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Background: Deep vein thrombosis (DVT) is a prevalent peripheral vascular
disease. The intricate and multifaceted nature of the associated mechanisms
hinders a comprehensive understanding of disease-relevant targets. This study
aimed to identify and examine the most distinctive genes linked to DVT.

Methods: In this study, the bulk RNA sequencing (bulk RNA-seq) analysis was
conducted on whole blood samples from 11 DVT patients and six control groups.
Topology analysis was performed using seven protein-protein interaction (PPI)
network algorithms. The combination of weighted correlation network analysis
(WGCNA) and clinical prediction models was employed to validate hub DEGs.
Furthermore, single-cell RNA sequencing (scRNA-seq) was performed on
peripheral blood samples from 3 DVT patients and three control groups to
probe the cellular localization of target genes. Based on the same
methodology as the internal test set, 12 DVT patients and six control groups
were collected to construct an external test set and validated using machine
learning (ML) algorithms and immunofluorescence (IF). Concurrently, the
examination of the pathways in disparate cell populations was conducted on
the basis of the CellChat pathway.

Results: A total of 193 DEGs were identified in the internal test set. Additionally, a
total of eight highly characteristic genes (including TLR1, TLR7, TLR8, CXCR4,
DDX58, TNFSF10, FCGR1A and CD36) were identified by the PPI network
algorithm. In accordance with the WGCNA model, the aforementioned genes
were all situated within the blue core module, exhibiting a correlation coefficient
of 0.84. The model demonstrated notable disparities in TLR8 (P = 0.018, AUC =
0.847), CXCR4 (P = 0.00088, AUC= 1.000), TNFSF10 (P = 0.00075, AUC= 0.958),
and FCGR1A (P = 0.00022, AUC = 0.986). Furthermore, scRNA-seq
demonstrated that B cells, T cells and monocytes play an active role in DVT.
In the external validation set, CXCR4 was validated as a potential target by the ML
algorithm and IF. In the context of the CellChat pathway, it indicated that MIF -
(CD74 + CXCR4) plays a potential role.
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Conclusion: The findings of this study indicate that CXCR4may serve as a potential
genetic marker for DVT, with MIF - (CD74 + CXCR4) potentially implicated in the
regulatory mechanisms underlying DVT.
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deep vein thrombosis, venous thromboembolism, WGCNA, bulk RNA-seq, ScRNA-seq,
machine learning

1 Introduction

Deep vein thrombosis (DVT) is a commonmultifactorial disease
with high morbidity and mortality, accounting for up to 40% of
peripheral vascular disease. The incidence of DVT is also increasing
due to an ageing population and the increased incidence of related
comorbidities, including obesity, heart failure and cancer, with
common chronic complications including post-thrombotic
syndrome (PTS) (25%–38%) and venous ulcers (9.8%) (Duffett,
2022; Di Nisio et al., 2016; Bani-Hani et al., 2008; Kahn, 2010).
Complications can occur immediately after acute DVT or months to
years later. In clinical diagnosis, however, the diagnosis of DVT and
its complications based on clinical presentation alone is unreliable
due to the poor specificity of signs and symptoms (Boon et al., 2018).
Venography is considered the “gold standard” for the diagnosis of
DVT due to its invasiveness, high cost and technical characteristics
(Khan et al., 2021). However, imaging is not recommended for every
DVT patient due to the potential harms of the procedure, including
radiation and contrast risks, as well as the associated medical costs,
and is rarely used in daily practice (Khan et al., 2021; Koupenova
et al., 2016). Furthermore, because of the susceptibility of the
diagnostic process to interference from non-thrombotic
conditions, including infection, surgery and tumours, the clinical
use of non-invasive biomarkers with high specificity and sensitivity
is lacking (Duffett, 2022; Kahn, 2010; Burgazli et al., 2013).

Bulk RNA sequencing (bulk RNA-seq) can reveal tissue-wide
transcriptional expression profiles, but it masks differences
between individual cells. In contrast, the emerging single-cell
RNA sequencing (scRNA-seq) is a popular transcriptomics tool
that reveals the expression profile of individual cells and
complements traditional RNA-seq (Lu et al., 2023; Cheng et al.,
2023; Nie et al., 2023). This not only explains the transcriptome
heterogeneity of the cells, but also enables the identification of
potential gene expression distributions, enabling personalized
screening, diagnosis, treatment and prevention strategies for
individual diseases (Nie et al., 2023; Li et al., 2023). Given this
advantage, a large number of studies have focused on the
identification of potential biomarkers of cardiovascular disease
by integrating bulk RNA-seq and scRNA-seq assays, enabling
precise stratification and identification of patients (Khan et al.,
2024). In the bladder urothelial carcinoma (BLCA), hepatocellular
carcinoma (HCC) and acute pancreatitis (AP), studies have been
conducted in combination with bulk RNA-seq and scRNA-seq to
characterize disease gene expression profiles, which have been
biologically important in unraveling the pathogenesis of the
diseases (Tan et al., 2023; Yu L. et al., 2022; Fang et al., 2022;
Chi et al., 2023; Guo et al., 2023). As with the complex
microenvironment of tumour diseases, there are also complex
mechanisms of cell interaction in thrombotic diseases. However,

there have been no similar reports in cases of DVT (Khan
et al., 2024).

