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Background: Lupus nephritis (LN) is one of the most common and severe
complications of systemic lupus erythematosus with unclear pathogenesis.
The most accurate diagnosis criterion of LN is still renal biopsy and nowadays
treatment strategies of LN are far from satisfactory. Cellular senescence is defined
as the permanent cell cycle arrest marked by senescence-associated secretory
phenotype (SASP), which has been proved to accelerate the mobility and
mortality of patients with LN. The study is aimed to identify cellular
senescence-related genes for LN.

Methods: Genes related to cellular senescence and LN were obtained from the
MSigDB genetic database and GEO database respectively. Through differential
gene analysis, Weighted Gene Go-expression Network Analysis (WGCNA) and
machine learning algorithms, hub cellular senescence-related differentially
expressed genes (CS-DEGs) were identified. By external validation, hub CS-
DEGs were further filtered and the remaining genes were identified as
biomarkers. We explored their potential physiopathologic function
through GSEA.

Results: We obtained 432 genes related to cellular senescence,
1,208 differentially expressed genes (DEGs) and 840 genes in the key gene
module related to LN, which were intersected with each other for CS-DEGs.
Subsequent Machine learning algorithms screened out six hub CS-DEGs and
finally three hub CS-DEGs, ALOX5, PTGER2 and PRKCB passed through external
validation, which were identified as biomarkers. The three biomarkers were
enriched in “B Cell receptor signaling pathway” and “NF−kappa B signaling
pathway” based on GESA results.

Conclusion: This study explored the potential relationship between cellular
senescence and LN, and identified three biomarkers ALOX5, PTGER2, and
PRKCB playing key roles in LN, which will provide new insights for the
diagnosis and treatment of LN.
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1 Introduction

Lupus nephritis (LN) is one of the most common and severe
complications of systemic lupus erythematosus (SLE), marked by
heterogeneous clinical presentation ranging from slight urinary
abnormalities to prominent nephrotic syndrome or rapidly
progressive renal insufficiency (Moroni et al., 2016; Anders et al.,
2020). So far, the most accurate diagnosis criterion of LN is still
renal biopsy, which helps recognize kidney disease subtype, justify
disease activity and guide therapeutic decisions. But renal biopsy is
accompanied by histologic risks of hemorrhage, infection and
arteriovenous fistula. Apart from the diagnostic limitations, although
multiple treatment strategies of LN have been in continuous
optimization, the therapeutic goal is not always achieved as expected
for the drug toxicity on multi-organ, low response of treatment and
relapses of lupus nephritis (Kronbichler et al., 2019). Therefore, new
targets for LN diagnosis and therapy are imperatively needed.

Cellular senescence is defined as the permanent cell cycle arrest
marked by senescence-associated secretory phenotype (SASP),
which means the abnormal production of chemokines, cytokines,
growth factors, and proteases (Gao et al., 2019). Cellular senescence
along with SASP is documented to serve crucial functions in
multiple inflammatory disorders and chronic diseases including
diabetes, cardiac diseases, osteoarthritis, neurodegenerative
disease and cancer (He and Sharpless, 2017; Mehdizadeh et al.,
2022; Zhang et al., 2022). In recent years, the relationship between
LN and cellular senescence has induced more concern, providing a
novel perspective for the pathology and administration of LN.
Evidence showed that DNA damage and excessive production of
ROS caused by cellular senescence will accelerate the mobility and
mortality of patients with LN (Gao et al., 2019). Several experiments
proved renal damage of cellular senescence in lupus mice, and
suppressive therapy targeting the accumulation of cellular
senescence is beneficial for remission of LN (Tilman et al., 2023).

However, there is rare research exploring the function of cellular
senescence in the context of LN from molecular or cellular
perspectives. Hence, we focus on the cellular senescence related
to LN and utilize bioinformatic ways to find genes associated with
cellular senescence and LN from the Gene Expression Omnibus
(GEO) database. Then machine learning algorithms were used to
screen out hub genes with talent predictive value. In addition, we
also employed Gene Set Enrichment Analysis (GSEA), immune
filtration analysis and transcription network analysis to understand
the potential roles of genes related to cellular senescence in the
pathogenic progress of LN, with a desire to inspire new diagnosis or
treatment strategies for optimizing clinical management of LN.

