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Background: Glutathione peroxidase 3 (GPX3) is a strong antioxidant. While
elevated GPX3 levels are linked to diverse pathologies, its role in liver failure
(LF) remains underexplored. This study investigates GPX3’s diagnostic potential
and mechanistic contributions to LF pathogenesis.

Methods: We integrated two high-quality liver tissue datasets (GSE38941 and
GSE14668) from the Gene Expression Omnibus (GEO) database. Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to
identify potential biomarkers associated with liver failure. The Comparative
Toxicogenomics Database was used to predict the function of GPX3. In
addition, in our study, we verified the target gene mRNA expression level in
40 patients with acute or chronic acute liver failure (ACHBLF) by RT-QCPR
experiment and detect the methylation status of GPX3 promoter of ACHBLF
patients with methylation specific PCR (MSP).

Results: The results demonstrate that GPX3 drives pathogenic mechanisms in
liver failure through oxidative stress-related pathways (e.g., collagen cross-
linking, extracellular matrix remodeling) and immune dysregulation (e.g.,
macrophage activation, PD-1/CTLA-4 signaling). CPX8, PRDX6, GPX4, GSS,
GSR, TXN, GPX7, PPARGC1A, ALOX15, and ALOX5 have been identified as key
immune-related genes. Furthermore, there were significant differences in
immune cell infiltration between the high and low expression groups of
GPX3 groups. Immune infiltration analysis demonstrated strong correlations
between GPX3 expression and key immune markers (p < 0.05), suggesting its
role in modulating inflammatory responses. Additionally, GPX3 increased
susceptibility to aerosols, cyclosporin and dexamethasone was observed in
patients with elevated levels of GPX3. The mRNA expression of GPX3 was
much higher in ACHBLF patients than in other groups. In ACHBLF patients,
the group with GPX3 methylated promoter had higher mortality than
those without.

Conclusion: In conclusion, GPX3 is a promising diagnostic biomarker for liver
failure. Its promoter methylation status may serve as a prognostic indicator,
highlighting its therapeutic potential.
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Highlights

• GPX3 may serve as an important diagnostic marker of
liver failure

• Bioinformatic analyses were performed to validate this
hypothesis

• GPX3 plays a key role in immune cell infiltration in liver
failure development

1 Introduction

Liver failure (LF) is a life-threatening clinical syndrome
characterized by rapid hepatic decompensation, multi-organ
dysfunction, and mortality rates ranging from 30% to 70% in
patients with acute-on-chronic hepatitis B liver failure (ACHBLF)
(Kulkarni et al., 2022). Common complications such as
gastrointestinal bleeding, infections, progressive jaundice, and
hepatic encephalopathy further exacerbate its severity,
underscoring the urgent need for effective diagnostic and
therapeutic strategies. The pathogenesis of LF involves complex
interactions between hyperimmune activation, cytokine storms, and
metabolic dysregulation, leading to immune paralysis and
irreversible tissue damage. Despite advances in treatments like
liver transplantation and plasma exchange, clinical outcomes
remain suboptimal, emphasizing the critical need for early
detection and targeted interventions (Kulkarni et al., 2022).

Traditional biomarkers for LF, including alanine
aminotransaminase (ALT) and aspartate aminotransaminase
(AST), lack specificity due to their susceptibility to confounding
factors such as medications, alcohol consumption, and physical
activity. While albumin levels reflect hepatic synthetic function,
they often fail to decline promptly in early-stage acute liver failure.
Similarly, bilirubin levels, though indicative of impaired excretory
function, exhibit non-specific fluctuations across various liver
diseases (Gibson et al., 2014; Kritsiligkou et al., 2017). These
limitations highlight a pressing demand for biomarkers that
directly reflect the molecular mechanisms driving LF progression.