In peripheral vascular disease, as relevant tissues are not
readily available, it is challenging to find large amounts of
unbiased phenotypic data with transcriptome information to
characterise the disease process (Cui et al., 2020).
Concurrently, due to the powerful computational simulation
capabilities of big data, the utilisation of machine learning
(ML) methodologies to develop models has garnered increasing
interest within the domain of medical research (Deo, 2015; Choi
et al., 2020; Lo Vercio et al., 2020). The advantages of ML include
the automated identification of information variables, the capture
of non-linear relationships between variables, and the
enhancement of diagnostic capabilities (Lee et al., 2021; Sultan
et al., 2020; MacEachern and Forkert, 2021). In this context, ML
has indicated great promise in various diagnostic and analytical
modes, including least absolute shrinkage and selection operator
(LASSO), logistic regression (LR), random forest (RF), artificial
neural network (ANN), extreme gradient boosting (XGBoost),
support vector machine-recursive feature elimination (SVM-
RFE) and generalised linear model (GLM). With traditional
statistical methods at their peak in terms of computational
power, ML can explore new possibilities and unravel hidden
disease-intrinsic relationships that can positively impact
diagnosis and prognosis in the vascular field (Deo, 2015;
MacEachern and Forkert, 2021; Rabbani et al., 2022).

The objective of this study is to identify and investigate the
transcriptome characteristics of DVT by integrating bulk RNA-seq
and scRNA-seq. Based on the combined application of multiple models
and algorithms, the disease-related susceptibility genes and
corresponding targets were screened to comprehensively explore the
complexity and intrinsic connectivity of regulatory sites in
DVT (Figure 1).

2 Materials and methods

2.1 Sample collection

In accordance with the 2016 ISTH SSC classification guidelines,
a total of 14 patients with unprovoked DVT diagnosed and treated
by the Department of Vascular Surgery of the Second Affiliated
Hospital of the University of South China, along with nine healthy
controls from the physical examination center, were included in the
study. The aforementioned samples were designated for inclusion in
the internal test set between April 2023 and June 2023.
Concurrently, 12 DVT patients and six control groups were
enrolled as external validation sets using the same methodology.
The period is from August 2023 to December 2023. The participants
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in both groups were matched according to gender, age and body
mass index (BMI). The inclusion criteria were as follows: i) at least
one test result (including ultrasonography or D-dimer test)
supporting the diagnosis of DVT, ii) patients with a first episode
of acute DVT, iii) not receiving anticoagulation, iv) age ≥ 18 years.
The exclusion criteria are as follows: (i) antiphospholipid syndrome
(APS), (ii) pregnancy or breastfeeding, (iii) infection or use of
immunosuppressants within 2 weeks prior to enrolment, (iv)
active or prior malignancy. At the time of admission, we
collected the demographic and clinical data of the enrolled
subjects, namely, gender, age, height, weight, medical history and
laboratory biochemical indicators, and collected 6–8 mL of
peripheral venous blood (DVT patients were drawn before
treatment and healthy control groups were taken from the

morning fasting blood), divided into two samples, and stored in
ethylenediaminetetraacetic acid (EDTA) anticoagulant vessels.
Centrifuge one sample for 5–10 minutesutes and then separate
the plasma sample. We also isolated peripheral blood
mononuclear cells (PBMCs) from another sample and added
500 ul of TRIzol (Invitrogen, United States) to adequately extract
RNAs, and then stored in the −80 °C ultra-low temperature
refrigerator (Thermo Fisher Scientific, United States). The study
was conducted in accordance with the internationally recognized
principles of the Declaration of Helsinki, and was reviewed and
approved by the Hospital Ethics Committee of the Second Affiliated
Hospital of the University of South China (approval number:
2022K091301). We also obtained handwritten informed consent
from all subjects.

FIGURE 1
Workflow diagram presenting sample grouping and data processing, analysis and validation.
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2.2 Determination of total genes

In accordance with the manufacturer’s protocol, total gene
isolation and purification were conducted by using TRIzol on the
samples of DVT patients (n = 11) and control groups (n = 6)
previously collected. Also, the Fragment Analyzer (Agilent,
United States) was used to detect the total gene amount,
concentration, volume, RIN/RON value and 28S/18S of the
sample. And then use the MGIEasy rRNA removal kit (MGI,
China) to remove ribosomal rRNA from the total RNA
according to the instructions. The library was constructed in
accordance with the standard protocol of BGI Genomics Co. Ltd.
(Shenzhen, China), and the data was analyzed on the Dr. Tom
network platform (http://report.bgi.com). The raw data obtained
from sequencing were subjected to filtration by using SOAPnuke
(v1.5.6). Also, we used Ericscript (v0.5.5) for gene fusion assays, and
rMATS (v3.2.5) for alternative splicing and differential alternative
splicing assays. Then Gene expression quantification was performed
with using RSEM (v1.3.1).

2.3 Identification of differentially expressed
genes (DEGs)

The analysis of genes was conducted using the R packages
edgeR (v3.32.1) and limma (v3.26.8) (log2 [FC] > 0.8 or log2
[FC] < −0.8). Concurrently, in order to gain a deeper
understanding of the functional pathways of genes associated
with phenotypic changes, based on hypergeometric tests, R
packages clusterProfiler (v4.12.0) and org. Hs.e.g.,.db (v3.18.0)
were used to perform Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
for DEGs. The results were compared with background genes to
identify significant enrichment terms among candidate genes.
Furthermore, in order to investigate the discrepancies in
functions and associated pathways between disparate groups,
the R package clusterProfiler was employed for gene set
enrichment analysis (GSEA).