2 Materials and methods

2.1 Data collection

We searched the National Center for Biotechnology Information
Gene Expression Omnibus (GEO) database (http://www.ncbi.nih.gov/
geo/) for Lupus nephritis gene expression profile data. GSE32591 (32LN
samples and 14 controls, GPL14663), GSE127797 (41 LN samples,
GPL24299) and GSE104948 (32 LN samples and 21 controls,
GPL24120 and GPL22945) were selected for training, and

GSE180393 (15 LN samples and nine controls, GPL19983) was used
as a validation set. All of the kidney tissue samples above were acquired
from glomerulus, rather than other tissue specimens. We employed the
“sva” R package to integrate gene expression information of the three
datasets based on different platforms in order to remove batch effects.
After data pre-progressing, the training set contained 105 LN patients
and 35 healthy controls. Cellular Senescence-related genes (CSGs) were
obtained from the MSigDB (Molecular Signatures Database) genetic
database (https://www.gsea-msigdb.org/gsea/msigdb), as shown
in Figure 1.

2.2 Identification of differential expression
genes in LN

The “limma” R package was utilized to identify differentially
expressed genes (DEGs) between LN patients and healthy controls
in the training set, with the threshold set as |log2FC| > 0.5 and p <
0.05. Totally 1,208 DEGs were screened and the result was presented
in the form of heatmap and volcano ploy by the “heatmap” package
and the “ggplot2” package, respectively.

2.3 WGCNA

We performedWeighted Gene Go-expression Network Analysis
(WGCNA) in advantage of the “WGCNA” package. In the
beginning, variance of genes expression levels in the training set
was calculated and genes with the top 25% variance were extracted
for subsequent analysis. To eliminate outliers of the samples, we
constructed a sample tree via the “hclust” function. The inclusion
criterion was set as tree height below 52 and three samples were
removed. We created an adjacency matrix to define the connection
power between each two genes, with the best soft thresholding
decided to be seven through the “pickSoftThreshold”method, where
the corresponding R2 was 0.9. Then the topological overlap measure
(TOM) was used to assess the proximity between genes for the
construction of a scale-free topology network, which combined the
adjacency of two genes and the connection strengths these two genes
shared with another gene. We categorized genes into different gene
modules according to their interconnection by a dynamic tree-
cutting algorithm, which means that genes in the same module
exhibited similar expression patterns. Each module contained at
least 30 genes and genes of cluster tree height below 0.25 were
integrated into one module for the consideration that their
expression characteristics were parallel. Finally, we calculated
gene significance (GS) and module membership (MM) to
evaluated the association strength between gene modules and the
clinical feature, which defined as LN in our research. The module
with the strongest relevance to LN was identified to be a key module.

2.4 Identification of CS-DEGs and functional
enrichment analysis

The intersection of CSGs, DEGs and genes in the key module were
judged as CS-DEGs linked to LN and the analyzing progress was visual in
themanner of aVennplot. After the acquisition ofCS-DEGs,we used the
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“RCircos” package to localize each gene of the CS-DEGs set in human
chromosome. Based on the STRING database (https://www.string-db.
org/), protein-protein interaction (PPI) network was analyzed to exhibit
the interaction within the CS-DEGs. Moreover, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed through the “clusterProfiler” package to
speculate possible function of CS-DEGs in LN.

2.5 Identification of hub CS-DEGs by
machine learning

We used three machine learning algorithms including Least
absolute shrinkage and selection operator (LASSO) regression,

Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) and Random Forest (RF) analysis to identify hub CS-DEGs.
LASSO regression is a form of regularization designed to limit
prediction error and enhance the interpretability of the statistical
model (Ranstam and Cook, 2018). SVM-RFE selects vital genes
by delaminating variables with the lowest weights based on their
importance ranking (Cortes and Vapnik, 1995; Sanz et al., 2018).
RF is a meta estimator designed to fit a number of decision tree
classifiers on various sub-samples of the dataset aiming to reduce
the number of variables while maintaining computational
efficiency (Breiman, 2001). We used the “glmnet” package, the
“e1071” package and the “randomForest” package to discern hub
CS-DEGs that overlapped across these three machine learning
algorithms.

FIGURE 1
The flow diagram of the study.
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Specifically, for LASSO regression, we employed the “glmnet”
package and trained the model using 10-fold cross-validation to
determine the optimal regularization parameter (λ). The best λ
was selected based on the minimum mean cross-validated error.
For SVM-RFE, the “msvmRFE” package was utilized to perform
10-fold cross-validation, ensuring robustness in feature selection. To
enhance reproducibility, the process was repeated multiple times with
a fixed random seed. The Random Forest model was constructed
using 1,000 trees, with the optimal “mtry” parameter determined by
evaluating the out-of-bag (OOB) error across different values. Besides,
feature importance was assessed using theMeanDecrease inAccuracy
and the Mean Decrease in Node Impurity. These systematic steps
ensured that the selected features were consistently robust across the
different machine learning methods.