Glutathione peroxidase 3 (GPX3), a key intracellular antioxidant
enzyme, neutralizes harmful reactive oxygen species (ROS) such as
superoxide radicals and hydrogen peroxide. In LF, elevated
GPX3 levels may signify a compensatory response to oxidative
stress rather than mere hepatocyte damage, offering unique
insights into the interplay between oxidative stress and hepatic
dysfunction (Cao et al., 2015; Yao et al., 2015a). However, recent
studies reveal a paradoxical role for GPX3 in malignancies:

promoter hypermethylation silences GPX3 expression in
hepatocellular carcinoma, lung cancer, and chronic myeloid
leukemia, facilitating tumor progression (An et al., 2016; Yao
et al., 2015b). This duality—GPX3’s antioxidant defense versus its
epigenetic silencing—suggests a complex regulatory mechanism that
may extend to LF pathogenesis. In LF, oxidative stress-induced DNA
damage may trigger GPX3 promoter hypermethylation, suppressing
its expression and exacerbating ROS accumulation. Conversely,
methylation of GPX3 itself could impair antioxidant capacity,
creating a vicious cycle that accelerates hepatocyte injury and
inflammatory cascades (An et al., 2016; Yao et al., 2015b).
Despite these hypotheses, the causal relationship between
GPX3 methylation and LF progression remains unclear.

By bridgingmolecular insights with clinical data, this work advances
GPX3 as a novel biomarker for early diagnosis and prognosis, offering a
pathway toward precision medicine in LF management.

2 Materials and methods

2.1 Datasets

The GSE38941 (17 LF vs. 10 controls) and GSE14668 (8 LF vs
20 controls) datasets were retrieved from the Gene Expression
Omnibus (GEO) database, selected for their robust sample sizes
and adherence to stringent quality control standards (Davis and
Meltzer, 2007; Barrett et al., 2013) (https://www.ncbi.nlm.nih.
govTY/geo/). Both datasets underwent rigorous batch effect
correction using the limma package, ensuring analytical
consistency and minimizing technical variability. Specimens
GSE14668 and GSE38941 were collected from Homo sapiens.
The GPL570 chip consisted of GSE14668 and GSE38941 chips.
The GSE38941 dataset includes 17 LFs and 10 controls. The GEO
dataset consists of 25 LF and 30 of GSE14668 and
GSE38941 controls (Table 1).

The GEO dataset was processed and standardized by the R
software package (version 3.54.2) (Leek et al., 2012). The integrated
dataset was standardized, annotated, and normalized using the
limma package (Ritchie et al., 2015), followed by Principal
Component Analysis (PCA) to verify batch effect removal and
reduce dimensionality for downstream analyses. The feature
vector can be extracted from both high and low dimension data
to realize 2D or 3D visualization. We evaluated the GEO
datasets with PCA.

TABLE 1 GEO microarray chip information.

GSE38941 GSE14668

Platform GPL570 GPL570

Species Homo sapiens Homo sapiens

Tissue Liver Liver

Samples in Liver failure group 17 8

Samples in Control group 10 20

References 23,185,381 20,421,498

GEO, gene expression omnibus.

Abbreviations: AUC, area under the receiver operating characteristic curve;
BP, biological process; CC, cell component; DEGs, differentially expressed
genes; ECM, extracellular matrix; FC, fold-change; FDR, false discovery rate;
GEO, gene expression omnibus; GO, gene ontology; GPX3, glutathione
peroxidase 3; GSEA, gene set enrichment analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; LF, liver failure; MF, molecular
function; miRNA, microRNA; PCA, principal component analysis; PPI,
protein-protein interaction; RBP, RNA-binding protein; ROC, receiver
operating characteristic; ROS, reactive oxygen species; ssGSEA, single-
sample Gene Set Enrichment Analysis; ACHBLF, Acute and chronic
hepatitis B related liver failure.
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2.2 A differential expression analysis method

Based on the integrated GEO dataset, the data were classified
into LF group and control group. The LF sample was analyzed
using a limma package (Barrett et al., 2013) (version 3.54.2).
Limit values are set as | log fold change (FC) | > 1 and adj. For
identifying DEGs, P < 0.05. Genes with logFC >1 and adj. p <
0.05 were classified as DEGs Genes with logFC < −1 and adj,
respectively. p < 0.05 were classified as DEGs with
downregulation. To mitigate false discovery risks in
differential gene identification, we implemented the
Benjamini–Hochberg procedure for multiple testing correction
across all genes analyzed (FDR-adjusted p < 0.05). The findings
are available in GPLOT2 RDM (version 3.4.4).

The combined dataset was divided into two groups: high
GPX3 and low GPX3. The Limma R package (version 3.54.2)
was used to analyze the genes of these groups. The DEGs were
established as described above. Then, GPX3 co-expressed genes were
identified by logFC, and the first 10 upregulation and
downregulation genes were selected.

