precocity with growth traits and visual scores of conformation,
finishing, and muscling in Nelore cattle. J. Animal Sci. 87, 1591–1597. doi:10.2527/jas.
2008-1173

Song, H., Tian, X., He, L., Liu, D., Li, J., Mei, Z., et al. (2024). CREG1 deficiency
impaired myoblast differentiation and skeletal muscle regeneration. J. cachexia
sarcopenia muscle 15, 587–602. doi:10.1002/jcsm.13427

Soren, R. (2021). Bull scrotal circumference. Ala. Coop. Ext. Syst. Available online at:
https://www.aces.edu/blog/topics/beef/bull-scrotal-circumference/ (Accessed October
28, 2024).

Spangler, M. L. (2011). EPD Basics and Definitions. Available online at: https://
extensionpubs.unl.edu/publication/g1967/na/html/view (Accessed October 16, 2024).

Stafuzza, N. B., Costa E Silva, E. V. D., Silva, R.M. D.O., Costa Filho, L. C. C. D., Barbosa, F.
B., Macedo, G. G., et al. (2020). Genome-wide association study for age at puberty in young
Nelore bulls. J. Anim. Breed. Genet. 137, 234–244. doi:10.1111/jbg.12438

Strandén, I., and Garrick, D. J. (2009). Technical note: Derivation of equivalent
computing algorithms for genomic predictions and reliabilities of animal merit. J. dairy
Sci. 92 (6), 2971–2975. doi:10.3168/jds.2008-1929

Tang, J.-X., Li, J., Cheng, J.-M., Hu, B., Sun, T.-C., Li, X.-Y., et al. (2017). Requirement for
CCNB1 in mouse spermatogenesis. Cell Death Dis. 8, e3142. doi:10.1038/cddis.2017.555

Terakado, A. P. N., Costa, R. B., Camargo, G. M. F. de, Irano, N., Bresolin, T., Takada,
L., et al. (2018). Genome-wide association study for growth traits in Nelore cattle.
animal 12, 1358–1362. doi:10.1017/S1751731117003068

Tu, T., Zhang, H., and Xu, H. (2023). Targeting sterol-O-acyltransferase 1 to disrupt
cholesterol metabolism for cancer therapy. Front. Oncol. 13, 1197502. doi:10.3389/fonc.2023.
1197502

Um, J. W., and Ko, J. (2017). Neural Glycosylphosphatidylinositol-Anchored proteins
in synaptic Specification. Trends Cell Biol. 27, 931–945. doi:10.1016/j.tcb.2017.06.007

USDA (2011). Livestock and poultry: world markets and trade. Available online at:
http://www.fas.usda.gov/dlp/circular/2011/livestock_poultry.pdf.

USDA (2019). USDA ERS - Brazil once Again becomes the world’s largest beef
exporter. Available online at: https://www.ers.usda.gov/amber-waves/2019/july/brazil-
once-again-becomes-the-world-s-largest-beef-exporter/(Accessed November 2, 2024).

Utsunomiya, Y. T., Carmo, A. S., Neves, H. H. R., Carvalheiro, R., Matos, M. C.,
Zavarez, L. B., et al. (2014). Genome-wide mapping of loci explaining variance in scrotal
circumference in Nellore cattle. PLoS ONE 9, e88561. doi:10.1371/journal.pone.0088561

Utsunomiya, Y. T., Do Carmo, A. S., Carvalheiro, R., Neves, H. H., Matos, M. C.,
Zavarez, L. B., et al. (2013). Genome-wide association study for birth weight in Nellore
cattle points to previously described orthologous genes affecting human and bovine
height. BMC Genet. 14, 52. doi:10.1186/1471-2156-14-52

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi:10.3168/jds.2007-0980

Vitezica, Z. G., Aguilar, I., Misztal, I., and Legarra, A. (2011). Bias in genomic
predictions for populations under selection. Genet. Res. 93, 357–366. doi:10.1017/
S001667231100022X