2.4 The multi-algorithm network analysis of
the protein-protein interaction (PPI)

In order to gain insight into the biological significance of DEGs,
we employed the STRING database (https://string-db.org/) to study
their interactions at the protein level. Furthermore, Cytoscape (v3.
10.0) was utilised for the purpose of visualisation. Concurrently, a
multi-algorithm network analysis of cytoHubba (v0.1) was
conducted to identify the top genes. The algorithms were selected
for testing, including degree, closeness, maximum neighbourhood
component (MNC), maximum clique centrality (MCC), edge
percolated component (EPC), stress and radiality. The upset plot
has been constructed to provide a comprehensive representation of
the aforementioned results. To provide a comprehensive
explanation of the biological pathways involved in the highly
characteristic genes of the intersections, we conducted the GO
analysis and KEGG enrichment analysis based on the same
methodology.

2.5 Construction and validation of WGCNA

In order to identify highly synergistic gene sets, gene expression in
the validation set was treated with R packages WGCNA (v1.72-5) and
limma in order to describe gene association patterns between different
samples. In order to construct a scale-free co-expression network based
on a soft threshold, the adjacency matrix was used for all gene pairings.
Subsequently, the adjacency matrix was converted into a topological
overlapmatrix (TOM), which enabled the weighted correlation between
the two nodes and other nodes to be compared in order to represent the
similarity of the nodes quantitatively. Concurrently, minModuleSize is
set to 100 in accordance with the algorithm of the function
blockwiseModules, which is employed for the purpose of dividing
different co-expression network modules.

2.6 Construction and evaluation of the
clinical predictive model

Based on the comprehensive expression of the external
validation set, we employed the R package rms (v6.7-1) to
construct the pertinent the nomogram for the highly
characteristic genes that had been identified above, with a view
to exploring their potential clinical value for the prediction of DVT
risk. Additionally, the receiver operating characteristic (ROC) curve
of the model was plotted by using the R package pROC (v1.18.5),
and the discriminant power of the predictive model was assessed by
measuring the area under the curve (AUC). The 95% confidence
interval (CI) of the AUC values was calculated using the DeLong
method to test for differences between AUCs. Subsequently, the
calibration curve was plotted by using the lrm function to assess the
degree of correspondence between the predicted and actual values.
For each individual gene, ROC curves and differential boxplots were
plotted separately in order to assess their efficacy.

2.7 Analysis of single-cell data

The nucleus suspension, with a concentration ranging from 700 to
1,200 per microliter as determined by Count Star, was loaded onto the
Chromium Single Cell Controller (10X Genomics) to generate single-
cell gel beads in emulsion (GEMs), using Gel Bead Kit (v3.1, 10X
Genomics, 1,000,268) and Chromium Single Cell G Chip Kit (10X
Genomics, 1,000,120). Concurrently, the captured cells underwent
lysis, and the released RNA was barcoded through reverse
transcription within individual GEMs. The library was constructed
in accordance with the standard protocol established by BGI
Genomics Co. Ltd., and the samples of DVT patients (n = 3) and
control groups (n = 3) were subjected to analysis in accordance with
the standard protocol. The cells were enumerated and filtered using R
package Seurat (v3.0.2), and the initial 2000 hypervariable
characteristic genes were identified by using Doubletdetection
(v3.0). The function DimHeatmap is used to plot the principal
component analysis (PCA) heatmap. Concurrently, the samples
were performed nonlinear dimensionality reduction based on the
t-distributed stochastic neighbour embedding (t-SNE) pathway, and
the cell clustering results were visualised, with the R package SingleR
(v2.6.0) subsequently used for the automatic annotation of cells. The
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default Wilcoxon rank sum test should be employed to identify
significant DEGs between clusters (log2 [FC] > 1 or log2
[FC] < −1) and to ascertain cell types with highly characteristic
gene localisation. Concurrently, to elucidate the cell-cell
communication relationship and construct a cell-to-cell
communication map, the R package CellChat (v1.6.1) was
employed to analyse the cell-cell interaction.

2.8 Validation and analysis of ML models

In the external validation set, the R package limma was
employed for the screening and analysis of DEGs (log2 [FC] >
1.5 or log2 [FC] < −1.5). In light of the aforementioned outcomes, a
series of common ML algorithms, including LASSO and SVM-RFE,
were executed using the R packages glmnet (v4.1-8), kernlab (v0.9-
33) and caret (v6.0-94). ROC curves were plotted against the
individually screened DEGs to determine statistical differences
between the various model predictions and to rank their
importance in order to account for their clinical relevance. In
order to corroborate the findings of the PPI topology network
analysis in the internal test set, the prediction outcomes of the
aforementioned models were intersected, and the Venn diagram was
constructed using the R package VennDiagram (v1.7.3). The
prediction of human genetic variants falling within the normal
range is facilitated by the Genotype-Tissue Expression (GTEx,
https://gtexportal.org/home/). The prediction is derived from
RNA-seq by Expectation-Maximization (RSEM) genes. The
expression of human tissue for the crossover genes of the
aforementioned validated models was visualised, and their
underlying biological pathways explored by GSEA.