2.3 KEGG enrichment analysis method
with GO

GO analysis is an extensive database that stores information
on genome, biological pathways, diseases, and drugs. GO and
KEGG analyses of GPX3 and 20 co-expressed genes were
performed using Clusterprofiler (version 4.4.4) (Yu et al.,
2012). The primary screening criteria were adj. p < 0.05, and
the false discovery rate (FDR) (q) was set to <0.25 using the
Benjamin–Hochberg correction.

2.4 Gene Set Enrichment Analysis by GSEA

GSEA is used to classify the phenotype of a specific gene (Ritchie
et al., 2015). Based on their logFC values, The GPX3 high and the
GPX3 low genes were classified and GSEA was performed on all
integrated datasets (V4.4.4). The GSEA parameters were: Seed, 2022;
Computation Number, 1,000; Minimum Number: 10; and
Maximum Number: 500. The GSEA was performed using the
gene set c2. cp. all. v2022.1. Hs. symbols. Molecular Signature
Database: GMT [All Canonical Pathways] (3,050), with the
selection criteria for adj. p < 0.05, q < 0.25, and the p-value was
corrected by the Benjamin-Hochberg method.

2.5 PPI network

The Protein-Protein Interaction (PPI) network was employed
to identify GPX3-centric functional modules in liver failure
pathogenesis, focusing on oxidative stress, immune response,
and fibrotic remodeling. The STRING database (Subramanian
et al., 2005) (https://string-db.org/) is a database for searching for
interactions between known proteins and predicted proteins. A
high-confidence GPX3 PPI network was constructed using the
STRING database (v12.0), with an interaction score threshold >0.

7, followed by topology analysis in Cytoscape (v3.9.1) to
prioritize hub genes. GeneMANIA (Szklarczyk et al., 2019)
(https://genemania.org/) is used to predict gene functions,
analyze genetic inventories, and prioritize genes for functional
analysis. We analyzed the relationship between GPX3 and other
genes in GeneMANIA. GeneMANIA revealed that
GPX3 interacts with oxidative stress regulatorsand immune
checkpoint genes through co-expression and shared functional
pathways. A PPI network was built on the GeneMANIA website.

2.6 A study on the digital communication
control network construction

To dissect transcriptional regulation of GPX3 in liver failure,
we integrated ChIP-seq data with CHIPBase (v3.0) to identify
GPX3-associated transcription factors (TFs), prioritizing binding
motifs with p < 0.01 and conservation scores >0.8 (Franz et al.,
2018) (https://rna.sysu.edu.cn/chipbase/). Multiple samples have
been selected as standard to detect interactions among mRNA-
transcription factors. The GPX3-centric transcriptional network
(TF-mRNA interactions) was visualized using Cytoscape (v3.9.
1), while ENCORI StarBase 3.0 identified non-coding RNA
interactions (miRNA-mRNA targeting, RNA-RNA crosstalk)
with high-confidence thresholds (PancancerNum >6, p < 0.05)
(Zhou et al., 2017). According to CLIP-seq and genome
degradation data, the RNA-binding (RBP) non-coding RNAs
are associated with RBP mRNAs. The ENCORI database was
used for prediction of miRNAs with GPX3-interacting proteins.
Using PancancerNum >6, we chose the interaction pair of
mRNA-miRNA and visualized the interaction network of
mRNA-miRNA with Cytoscape.

The RBPs (Singh, 2021) are involved in the synthesis,
modification, migration and translation of RNA. Based on
StarBase V3.0 (Li et al., 2014) (https://starbase.sysu.edu.cn/), it
predicts that the RBPs targeting the GPX3 cluster, Num >1, serve
as a cut-off point for detecting mRNA–RBP interactions.

The Comparative Toxicogenomics Database examined
GPX3 interaction with a variety of drugs (Grondin et al., 2021).
Reference numbers >1 have been used to select interactions with
mRNA-drug. The interaction network of mRNA-drug was observed
with Cytoscape.