Wang, C., Mu, T., Feng, X., Zhang, J., and Gu, Y. (2023). Study on fatty acid binding
protein in lipid metabolism of livestock and poultry. Res. Veterinary Sci. 158, 185–195.
doi:10.1016/j.rvsc.2023.03.011

Wang, H., Misztal, I., Aguilar, I., Legarra, A., and Muir, W. M. (2012). Genome-wide
association mapping including phenotypes from relatives without genotypes. Genet.
Res. 94 (2), 73–83. doi:10.1017/S0016672312000274

Wang, W. Y. S., Barratt, B. J., Clayton, D. G., and Todd, J. A. (2005). Genome-wide
association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118.
doi:10.1038/nrg1522

Wang, Y., Xiao, Y., Zheng, Y., Yang, L., and Wang, D. (2021). An anti-ADAMTS1
treatment relieved muscle dysfunction and fibrosis in dystrophic mice. Life Sci. 281,
119756. doi:10.1016/j.lfs.2021.119756

Watanabe, K., Watson, E., Cremona, M. L., Millings, E. J., Lefkowitch, J. H., Fischer, S.
G., et al. (2013). ILDR2: an endoplasmic reticulum resident molecule mediating Hepatic
lipid homeostasis. PLOS ONE 8, e67234. doi:10.1371/journal.pone.0067234

Wiggans, G. R., Sonstegard, T. S., VanRaden, P. M., Matukumalli, L. K., Schnabel, R.
D., Taylor, J. F., et al. (2009). Selection of single-nucleotide polymorphisms and quality
of genotypes used in genomic evaluation of dairy cattle in the United States and Canada.
J. Dairy Sci. 92, 3431–3436. doi:10.3168/jds.2008-1758

Wu, X., Fang, M., Liu, L., Wang, S., Liu, J., Ding, X., et al. (2013). Genome wide
association studies for body conformation traits in the Chinese Holstein cattle
population. BMC Genomics 14, 897. doi:10.1186/1471-2164-14-897

Xu, K., Zheng, P., Zhao, S., Wang, J., Feng, J., Ren, Y., et al. (2023). LRFN5 and
OLFM4 as novel potential biomarkers for major depressive disorder: a pilot study.
Transl. Psychiatry 13, 188. doi:10.1038/s41398-023-02490-7

Yamaguchi, Y., and Ouchi, Y. (2012). Antimicrobial peptide defensin: identification
of novel isoforms and the characterization of their physiological roles and their
significance in the pathogenesis of diseases. Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci.
88, 152–166. doi:10.2183/pjab.88.152

Yokoo, M. J. I., Albuquerque, L. G. D., Lôbo, R. B., Sainz, R. D., Carneiro Júnior, J. M.,
Bezerra, L. A. F., et al. (2007). Estimativas de parâmetros genéticos para altura do
posterior, peso e circunferência escrotal em bovinos da raça Nelore. R. Bras. Zootec. 36,
1761–1768. doi:10.1590/S1516-35982007000800008

Zachut, M., Sood, P., Levin, Y., and Moallem, U. (2016). Proteomic analysis of
preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy
cows. J. Proteomics 139, 122–129. doi:10.1016/j.jprot.2016.03.027

Zhang, N., Zheng, Y., Wei, Y., Wang, L., Chen, X., and Li, J. (2024). Yak
DEFB123 alleviates lung injury caused by Klebsiella pneumoniae through MAPKs
signaling pathway. Veterinary Microbiol. 298, 110248. doi:10.1016/j.vetmic.2024.
110248

Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., and
Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family.
The complete mammalian FGF family. J. Biol. Chem. 281, 15694–15700. doi:10.
1074/jbc.M601252200

Zhang, Z., Liu, J., Ding, X., Bijma, P., De Koning, D.-J., and Zhang, Q. (2010). Best
linear unbiased prediction of genomic breeding values using a trait-specific Marker-
derived relationship matrix. PLoS ONE 5, e12648. doi:10.1371/journal.pone.0012648

Zhao, Y., Zhang, X., Li, F., Zhang, D., Zhang, Y., Li, X., et al. (2022). Whole genome
sequencing analysis to identify candidate genes associated with the rib eye muscle area
in Hu Sheep. Front. Genet. 13, 824742. doi:10.3389/fgene.2022.824742