Additionally, in order to access the importance of hub CS-DEGs,
receiver operating characteristic (ROC) curves were drew by the
“pROC” package to show the ability of each gene to predict LN in the
training set, along with the validation set (GSE180393). The
magnitude of area under the ROC curve (AUC) and the
consistency of genes expression pattern in the training and
validation set were the criteria for choosing hub CS-DEGs as
potential biomarkers.

2.6 GSEA analysis

Gene Set Enrichment Analysis (GSEA) is an analytical technique
for interpreting gene biological function and clinical connection
with LN based on gene expression matrix. To explore underlying
biological function of biomarkers, we conducted single-gene GSEA
enrichment analysis to uncover latent KEGG pathways through the
“clusterProfiler” package. The p value <0.05 was used as the cut-
off threshold.

2.7 Immune cell infiltration analysis

We calculated the abundance of 22 immune cell within LN samples
and healthy controls, and investigated statistical differences between the
two groups in the “CIBERSORT” package. Furthermore, we analyzed
the correlation between gene expression and the abundance of
22 immune cell infiltration to explore the influence of biomarkers to
immune microenvironment in the context of LN.

2.8 Construction of “TF-miRNA-gene”
network and prediction of potential drugs

We downloaded interaction information of transcription factors
(TFs) and miRNAs associated with biomarkers from the
NetworkAnalyst database (https://www.net-workanalyst.ca/),
which renders comprehensive gene expression data verified by
experimental studies as well as computational predictions. The
Cytoscape software was utilized to complete the mapping of the
“TF-miRNA-gene” network.

The DGIdb database (https://www.dgidb.org/) is a public
resource consolidates disparate data sources describing drug-gene
interactions and gene druggability (Cannon et al., 2024). We

searched the website to discover drugs or small organic
compounds aiming at biomarkers, which were potential to be
novel LN therapeutic drugs.

2.9 Clinical analysis

For the sake of the relationships between biomarkers and clinical
features and pathological types of LN, the Nephroseq database
(https://nephroseq.org/resour-ce/main.html), which provides
extensive information on kidney disease burden and molecular
mechanisms, was used for analysis.

3 Results

3.1 Data acquisition and processing

Using the “sva” package, batch effects were eliminated in
training set merged by GSE3259, GSE127797 and GSE104948, as
shown in Figures 2A, B. According to expression profile data derived
from the training set containing 10,490 genes, 1,208 DEGs between
LN and healthy group were obtained, among which 660 genes were
upregulated and 548 were downregulated, as shown in the volcano
map and heatmap (Figures 2C, D). Besides, 432 genes relevant to
cellular senescence (CSGs) were found from the MSigDB database.

3.2 Identification of LN-related
gene modules

WGCNA was performed to dig out key gene modules related to
LN. The sample dendrogram (Figure 3A) revealed the sample
clustering results, and three outliers were deleted for the
robustness of analysis. The soft threshold was chosen as seven to
produce higher similarity with a scale-free network as elucidated by
the results of the scale-free topology model fit andmean connectivity
(Figures 3B, C). The gene hierarchy clustering dendrogram
(Figure 3D) showed the distribution of modules. A total of
10 modules were obtained through average hierarchical clustering
and dynamic tree clipping, as exhibited in the heatmap (Figure 3E).
MEturquoise, MEpink, MEyellow, MEblack, MEblue and MEred
possessed statistically significant relationship with LN. Among the
10 modules, the turquoise module consisting of 840 genes was
selected as key gene module for the reason that it displayed the
highest correlation with LN (a correlation coefficient of 0.91 and a
p-value of 3e-5). Meanwhile, a significant correlation was noted
between gene significance (GS) and module membership (MM) in
the turquoise module, with a correlation coefficient of 0.94 and a
p-value of 1e-200 (Figure 3F). Genes in the turquoise module were
identified as key genes for further study.