2.9 Immunofluorescence (IF) analysis

For histological analysis, the superficial veins of the lesions and
normal parts of the lower limbs of DVT patients (n = 5) were
surgically removed. The veins were then fixed with 4%
paraformaldehyde for a period of 15 min at room temperature.
The samples were permeabilised with 0.2% Triton X-100 (Beyotime,
China) for 20 min, following which they were blocked with 5%
bovine serum albumin (BSA) (Solarbio, China) for 1 h. The
specimens were incubated with the primary antibody for 1 h and
washed three times with PBST (PBS with 0.1% Tween-20). The
primary antibodies employed in this study encompass the following:
anti-CXCR4 (1:100, Proteintech, China). Following incubation with
appropriate fluorophore-conjugated Cy3 goat anti-rabbit IgG (1:
200, ABclonal, China) and 4′,6-diamidino-2-phenylindole (DAPI)
(Thermo Fisher Scientific, United States), the slides were blocked
with 20% glycerol (Servicebio, China) and then scanned and imaged
using the inverted fluorescence microscope (MSHOT, China).

2.10 Analysis of cell-cell
communication networks

In order to identify the ligand/receptor interaction involved in the
characteristic genes, we conducted an analysis of the total reads of the

same group of characteristic genes in the transcriptome. This was carried
out using the R package CellChat and the web-based Explorer (http://
www.cellchat.org/). The objective was to calculate the expression levels
and quantify the network relationships from the perspectives of graph
theory, pattern recognition and multiple learning.

2.11 Analysis of statistical results

The statistical analysis of all data was conducted using the R
(v4.3.3) and SPSS (v23.0). The Kolmogorov-Smirnov (K-S) test was
employed to ascertain whether the continuous data were normally
distributed. In the case of data that are normally distributed, the t-test
is employed and the results are expressed as a mean ± standard
deviation. In the case of non-normally distributed data, Wilcoxon
rank sum test was employed and the results are reported as themedian
of the quartiles. P-value <0.05 was considered statistical significance.

3 Results

3.1 Overview of total genes and DEGs

In this study, according to the standard experimental procedure,
a total of 17 samples and 120,455 genes were detected using the
DNBSEQ platform after screening samples, sample extraction and
high-throughput sequencing, with an average of 11.33 G data per
sample. In order to identify statistically significant DEGs, a total of
193 distinct mRNAs (upregulated genes: 106, downregulated genes:
87) were obtained by utilising the R package edgeR and limma.
Furthermore, to gain insight into the overall difference in gene
expression profiles between the two groups, volcano plots were
constructed for analysis (Figure 2a), and it was found that the
distribution of DEGs was relatively balanced. The clustering
heatmaps enables the visualisation of gene expression trends in a
given sample based on colour changes (red: upregulated genes, blue:
downregulated genes), thus facilitating the distinction between the
differences between DVT patients and control groups (Figure 2b).
Following the histogram to facilitate the visualisation of the
aforementioned results in a quantitative manner (Figure 2c),
RBFOX2, RPS4Y1 and HECTD4 were the most pronounced DEGs.

3.2 Analysis and evaluation of DEGs

In order to gain a comprehensive understanding of the biological
pathways associated with the enrichment of DEGs, we conducted a
GO analysis. This encompassed biological processes (BP), cellular
components (CC) and molecular functions (MF). The resulting
178 terms pertain to the underlying biological mechanisms.
Subsequent to the enrichment analysis, it was ascertained that
the keyword most frequently occurring in DEGs within the BP
category was positive regulation of response to biotic stimulus (GO:
0002833) and regulation of innate immune response (GO: 0045088).
With regard to the context of CC, the DEGs are predominantly
situated within the chromosome, centromeric core domain (GO:
0034506) and CENP-A containing nucleosome (GO: 0043505). In
contrast, the enrichment pathway in MF is represented by pattern
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recognition receptor activity (GO: 0038187), structural constituent
of chromatin (GO: 0030527) and Toll-like receptor binding (GO:
0035325) (Figure 2d). This indicates that the molecular mechanisms
involved in the development of DVT are diverse and complex. To

gain further insight into the pertinent biological processes, we
conducted the KEGG analysis of the DEGs. Further analysis of
the initial 15 pathways revealed that the formation of neutrophil
extracellular traps (KEGG: hsa04613) constituted one of the most

FIGURE 2
Initial identification, analysis and evaluation of DEGs. (a) Volcano plot of 193 DEGs. (b) Clustering heatmap of 193 DEGs. (c) Histogram of 193 DEGs.
(d) GO analysis enrichment pathway and annotation diagram of 193 DEGs. (e) KEGG enrichment pathway and annotation diagram of 193 DEGs. (f) GSEA
enriched pathway histogram of 193 DGEs. (g) GSEA enrichment plots of significant pathways.
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significant biological pathways in the development of DVT.
Furthermore, 15 DEGs were identified as associated with this
bioregulatory process (Figure 2e). In the concentrated display of

GSEA, it can be inferred that the α-interferon pathway and TNF
signalling pathway may be involved in the regulatory process of
DVT (Figures 2f,g). This further identifies the most important

FIGURE 3
The hub DEGs were identified by the PPI network algorithm model. (a) PPI network diagram of 193 DEGs. (b) The top 15 DEGs were identified
through multi-algorithm network analysis, including closeness, degree, EPC, MCC, MNC, radiality and stress, and color is redder with significance. (c)
Upset plot of intersection with DEGs for seven algorithm network models. (d) GO analysis enrichment pathway and annotation diagram of eight highly
characteristic genes. (e) KEGG enrichment pathway and annotation diagram of eight highly characteristic genes.
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biochemical and signal transduction pathways involved in the
aforementioned candidate genes.