Frontiers in Genetics frontiersin.org29

Ogunbawo et al. 10.3389/fgene.2025.1549284

https://doi.org/10.1242/dev.004481
https://doi.org/10.2527/jas.2008-1173
https://doi.org/10.2527/jas.2008-1173
https://doi.org/10.1002/jcsm.13427
https://www.aces.edu/blog/topics/beef/bull-scrotal-circumference/
https://extensionpubs.unl.edu/publication/g1967/na/html/view
https://extensionpubs.unl.edu/publication/g1967/na/html/view
https://doi.org/10.1111/jbg.12438
https://doi.org/10.3168/jds.2008-1929
https://doi.org/10.1038/cddis.2017.555
https://doi.org/10.1017/S1751731117003068
https://doi.org/10.3389/fonc.2023.1197502
https://doi.org/10.3389/fonc.2023.1197502
https://doi.org/10.1016/j.tcb.2017.06.007
http://www.fas.usda.gov/dlp/circular/2011/livestock_poultry.pdf
https://www.ers.usda.gov/amber-waves/2019/july/brazil-once-again-becomes-the-world-s-largest-beef-exporter/
https://www.ers.usda.gov/amber-waves/2019/july/brazil-once-again-becomes-the-world-s-largest-beef-exporter/
https://doi.org/10.1371/journal.pone.0088561
https://doi.org/10.1186/1471-2156-14-52
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1017/S001667231100022X
https://doi.org/10.1017/S001667231100022X
https://doi.org/10.1016/j.rvsc.2023.03.011
https://doi.org/10.1017/S0016672312000274
https://doi.org/10.1038/nrg1522
https://doi.org/10.1016/j.lfs.2021.119756
https://doi.org/10.1371/journal.pone.0067234
https://doi.org/10.3168/jds.2008-1758
https://doi.org/10.1186/1471-2164-14-897
https://doi.org/10.1038/s41398-023-02490-7
https://doi.org/10.2183/pjab.88.152
https://doi.org/10.1590/S1516-35982007000800008
https://doi.org/10.1016/j.jprot.2016.03.027
https://doi.org/10.1016/j.vetmic.2024.110248
https://doi.org/10.1016/j.vetmic.2024.110248
https://doi.org/10.1074/jbc.M601252200
https://doi.org/10.1074/jbc.M601252200
https://doi.org/10.1371/journal.pone.0012648
https://doi.org/10.3389/fgene.2022.824742
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1549284

	Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Genotypic quality control
	2.3 Statistical analyses
	2.3.1 Algorithm for proven and young
	2.3.2 Genome-wide association studies
	2.3.3 Genome annotation and functional enrichment analyses


	3 Results
	3.1 Genome windows and identification of candidate genes
	3.1.1 Age at first calving
	3.1.2 Birth weight
	3.1.3 Body conformation
	3.1.4 Expected progeny difference for weight at 120 days
	3.1.5 Finishing score
	3.1.6 Marbling
	3.1.7 Muscularity
	3.1.8 Ribeye area
	3.1.9 Finishing precocity
	3.1.10 Scrotal circumference at 365 days
	3.1.11 Scrotal circumference at 450 days
	3.1.12 Stayability
	3.1.13 Weight at 120 days of age
	3.1.14 Weight at 210 days of age
	3.1.15 Weight at 365 days of age
	3.1.16 Weight at 450 days of age


	4 Discussion
	4.1 Use of APY for GWAS
	4.2 Identification of candidate genes for each trait
	4.2.1 Age at first calving
	4.2.2 Birth weight
	4.2.3 Body conformation
	4.2.4 Expected progeny difference at weight 120
	4.2.5 Finishing score
	4.2.6 Marbling
	4.2.7 Muscularity
	4.2.8 Ribeye area
	4.2.9 Finishing precocity
	4.2.10 Scrotal circumference at 365days and 450 days of age
	4.2.11 Stayability
	4.2.12 Weights at 120, 210, 365 and 450 days


	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary Material
	References