3.3 Identification of CS-DEGs and functional
enrichment analysis

We plotted a Venn diagram to show the logical relation between
DEGs, CSGs and genes in the key module (Figure 4A). A total of
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20 genes overlapping above gene sets were emerged as CS-DEGs,
which consisted of PLK2, TBX3, TWIST1, VASH1, HYAL2, EZH2,
LMNB1, MAP4K4, RPS6KA3, IDO1, IL1B, ALOX5, PLA2G4A,
PTGER2, PTGER4, PTGS1, PTGS2, PRKCB, S1PR1 and SGPP1.
Figure 4B shows the location of 20 CS-DEGs on 23 human
chromosomes. PPI network analysis (Figure 4C) revealed the
gene PTGS2 and IL1B connected to the most interdependent
proteins and functioned as central roles, followed by ALOX5,
PTGER4, PTGS1 and PLA2G4A.

GO enrichment analysis revealed that CS-DEGs may
participate in prostanoid metabolic process, regulation of
inflammatory response and monocarboxylic acid biosynthetic
process, as shown in Figure 4D. As for KEGG pathway analysis,
the top 20 enriched pathways of CS-DEGs involved
Inflammatory mediator regulation of TRP channels,
Serotonergic synapse, Arachidonic acid metabolism, VEGF
signaling pathway, MAPK signaling pathway and NF-kappa B
signaling pathway, more details seen in Figure 4E.

3.4 Obtainment of hub CS-DEGs by
machine learning

To determine the hub CS-DEGs, we employed three machine
learning methods. First, we performed the lasso regression analysis,
an algorithm invol¬ving an L1 penalty to screen out genes strongly
associated with LN. With the optimal λ value, 18 genes (PLK2,
TBX3, VASH1, HYAL2, EZH2, LMNB1, MAP4K4, RPS6KA3,
IDO1, ALOX5, PLA2G4A, PTGER2, PTGER4, PTGS1, PTGS2,
PRKCB, S1PR1 and SGPP1) were obtained (Figures 5A, B). Next,
SVM-RFE analysis selected 12 genes (PTGER4, YAL2, PTGER2,
ALOX5, PLA2G4A, PTGS1, IDO1, LMNB1, IL1B, SGPP1,
PLK2 and PRKCB) as highly correlated with LN (Figure 5C).
Last, the RF algorithm generated a rank list about Mean
Decrease Accuracy and Mean Decrease Gini of CS-DEGs
(Figures 5D, E). Genes belonged to the Top10 Mean Decrease
Accuracy ranking list and the Top10 Mean Decrease Gini
ranking list were judged as important genes related to LN, which

FIGURE 2
Identification of DEGs in LN. (A) PCA scatter plot of the training set before batch correction. (B) PCA scatter plot of the training set after batch
correction. (C) Volcano plot of DEGs between LN and normal groups. (D) Heatmap of the top 50 DEGs.
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FIGURE 3
Identification of gene modules related to LN by WGCNA. (A) Sample clustering dendrogram of 137 samples in the training set with three outliers
eliminated. (B, C) The scale-free fit index and themean connectivity for different soft-thresholding powers (β). (D)Dendrogram of genes clustered via the
dissimilarity measure (1-TOM) and hierarchical clustering. (E)Heatmap of the correlation between module genes and the disease status of LN. (F) Scatter
plot of gene significance (GS) versus module membership (MM) of the turquoise module.
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made up 9 (PLA2G4A, PTGER2, HYAL2, PTGS1, ALOX5,
RPS6KA3, PRKCB, EZH2 and MAP4K4). We handled the genes
obtained from three algorithms with the “VennDiagram” package

and the intersection of them were identified as hub CS-DEGs,
including HYAL2, PTGER2, ALOX5, PLA2G4A, PTGS1,
PRKCB (Figure 5F).

FIGURE 4
The identification and function analysis of CS-DEGs. (A) Venn diagram showing 20 CS-DEGs in LN that overlapped DEGs, key module genes, and
CSGs. (B) Chromosome localization circles of CS-DEGs. (C) PPI network of CS-DEGs. (D) GO results (E) KEGG analysis results.
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FIGURE 5
Screening hub CS-DEGs by machine learning. (A) LASSO regression of 10 hub genes. (B) Cross validation of parameter selection in LASSO
regression. (C) The important feature selection graph obtained by SVM-RFE algorithm. (D) RF algorithm illustrating the relationship between the number
of trees and error rate. (E) Ranking of genes based on their relative importance through the RF algorithm. (F) Venn diagram showing the hub genes shared
by SVM-RFE, LASSO and RF algorithms.
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FIGURE 6
Validation of six hub CS-DEGs. (A, B) ROC curves of the six hub genes in the training set and the external validation set. ALOX5, PRKCB, and
PTGER2 demonstrated strong diagnostic values for LN in the external validation set (AUC> 0.75). (C, D) The expression pattern of the six hub genes in the
external validation set.
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FIGURE 7
GSEA and immune filtration analysis results. (A–C) Single-gene GSEA of biomarkers (ALOX5, PTGER2, and PRKCB). (D) Abundances of twenty-one
immune cells differed significantly in LN. (E)Heatmap of correlation analysis of biomarkers and twenty-one kinds of immune cells (F–H) Lollipop plots of
correlation analysis of biomarkers and twenty-one kinds of immune cells.
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The predictive power for LN of six hub CS-DEGs
demonstrated outstanding for their AUC all above 0.9 in the
training set (Figure 6A). Then we drew ROC curves of each gene
in the external independent validation set and found three genes
of them (ALOX5, PTGER2, PRKCB) retained dominant
predictive ability, with the AUC of which above 0.75
(Figure 6B). Besides, box plots (Figures 6C, D) illustrated that
the expression pattern of ALOX5, PTGER2, PRKCB in the
validation set was entirely consistent with the training set
because all of these genes were upregulated in the LN samples.
In conclusion, ALOX5, PTGER2, PRKCB were identified as
biomarkers related to LN.