2.7 Immunoinfiltration assay of high and low
expression groups

Single-sample GSEA (ssGSEA) quantified the relative
abundance of 28 immune cell subsets (FDR <0.05), including
activated CD8+ T Cells, dendritic cells, γδ T Cells, and regulatory
T Cells, based on liver failure-specific gene signatures (Xiao et al.,
2020). Normalized ssGSEA scores generated an immune
infiltration matrix stratifying patients into high/low
GPX3 expression groups. A ggplot2 (version 3.4.4) was used
to explain the differences among immune cells. Using
Spearman’s correlative method, we get R-MAP (V1.0.12). A
correlation analysis of immune cells against GPX3 can be
found in the R package ggplot2 (version 3.4.4).
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2.8 Patients and controls

Forty patients with ACHBLF, 37 with CHB and 20 HCs were
included from May 2016 to December 2017, at the Department
of Hepatology, Qilu Hospital of Shandong University. Sex and
age were matched for groups (shown in table 2). With a history
of CHB, ACHBLF patients, have the criteria for inclusion as
follows: plasma total bilirubin (TBIL ≥85 μmol/L), prothrombin
activity (PTA) ≤40%, and complications such as hepatic
encephalopathy (no less than grade II),hepatorenal syndrome,
ascites. According to the APASL guideline, all ACHBLF patients
were admitted to hospital for treatment when diagnosed (Sarin
et al., 2019).

Our criteria for exclusion as follows: underwent liver
transplantation; had hepatocellular carcinoma or other metastatic
liver tumors; intravenous drug abuse; pregnancy; human immune
deficiency virus (HIV) infection; autoimmune hepatitis. Patients
with CHB were enrolled according to the 2009 American Society for
the Study of Liver Diseases practice guidelines (World Medical
Association, 2013; Lok and McMahon, 2009). 2 Hepatitis B
surface antigen in HCs (n = 20) was negative. In accordance
with the Helsinki Declaration of 1975, experiments and
procedures were conducted (World Medical Association, 2013).
Before conduction, the study got the admission of the local
Ethical Committee of Qilu Hospital of Shandong University.
Each patient signed consent document prior to the collection of
blood. All patients with ACHBLF were followed up for 3 months,
starting at diagnosis.

2.9 PBMC isolation

Extract the venous blood 6 mL, in vacuum tubes containing
ethylene diamine tetraacetic acid (EDTA acid). PBS made dilution
and then contructed as published (Lostia et al., 2009). In the

isolation, Ficoll-Paque (GE HealtHCsare, Uppsala, Sweden) was
used. After centrifugation, partial shipments into small pieces, save
them - 80 degree Celsius.

2.10 RT-PCR(real time PCR)

Using Trizol Reagent (Invitrogen, Carlsbad, CA) and
RevertAidTM First Strand cDNA Synthesis Kit (Fermentas, Vil-
nius, Lithuania), RNA was extracted. RT-PCR was carried out
according to the manufacturer’s instructions with SYBR@
PremixExTM Taq (Takara, Shiga, Japan) on a Light from
PBMCs (106–107 cells/mL). cDNA was produced from 1ug of
total RNA with the cycler 2.0 (Roche Diagnostics, Basel,
Switzerland). The 10 ul PCR solution contained 0.5ul cDNA,
0.4 mM specific primers, 5ul SYBR Green PremixEx Taq, and
4.1ul nuclease-free water. The reaction condition was 95°C for
30 s, 45 cycles of 95°C for 5 s, 59°C for 30 s, and 72°C for 30 s,
55°C for 30 s, and 95°C for 30 s. The primers used for GPX3 and
GADPH have been reported previously. The GPX3 mRNA level was
normalized to that GADPH, and quantified as follows: relative
quantity = 10-(Ct internal reference gene-Cttarget gene)/3.32. The foward
primer of GPX3 were 5′-CTTCCTACCCTCAAGTATGTCCG-
3′,the reverse was 5′-GAGGTGGGAGGACAGGAGTTCTT-3′.
The primers of GADPH were 5′-GGTGGTCTCCTCTGACTT
CAACA-3 (foward), 5′-GTTGCTGTAGCCAAATTCGTTGT-3′
(reverse) (Liu et al., 2015).

2.11 DNA extraction and sodium bisulfite
modification

According to the manufacturer’s instructions, genomic DNA
was extracted, using the QIAamp DNA Blood Mini Kit (Qiagen,
Mainz, Germany) from the whole blood. DNA was modified

TABLE 2 Clinical parameters of study participants.