3.3 Evaluation of genes under PPI multi-
network algorithm model

In order to achieve a more profound comprehension of the
intricate interactions amongst the DEGs, it is necessary to elucidate

their interrelations with signal transduction and cellular regulation.
The aforementioned genes were initially identified in the STRING
database. After following the implementation of the minimum
interaction score of medium confidence (0.4), the PPI network
was constructed and visualized using Cytoscape (Figure 3a). After
comprehensive reference to coexpression and combined score, the
results indicated that PLSCR1, DDX58, OAS1, XAF1 and FCGR2A
were the most closely related core genes. Furthermore, topological
analysis of multiple network algorithms demonstrated that TLR1,

FIGURE 4
The hub DEGs were tested by WGCNA model in external validation set. (a) Hierarchical clustering of the system tree and corresponding sample
information. (b) Sample system clustering tree and heatmap of related groups. (c) Network topology diagram of soft thresholds. (d) Cluster dendrogram
of DEGs. (e) TOM heatmap. (f)Module clustering dendrogram. (g) Heatmap of correlations between modules and clinical traits (red: positive correlation,
blue: negative correlation), and color is darker with correlation. (h-j) Scatter plots of DEGs and gene significance in different modules.
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TLR7, TLR8, CXCR4, DDX58, TNFSF10, FCGR1A and CD36 were
intersecting as highly characteristic genes with changes in node
colour, thus providing a foundation for subsequent gene

identification (Figures 3b,c). The results of the GO analyses and
KEGG analyses for the aforementioned genes were analogous to
those of the DEGs. Additionally, they were enriched in the immune

FIGURE 5
The hub DEGs are assessed by the clinical predictive model in external validation set. (a) Nomogram of eight highly characteristic genes. (b)
Calibration curve of the clinical predictive model. (c) ROC curve of the clinical predictive model. (d) Boxplots of individual genes. (e) ROC curves of
individual genes.
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response-regulating signaling pathway (GO: 0002764) and Toll-like
receptor signaling pathway (KEGG: hsa04620), which provided a
novel approach to the identification of biomarkers for DVT
(Figures 3d,e).

3.4 Construction of WGCNA and
identification of key module

The Pearson correlation coefficient was employed for the
purpose of grouping the samples. As illustrated in Figures 4a,b, a
sample clustering tree and corresponding clinical feature
heatmap were generated without the removal of outliers. From
the scale-free soft threshold distribution map, it was determined
that the optimal soft threshold was 4 (R2 = 0.90) (Figure 4c).
Following dynamic tree pruning and average hierarchical
clustering, the grey modules indicated genes that were not
suitable for these modules. Ultimately, three modules were
identified (Figures 4d,e). To ascertain whether the
aforementioned modules are associated with the clinical
features of DVT, we proceeded to cluster the dendrograms of
all DEGs based on differential measurements (1-TOM)
(Figure 4f). Subsequently, we visualised the heat maps in
order to reflect the correlation between the different modules
and the size distribution (Figure 4g). To substantiate the genes of
the key modules, a scatter plot was constructed to yield three
modules in blue, brown and turquoise (Figures 4h–j). The above
highly characteristic genes are all located in the blue module,
with a correlation coefficient of 0.84, which lends further support
to the accuracy of the screening results.

3.5 Establishment of clinical prediction
model and assessment of genes

In order to evaluate the clinical utility of screening indicators,
a nomogram was constructed to assess the predictive capacity of
DVT (Figure 5a). This process commenced with the evaluation of
each gene marker, followed by the drawing of a vertical line
upwards to identify the corresponding dots. The total number of
dots was then calculated by adding together the individual values.
And the vertical line should be drawn down to indicate the DVT
risk. The results demonstrated that the expression of CXCR4 and
FCGR1A had the greatest capacity to assess disease risk.
Furthermore, when the predicted probabilities were compared
with the actual probabilities using calibration curves, it was
found that the fit was also better, indicating a high degree of
agreement (Figure 5b). The sensitivity and specificity of the
model were evaluated using ROC curve analysis, which
yielded an AUC of 1.000 (95% CI: 1.000–1.000). This result
indicates that the model exhibited excellent classification
performance and has high clinical application value
(Figure 5c). To further evaluate the accuracy of the model, the
boxplot of single-gene differences was constructed. This
indicated that the eight genes selected demonstrated notable
differences in the external validation set, including TLR8 (P =
0.018), CXCR4 (P = 0.00088), TNFSF10 (P = 0.00075), and
FCGR1A (P = 0.00022) (Figure 5d). Furthermore, these genes

are also significantly differentially expressed in thrombotic and
non-thrombotic populations. Additionally, the ROC curves of
the aforementioned single genes, including TLR8 (AUC = 0.847,
95% CI: 0.611–0.986), CXCR4 (AUC = 1.000, 95% CI:
1.000–1.000), TNFSF10 (AUC = 0.958, 95% CI: 0.833–1.000)
and FCGR1A (AUC = 0.986, 95% CI: 0.917–1.000), were plotted,
indicating that the model exhibits a high degree of reliability and
that the aforementioned genes possess sufficient developmental
value for disease prediction (Figure 5e).