3.5 GSEA analysis

To explore the potential physiopathologic function of
ALOX5, PTGER2 and PRKCB in LN, we implemented single
gene GSEA. The results were shown in Figures 7A–C, reflecting
enrichment functional pathways of each gene by comparing
gene expression data in descending order with predefined gene
sets. Based on GSEA results, ALOX5 was relevant to B Cell
receptor signaling pathway, Chemokine signaling pathway,
Lipid and atherosclerosis, Natural killer cell mediated
cytotoxicity, NF−kappa B signaling pathway and NOD−like
receptor signaling pathway. PTGER2 was relevant to Natural
killer cell mediated cytotoxicity, NOD−like receptor signaling
pathway and Toll−like receptor signaling pathway. PRKCB was
relevant to B Cell receptor signaling pathway, Natural killer cell
mediated cytotoxicity, NF−kappa B signaling pathway, Th1 and
Th2 cell differentiation and Viral protein interaction with
cytokine and cytokine receptor.

3.6 Immune cell infiltration analysis

LN is a multi-organ disease with a diverse pathogenesis
characterized by immune system dysfunction. In order to find
the relationship between expression level of hub CS-DEGs and
immune cell abundance, we carried out immune cell infiltration
analysis through the “CIBERSORT” package. First, we studied
proportions of immune cells in LN group and healthy group. The
box plot (Figure 7D) illustrated that 12 out of 22 immune cells
expressed differentially in LN group, including naive B Cells,
resting dendritic cells, Macrophages M0, Macrophages M2,
resting Mast cells, activated Mast cells, Monocytes, resting NK
cells, activated NK cells, CD4 memory resting T Cells,
CD8 T Cells and regulatory T Cell. The results of single gene
CIBRSORT analysis uncovered that ALOX5, PTGER2 and
PRKCB presented similar immune cells expressing pattern
(Figures 7E–H). They shared positive correlation with
activated NK cells (p < 0.001), Monocytes (p < 0.001) and
negative correlation with resting NK cells (p < 0.001),
regulatory T Cells (p < 0.001), Resting memory CD4 T Cells
(p < 0.001) and naive B Cells (p < 0.05). In addition, both
ALOX5 and PRKCB were positively related to gamma delta
T Cell (p < 0.001).

3.7 Construction of regulatory network and
prediction of potential drugs

As can be seen from Figure 8A, the “TF-miRNA-gene” network
with 78 nodes and 83 edges manifested interaction between TF,
miRNA and three biomarkers. In the network, EGR1 and Has-miR-
188–3p regulated expression of ALOX5, PTGER2 and PRKCB.
Based on the DGIdb database, we gained 66 drugs targeting at
any of the hub CS-DEGs. The top 30 drugs ranking on interaction
score were presented in Figure 8B.

3.8 Clinical analysis

The results of the correlation analysis in the Nephroseq database
were exhibited in Figures 9A–C. PTGER2 expression levels were
significantly elevated in patients of CKD stage 2 compared with that
of CKD stage 1. The relationships between other biomarkers and
CKD stages were not statistically significant. When it comes to
proteinuria levels, both ALOX5 and PRKCB were positively related
to proteinuria levels. But the relationship between PTGER2 and
proteinuria did not reach statistical significance. We also attempted
to analyze the relationship between biomarkers and LN pathological
types. In spite of the lack of statistical significance of the differences
between biomarker expression in diverse LN types, there was a
tendency that ALOX5 and PRKCB were highly expressed in patients
of class Ⅱ.

4 Discussion

LN is a common organ manifestation of SLE with ambiguous
etiology and almost half of SLE patients suffer from LN within
5 years of an SLE diagnosis (Anders et al., 2020). Currently available
treatment of LN contains nonsteroidal anti-inflammatory drugs
(NSAIDs), antimalarial drugs, corticosteroids,
immunosuppressants and biologics. But clinical efficacy of
existing treatment strategies are far from satisfactory, which
highlights the request for novel insights for the pathology and
management of LN.

Cellular senescence is an irreversible progress characterized by
permeant arrest of cell cycle and the development of a multi-
component senescence-associated secretory phenotype (SASP),
which plays a crucial role in chronic disorders and non-
infectious diseases (Spinelli et al., 2023). Different types of
glomerular nephritis are demonstrated at the nexus of cellular
senescence markers (Valentijn et al., 2018). Several studies
reported that in mesenchymal stem cells (MSCs) from SLE
patients, signaling pathways including PI3K/Akt, PTEN/Akt,
JAK-STAT, p53/p21, and Wnt/beta-catenin are activated in the
development of the senescence phenotype (Li et al., 2021). MRL/lpr
mice with severe proteinuria displayed increased glomerular
expression of senescence-associated β-galactosidase (SA-β-Gal),
positively related to urinary protein levels and expression of α-
SMA, which resulted in the postulation that accelerated senescence
of cells induced glomerular injury in LN (Yang et al., 2018).
Dihydroartemisinin (DHA) was proven beneficial in ameliorating
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the symptoms in pristane-induced lupus mice including renal injury
via protecting myeloid-derived suppressor cells (MDSCs) from
senescence (Li et al., 2019). Similarly, in LN patients, the
biomarker of cellular senescence p16INK4a highly expressed and
was significantly associated with lower estimated glomerular
filtration rate and 5 years post-treatment (Tilman et al., 2023).
Based on that, it is reasonable to speculate that cellular
senescence makes contributions to the pathogenesis of LN.

This study utilized bioinformatic strategies to analyze the
relationship between LN and cellular senescence. We obtained
1,208 DEGs related to LN from the microarray datasets. Then
20 CS-DEGs were identified through overlap calculation of DEGs
related to LN, CSGs and WGCNA genes. We conducted GO and
KEGG pathway enrichment analysis to interpret possible function
behind the pathology of LN. The results showed that CS-DEGs were
closed tied to icosanoid and prostaglandin biosynthetic process and
Inflammatory mediator regulation of TRP channels (Ricciotti and
FitzGerald, 2011; Dennis and Norris, 2015). Icosanoid and
prostaglandin are both products derived from arachidonic acid.
They can mediate bidirectional inflammatory response, which may
exert ambiguous influence on the course of LN. TRP channels
distributed along the nephron play an important role in renal
diseases (Hsu et al., 2007). These findings suggest that CS-DEGs
maymake a difference in the progression of LN. Then, three hub CS-
DEGs genes ALOX5, PTGER2 and PRKCB were identified as
biomarkers through machine learning algorithms and they were
deemed promising for the new perspective of the diagnosis and
treatment for LN. To further explore their effects on LN, GSEA and
immune filtration analysis were performed.

ALOX5 (arachidonate 5-lipoxygenase) encodes a pivotal
enzyme responsible for the synthesis of proinflammatory
leukotrienes from arachidonic acid. ALOX5 participates in
cellular senescence by accelerating growth arrest through a p53/

p21-dependent pathway independently of telomerase activity
(Catalano et al., 2005). A metabolic study containing 20 SLE
patients and nine healthy controls found that Leukotriene B4
(LTB4) and 5-Hydroxyeicosatetraenoic acid (5-HETE) were
significantly elevated in SLE, which could discriminate SLE
patients from normal controls (Wu et al., 2012). Since the last
century, a flow of investigation has implied the renal damage of
leukotriene, and montelukast, a kind of CysLT1 receptor antagonist,
could attenuate oxidative stress, histopathological markers of tissue
damage, cytokine release and protect renal function (Rubinstein and
Dvash, 2018). Also, LTB4 and its receptor BLT1 were demonstrated
to involve in the pathogenesis of glomerulonephritis mediated by
immune complex (Shioda et al., 2023). Evidence has shown that
interleukin 1β, tumour necrosis factor α, and histamine signaling
enhance ALOX5 activity, ultimately triggering reactive oxygen
species (ROS)-mediated NF-κB activation, which is consistent
with our GSEA result that ALOX5 links to NF-κB signal
pathway. These findings potently support the kidney affliction of
ALOX5 in the etiology of LN.