3.6 Analysis of scRNA-seq to identify cell
localization

In order to gain further insight into the behaviour of these genes
at the cellular level during the pathogenesis of DVT, we conducted
scRNA-seq analysis on samples obtained from DVT patients and
control groups. Following the construction of the library, a total of
25,547 cells and 25,381 genes were identified through data
comparison, filtering and statistical analysis. Following the
implementation of quality control and visualisation procedures,
with max_iter set to 1,000 and perplexity set to 30, t-SNE was
able to effectively differentiate between the 18 different cell
populations in the sample (Figure 6a). Preliminary inferences
concerning heterogeneity and similarity were made on the basis
of the two-dimension distribution of cell clusters. Concurrently, to
ascertain the cell types with the most distinctive gene mapping, we
conducted automated cell annotation using SingleR. This yielded
10 subcellular clusters: neutrophil, natural killer (NK) cell, central
memory T cell (CD4+), monocyte (CD16-), T cell (CD8+), naive T cell
(CD4+), naive B cell, memory B cell, monocyte (CD16+) and
myelocyte (Figure 6b). Furthermore, the highly characteristic
genes identified by the PPI multiplex network algorithm were
located, and it was observed that CXCR4 was the most widely
distributed, expressed in almost all cell clusters, and that
TNFSF10 exhibited a similar expression pattern. Furthermore,
CD36 is expressed almost exclusively in monocytes, whereas
DDX58 is predominantly present in neutrophils. TLR1 and
TLR8 are similarly expressed and are predominantly present in
neutrophils, monocytes (CD16-) and monocytes (CD16+). The
expression of TLR7 and FCGR1A is not significant (Figures
6c,d). Our results also demonstrate that the signalling pathways
of immune cells exhibit a robust net number and weight/intensity of
interactions (Figures 6e,f). Additionally, the above genes are
extensively distributed in the exchange of information between
B cells, monocytes, and NK cells (Figure 6g). Through a series of
studies and quantitative comparisons, differential overexpression
ligands and receptors for each cell group were likewise identified by
CellChat, which helps elucidate the generality of cellular
interactions. The aforementioned effects elucidate intricate
signaling pathways that contribute to the development and
progression of DVT, including MIF, TGFB1, NAMPT,
LAGLS9 and CCL5. In the context of the aforementioned
argument, MIF - (CD74 + CXCR4), MIF - (CD74 + CD44),
TNFSF10 - (TNFRSF10B) and NAMPT - (ITGA5 + ITGB1) are
also extensively implicated in signalling between B cells, T cells,
monocytes and NK cells (Figure 6h), indicating potential
therapeutic targets.
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FIGURE 6
The cellular localization of genes were identified by single-cell analysis. (a) Diagram of t-SNE analysis of different 18 cell clusters. (b) Diagram of
t-SNE analysis of 10 subcell types. (c) Feature plots of cell localization of eight highly characteristic genes. (d) Violin plots of cell localization of eight highly
characteristic genes. (e) Diagram of cell-cell communication network based on the number of participating genes, with the thickness of lines
representing the levels of the number. (f) Diagram of cell-cell communication network based on interaction weights, with the thickness of lines
representing the levels of weights. (g) Diagrams of the communication network between a single cell population and other cells. (h) Bubble plot of the
ligand/receptor pairs for major cell types.
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FIGURE 7
The hub DEGs were validated by ML models and IF in external validation set. (a) Volcano plot of 85 DEGs. (b) Histogram of 85 DEGs. (c) Clustering
heatmap of 85 DEGs. (d) Regression coefficient path plot of LASSOmodel. (e)Cross-validation error plot of LASSOmodel. (f) ROC curve of LASSOmodel.
(g) Feature importance ranking plot of LASSO model. (h) Feature curve of SVM-RFE model. (i) ROC curve of SVM-RFE model. (j) Feature importance
ranking plot of SVM-RFE model. (k) Venn diagram of overlapping genes between ML models. (l) Boxplot of CXCR4 positioning predicted by GTEx.
(m) GSEA enrichment plots for predicting significant pathways of CXCR4. (n) CXCR4 tissue expression was validated by IF (blue: DAPI, green: CXCR4).
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FIGURE 8
MIF signaling pathways were analyzed by CellChat. (a) Hierarchical plot of MIF pathways. (b) Heatmap of the incoming and outgoing signaling
patterns, with color intensity representing relative strength of different signaling pathways. (c) Heatmap of communication differences across cell
populations, with vertical axis representing senders and horizontal axis representing receivers, and color is darker with correlation. (d)Network diagram of
cellular communication intensity, with the thickness of lines representing the levels of strength. (e) Ranking plot of the relative contribution of each
ligand/receptor for MIF signaling pathway. (f) Violin plots of the expression pattern in MIF signaling pathway. (g)Network diagrams of different modes for
MIF signaling pathway. (h) Chord diagrams of different modes for MIF signaling pathway.
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3.7 Validation of genes based on ML models
and IF analysis