PTGER2 (Prostaglandin E Receptor 2) encodes a receptor for
prostaglandin E2 (PGE2), namely, EP2, which is another metabolite
of arachidonic acid apart from leukotrienes. PGE2 can be generated
by almost all types of cells and deeply impact pathophysiological
activity by binding to different prostaglandin E receptors EP1, EP2,
EP3, and EP4 (Cheng et al., 2021). PTGER2 is an important
mediator in cellular senescence. Increasing levels of PGE2 with
age impaired glycolysis and restrained the mitochondrial oxygen
consumption rate (OCR) in humanmonocyte-derived macrophages
(MDMs), which depended on the EP2 receptor, rather than other
receptors. The inhibition of PGE2–EP2 signaling by EP2 agonist
leaded to the restoration of energy production in ageing myeloid
cells (Minhas et al., 2021). According to this bioinformatic analysis,
PTGER2, which encodes EP2, may do harm to the kidney through

FIGURE 8
(A) “TF-miRNA-gene” network presenting the regulatory mechanisms of biomarkers. (B) The relationship between biomarkers and drugs predicted
from the public database.
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cellular senescence in the context of LN. But the role of EP2 in renal
diseases remains elusive. Some studies demonstrated that
stimulation of the EP2 receptor effectively mitigates renal
fibrogenesis and relieves chronic kidney failure (Nasrallah et al.,
2014; Jensen et al., 2019). While some studies announced that
EP2 take part in the podocyte affliction of tensile stress and fluid
flow shear stress (FFSS), which is a markable cause for albuminuria
in hyperfiltration-mediated kidney damage (Srivastava et al., 2014).
The question about whether PTGER2 plays a protective or
detrimental role in kidney diseases lacks general consensus and
calls for more investigation.

PRKCB (protein kinase C beta) belong to a family of serine- and
threonine-specific protein kinases. PRKCB has been reported to
connect with various cellular functions, including oxidative
stress–induced apoptosis, androgen receptor–dependent

transcription regulation, B Cell activation, intestinal sugar
absorption, endothelial cell proliferation, energy metabolism and
autophagy (Steinberg, 2008; Mehta, 2014). In addition, PRKCB
plays a central role in B Cell receptor (BCR)-mediated NF-κB
activation and inhibition of PRKCB accelerates cell death in B
lymphomas characterized by activated NF-κB (Su et al., 2002).
An investigation recruited 60 patients with SLE and 62 healthy
controls and examined their expression of PRKCB mRNA in
peripheral blood mononuclear cells (Zhu et al., 2018), which
found the PRKCB mRNA expression levels of SLE patients were
significantly augmented in comparison with those in healthy cases.
Notably, the investigation also found the levels of PRKCB mRNA
were negatively correlated with SLEDAI and proteinuria. Besides,
evidence shows that PRKCB upregulated at the gene expression level
in diabetic nephropathy, proven to be a predictor for worsening of

FIGURE 9
Relationships between the expression of biomarkers and stage of chronic kidney disease (CKD), proteinuria and LN pathological classification. (A)
Relationship between the expression of ALOX5 and three variables: stage of CKD, proteinuria and pathological classification. (B) Relationship between the
expression of PTGER2 and three variables: stage of CKD, proteinuria and pathological classification. (C) Relationship between the expression of PRKCB
and three variables: stage of CKD, proteinuria and pathological classification.
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kidney disease in subjects with type 2 diabetes (Araki et al., 2006;
Langham et al., 2008). Our study confirmed PRKCB could predict
the onset of LN with accuracy and was positively correlated with
proteinuria in LN patients based on the nephroseq database, which
is a bit contradictory with the foreign investigation. In conclusion, it
deserves more consideration and investigation focused on the
influence of PRKCB on the progression of LN.