In order to fully verify the organisational heterogeneity of
CXCR4 between DVT patients and the control group, based on
the results of differential analysis quantified by the external
validation set, CXCR4 also demonstrated low expression as
DEGs, exhibiting a significant trend between the two groups.
These findings align with those of previous studies (Figures 7a–c).
The LASSO regression analysis was employed to generate the
penalty function as the variable coefficient of the regression
model, resulting in the compression of the number of
variables. This analysis revealed that among the 85 DEGs,
seven eigencoefficients were non-zero (Figures 7d,e). The AUC
of the model in the validation set was 1.000 (95% CI: 1.000–1.000)
(Figure 7f), and CXCR4 also demonstrated the greatest
significance in the feature importance ranking (Figure 7g).
Similarly, in SVM-RFE, there were 10 characteristic variables
to screen (Figure 7h), with a corresponding AUC of 0.833 (95%
CI: 0.500–1.000) (Figure 7i), and CXCR4 was ranked fifth,
demonstrating good specificity (Figure 7j). The Venn diagram
illustrates that CXCR4 is the sole intersecting gene in the ML
model described above (Figure 7k). Furthermore, CXCR4 was
demonstrated to be the second most highly expressed gene in
peripheral blood, following only the spleen, in the GTEx
validation cohort. This provides a convenient reference point
for clinical testing (Figure 7l). In the subsequent GSEA,
CXCR4 was predicted to be involved in aminoacyl-tRNA
synthetases (aaRSs) and was related to proteasomes and
spliceosomes (Figure 7m). This provided a direction for
further exploration of subsequent related mechanisms.
Coincidentally, according to the IF results, the expression of
CXCR4 was indeed significantly higher in peripheral blood cells
than in vessel wall tissues. Compared to normal tissues, lesion
tissues from DVT patients showed a significant downregulation
trend (Figure 7n).

3.8 Analysis of MIF network pathways

In order to gain insight into the manner by which
CXCR4 transmits signals and coordinates cell activities during
the pathophysiology of DVT, a comprehensive comparison of the
signal intensity of MIF - (CD74 + CXCR4) in different cell
populations was conducted based on the CellChat method.
Additionally, MIF - (CD74 + CD44) and MIF - (ACKR3) were
included in the comparative study. As illustrated in Figures 8a,b,
B cells exhibit aberrant activity within the MIF pathway described
above, simultaneously engaging in cellular communication as
senders, receivers, mediators and influencers. As with the
preceding results, the interactions in monocytes, B cells, T cells
and NK cells were significant in the heatmaps and network plots
(Figures 8c,d). As the most prominent ligand/receptor pair in the
MIF pathway (Figure 8e), CD74 and CXCR4 were expressed at
higher levels in the aforementioned cells (Figure 8f). The network
diagram and chord diagram also demonstrate that the biological
exchange of MIF - (CD74 + CXCR4) between various cell
populations is abundant (Figures 8g,h).

4 Discussion

In this study, bulk RNA-seq was employed to perform high-
throughput analysis of whole blood samples from 11 DVT
patients and six healthy control populations in the internal
test set. The specificity of DEGs was evaluated and identified
by combining the WGCNA algorithm and the clinical prediction
model. Furthermore, calibration curves, boxplots and ROC
curves were evaluated to ascertain the potential of these
models to facilitate a more nuanced interpretation in clinical
settings, thereby enhancing the precision of diagnostic and
prognostic assessments. On this basis, scRNA-seq was
performed on 3 DVT patients and three control groups to
determine the cellular localisation and cellular communication
pathway of the aforementioned high-characteristic genes.
Furthermore, commonly used ML methods (including LASSO
and SVM-RFE) were actively compared in the external validation
set (n = 18), and the aforementioned results were verified by IF.
This was done to comprehensively determine that CXCR4 can be
used as a regulatory target related to DVT disease, with the aim of
fully developing its diagnostic and predictive value. In light of the
CellChat method, the expression of MIF - (CD74 + CXCR4)
among disparate cell populations was examined in comparison
with the other MIF pathways. This may provide a rationale for
the development of effective strategies for the prevention and
treatment of DVT.

CXCR4 is a G protein-coupled receptor that was initially
identified in peripheral blood leukocytes (Chatterjee et al., 2014;
Pozzobon et al., 2016). In addition to its established functions in
haematopoiesis and immune responses, CXCR4 has also been
demonstrated to play a pivotal role in neurogenesis, germ cell
development and vascularisation (Pozzobon et al., 2016; Cui
et al., 2013; Cheng et al., 2017; Bianchi and Mezzapelle, 2020;
Kawaguchi et al., 2019). Furthermore, CXCR4 has been
demonstrated to be indispensable for the homing,
development and functionality of B cells (Chatterjee et al.,
2014; Pozzobon et al., 2016). Our findings corroborate the
long-standing notion of heightened CXCR4 expression in
immune cells. Furthermore, they align with the validation
outcomes of GTEx and IF. Its high expression during this
process aligns with the cell localisation and targets identified
in this study, suggesting its immense potential for clinical
applications. Furthermore, CXCR4 has been identified as a
prognostic marker for various types of cancer, including
leukaemia, breast cancer and prostate cancer (Khare et al.,
2021; Yu et al., 2023; Bao et al., 2023). During the process of
cancer metastasis, the expression of CXCR4 can be increased,
resulting in enhanced signalling pathways (Bao et al., 2023). This
indicates its importance for the development and regulation of
disease (Chatterjee et al., 2014; Bao et al., 2023). Currently,
research on CXCR4 activity is concentrated on cytoplasmic-
molecular interactions and cytoskeletal reorganization
(Mousavi, 2020). In the field of cardiovascular disease,
CXCR4 has been demonstrated to be overexpressed in
abdominal aortic aneurysm (AAA) tissues. Nevertheless, the
activation and expression patterns of CXCR4 transcriptional
profiles in the various cell types involved in the development
of DVT remain poorly understood. Similarly, CXCR4 primarily
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interacts with cells within the body’s microenvironment via the
MIF - (CD74 + CXCR4) within the MIF signalling pathway (Ye
et al., 2021). It is noteworthy that the above pathway can also
promote B cell chemotaxis (Klasen et al., 2014). This finding is in
alignment with the conclusions of the present study, which have
led to the verification that B cells occupy a central regulatory
position in DVT patients. MIF - (CD74 + CXCR4) is one of the
more comprehensive research methods (Chen et al., 2024;
Jankauskas et al., 2019; Schwartz et al., 2012; Lue et al., 2011).
However, the current studies have only demonstrated an
association between elevated plasma MIF levels and an
increased risk of DVT in patients with spinal cord injury (Wu
et al., 2019). While the precise interactions in their clinical
expression remain elusive, the possibility that some patients
exhibit a proclivity for disease sequelae based on the MIF
pathway lends support to a pharmacogenomic approach to
therapeutic intervention (Chen et al., 2024; Lue et al., 2011;
Grieb et al., 2014; Zhang et al., 2024).