To further delve into the roles of ALOX5, PTGER2 and PRKCB
in the pathology mechanisms of LN, the single-gene GSEA analysis
was performed. The results indicated the functions of three genes
were centered on “B Cell receptor signaling pathway” and
“NF−kappa B signaling pathway”. Aging extensively reshapes the
generation and function of B Cells, which contributes to the
pathogenesis of several autoimmune diseases such as SLE,
rheumatoid arthritis, scleroderma. Crohn disease and Sjögren
syndrome (Cancro, 2020). A clinical trial showed that in SLE
patients treated with belimumab, an inhibitor of B-lymphocyte
stimulator (BLyS) which exceptionally attenuate the risk of lupus
nephritis flare and eGFR decline, the loss of cells consistent with the
age-associated B Cell (ABC) phenotype was correlated with
therapeutic response. Conclusive evidence illustrated that
senescent cells drive production of reactive oxygen species (ROS)
so as to activate NF-κB signaling pathway (Nelson et al., 2018). NF-
kappa B signaling pathway participates in the initiation of
inflammatory response and promotes the onset of diverse
autoimmune diseases including LN (Yu et al., 2020). The
upregulated expression of molecules related to the NF-κB
signaling pathway in the kidneys of MRL/lpr mice indicated that
activation of the NF-κB pathway is an important factor of kidney
damage in SLE and may be responsible for lupus activity (Li X.
et al., 2022).

LN is a multi-organ autoimmune disease with complex
microimmune environment. The immune filtration analysis of
immune cell percentage between LN groups and control groups
showed that LN patients were characterized by increased activated
NK cells, monocytes, and decreased resting NK cells, Tregs,
significantly associated with three biomarkers. Along with the
decline in NK cell cytotoxicity with age declared by some reports
(Kucuksezer et al., 2021; Brauning et al., 2022), in SLE patients, the
cytotoxic activities of NK cells were also demonstrated to be
suppressed (Erkeller-Yuksel et al., 1997; Riccieri et al., 2000; Park
et al., 2009). Compared with healthy controls, the CD56dimNK cells
in SLE patients produced more IFN-γ and displayed relatively
activated phenotypic characteristics, including significant
increases in NKp44, NKp46, and CD69 and decreased expression
of CD16 and CD158a/h/g (Liu et al., 2021). Though several studies
reported that activated NK cells in the kidney may lead to inducing
and maintaining inflammation in LN (Spada et al., 2015a; Spada
et al., 2015b), data in the literature with respect to the role of NK cells
in LN is scarce. The amount of monocyte is elevated in SLE patients,
and in particular, CD16+ monocytes are infiltrated in the kidney of
LN patients, proven to involve in tissue damage and disease activity
(Yoshimoto et al., 2007; Barrera García et al., 2016; Kuriakose et al.,
2019). The pathological relevance is partly owing to the reason that
CD16+ monocytes can bind immobilized immune complexes (ICs)
in renal blood vessels and glomeruli, promoting their extravasation

into the inflamed kidney tissue (Olaru et al., 2018). Tregs are
essential for the homeostasis of the immune system by
preventing abnormal activation of the immune system and
maintaining autoimmune tolerance (Li Y. et al., 2022; Li et al.,
2023). Numerous researches highlighted the vital contribution of
suppressed regulatory T Cells to the progress of LN, which provide a
novel therapeutic approach targeting Treg cells for the control of LN
(Venkatadri et al., 2021; Tsai et al., 2023).

Our DGIdb analysis identified ALOX5 as the most frequently
targeted gene among the three hub CS-DEGs, followed by PTGER2.
Notably, nine compounds demonstrated high interaction scores
(>3), including EVATANEPAG, OMIDENEPAG,
OMIDENEPAG ISOPROPYL, TAPRENEPAG ISOPROPYL,
SIMENEPAG ISOPROPYL, PF-4191834, ATRELEUTON,
CHEMBL502496, and ZILEUTON. Of these, five targeted
PTGER2 while three acted on ALOX5. This pharmacological
profiling suggests both ALOX5 and PTGER2 represent promising
therapeutic targets for further investigation in lupus nephritis. The
predominance of high-scoring compounds targeting these two genes
underscores their potential clinical relevance and warrants future
experimental validation.

There remain several limitations of our study. First, the research
data from public database only contains expression levels of genes and
disease state of each sample.We cannot assess the connection between
gene expression levels and clinical features such as the activity of LN,
serum creatine levels and proteinura. The lack of large scale real-world
clinical information limits the extensive validation of the predictive
instrument. Second, additional molecular biology experiments or
animal experiments are required to further validate the importance
of cellular senescence-related genes in LN and explore their potential
pathogenic mechanisms. Third, different pathological types of LN
present different prognosis, which lead to different treatment
strategies, so investigation concentrated on cellular senescence
among various pathological types of LN are needed.

This study explored the potential relationship between cellular
senescence and LN, and identified three hub CS-DEGs as
biomarkers playing key roles in LN. Genes including ALOX5,
PTGER2, and PRKCB were deemed promising for the new
perspective of the diagnosis and treatment for LN.
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