The advent of related omics technologies has led to the
widespread utilisation of scRNA-seq in the investigation of
individual differences and diversity amongst peripheral blood
cells in patients (Tan et al., 2023). This biotechnological
approach provides a comprehensive view of the dysregulation
of DVT, facilitating the integration of cellular and molecular
levels of analysis (Lu et al., 2023). Furthermore, based on
WGCNA, PPI network algorithms and ML approaches, we
conducted multi-angle and comprehensive algorithm analysis
in external and internal datasets. This is achieved through the
combination of scRNA-seq with traditional sequencing
technologies, thereby facilitating a comprehensive
investigation of the phenotypic and functional variation
specific to DVT patients. The identification of differential cell
subsets associated with DVT and the ligand/receptor alterations
associated with MIF can facilitate the elucidation of the
underlying mechanisms that drive DVT disease. This
integrative approach has the potential to reveal novel
regulatory networks that may be involved in the pathogenesis
of DVT. Furthermore, scRNA-seq serves to validate the
functional role of genes, thereby enabling an exploration of
their ability to determine the causal relationship between
identified characteristic cell perturbations, signalling pathways,
and disease progression (Lu et al., 2023; Xue et al., 2023).

Over the past several years, there has been a notable increase in
the utilisation of ML technology in the healthcare sector. This is
largely due to the fact that ML is employed extensively in the
prediction of novel disease targets, largely as a consequence of its
exemplary performance in clinical diagnosis (Deo, 2015; Wei et al.,
2024). Despite the availability of clinical rating scales for the
prediction of DVT risk, the study by Mooney et al. has
demonstrated that ML outperforms traditional scoring methods
in terms of prediction accuracy (Coombs et al., 2022; Jin et al., 2022;
Yu T. et al., 2022). ML methods have the potential to enhance the
precision of predictive outcomes by elucidating the complex
interrelationships between risk factors. This growth can be
attributed to the emergence of larger data sets, electronic medical
records, and more sophisticated application processes (Deo, 2015;
Hollon et al., 2018). ML models are capable of automatically
identifying the most predictive features, in contrast to the

manual identification of disease features. Furthermore, this
information can be generalised to new patient populations
(Hollon et al., 2018). In our study, LASSO is employed to
enhance the predictive accuracy and comprehensibility of
statistical models. This is due to the fact that the LASSO is a
regression technique for variable selection and regularisation, and
it is extensively utilised in the medical field (Wang et al., 2022).
SVM-RFE, a supervised ML technique that is extensively utilised in
classification and regression, is also capable of identifying the
optimal combination of variables to ensure maximum model
performance (Deo, 2015). CXCR4 demonstrates both specificity
and sensitivity across a range of data sets, as evidenced by the
utilisation of the aforementioned algorithm model for verification.
This provides a promising avenue for subsequent research, which
may facilitate the quantification of the individualised risk of DVT
and inform clinical decisions regarding thromboprophylaxis (Yu T.
et al., 2022; Xue et al., 2021). To the best of our knowledge, there are
currently no studies that have made a comparison between the
predictions of DVT risk and the identification of potential biological
targets that are associated with DVT.

The principal benefit of this study is the integrated analysis of bulk
RNA-seq and scRNA-seq, which permits a comprehensive
examination of cell-cell interactions at the system level. Subsequent
studies should employ integratedML algorithms to validate diagnostic
biomarkers with significant categorical effects. This will facilitate the
creation of multiplex assays, the assessment of disease modulation
processes, the aiding of clinical diagnosis, the determination of time
windows, and the guidance of clinical decision-making. Nevertheless,
it is important to acknowledge the potential limitations of our
research. Firstly, with regard to the clinical prediction model, the
instability and uncertainty in the judgement of clinical decision-
making is a consequence of the small sample size. In order to
enhance the clinical applicability of this study to DVT patients
exhibiting disparate molecular characteristics, it is imperative to
incorporate a more expansive cohort of participants, thereby
facilitating a more comprehensive evaluation of the prognostic and
therapeutic implications. Furthermore, the latest model interpretation
techniques do not consider the interdependencies between features,
and correlation statistical analysis is unable to provide an accurate
representation of the underlying pathophysiological processes,
potentially introducing significant biases. Consequently, there is a
need for further research to develop a comprehensive profile of
peripheral blood changes in DVT patients.
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