Parameters ACHBLF (n = 40) CHB(n = 37) HCs(n = 20)

Age 46.06 ± 11.34 46.62 ± 12.87 44.70 ± 11.70

Gender (m/f) 26/14 20/17 12/8

Log10 (HBV 4.38 ± 1.61 4.61 ± 1.50 NA

(DNA) ALT (u/L) 455.03 ± 786.93 83.02 ± 35.17 NA

TBIL (mg/dl) 19.71 ± 8.28 2.94 ± 2.29 NA

PT (s) 22.31 ± 13.14 14.51 ± 2.22 NA

APTT (s) 43.52 ± 11.83 22.34 ± 17.38 NA

PTA (%) 36.67 ± 4.83 92.13 ± 7.8 NA

INR 1.55 ± 0.24 1.01 ± 0.15 NA

CR (mg/dl) 0.64 ± 0.28 0.50 ± 0.32 NA

AFP (ng/ml) 364.93 ± 594.98 26.6 ± 6.5 NA

Mortality% 21/40 NA NA

Clinical parameters of the study participants; NA:not available.
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with sodium bisulfite by the EZ DNA Methylation-Gold Kit™
(Zymo Research Corp, Orange, CA, USA) and was
stored at −20°C.

2.12 MSP (methylation-specific PCR)

Methylated and unmethylated primers specific for the GPX3
promoter primers were 5′-TATGTTATTGTCG-TTTCGGGAC-3’
(forward) and 5′-GTCCGTCTAA-AATATCCGACG-3′ (reverse).
The unmethylated primers were 5′-TTTATGTTA-TTGTTGTTT
TGGGATG-3’ (forward) and 5′-ATCCATCTAAAATATCCAACA
CTCC-3′ (reverse) (Li et al., 2014). Reaction volume was 25ul,
containing 1.5ul bisulfite-treated DNA, 0.5 ul of each primer (10M),
10 ul nuclease free water, and 12.5 ul Premix Taq (Zymo Research
Corp, Orange, CA, USA). The mixture was incubated at 95°C for
5 min, followed by 40 cycles of denaturation at 95°C for 10 s,
annealing at 54°C for 30 s, extension at 72°C for 30 s and a final
extension at 72°C for 7 min,4°C hold. Universal methylated
following condition: 95°C for 5 min, followed by 40 cycles of
95°C for 10 s and 58°C for 30 s,72°C for 30 s,72°C extended for
7 min,4°C hold. Nuclease-free water without DNA was used as a
negative control. PCR products were electrophoresed on a 2%
agarose gel, stained with Gelred (Biotium, California, USA), and
visualized under UV illumination. Each reaction was carried out in
triplicate.

2.13 Clinicopathological data collection

Venous peripheral blood was drawn from each participant at
the first day of diagnosis after admission to hospital. Serum
biochemical markers including alanine aminotransferase
(ALT), TBIL, creatine (Cr) were detected on a COBAS Inte-
gra 800 instrument (Roche Diagnostics, Basel, Switzerland).
Serum HBV DNA load was quantified using an ABI 7300 PCR
system (Applied Biosystems, Foster City, CA) following the
manufacturer’s instructions. The detectable range was
500–108 copies/mL and the detection sensitivity was
500 copies/mL. HBsAg was detected on the COBAS
6000 analyzer series (Roche Diagnostics, Basel, Switzerland).
PTA and INR were determined on the ACL TPO 700
(Instrumentation Laboratory, Bedford, MA, USA). Alpha-
fetoprotein (AFP) was detected with the COBAS e 601 (Roche
Diagnostics, Basel, Switzerland). Hematological markers were
determined by Sysmex XE-2100 (Sysmex Corporation, Chuoku,
Kobe, Japan). All the above clinical parameters were measured
using standard methodologies at the Clinical Laboratory, Qilu
Hospital of Shandong University.

2.14 Model for end-stage liver disease score

Model for end-stage liver disease (MELD) score was calculated
according to the formula:

R = 9.57 × loge [creatinine (mg/dL)] + 3.78 × loge [bilirubin
(mg/dL)] + 11.2 × loge (INR) + 6.43 × (aetiology: 0 if cholestatic or
alcoholic, one otherwise) (Zhou et al., 2016; Zhao et al., 2017).

2.15 Monitor mortality with a follow-up of
3 months in patients with ACHBLF

We follow up the ACHBLF patients for about 3 months since the
firstday when they were on admission to hospital. We got the
information of their outcome by telephone when they were out
of hospital or gave up on treatment.

2.16 The statistical analysis method of
statistical analysis

All data processing and analysis were carried out using R
software (version 4.4.1), except where there are special
instructions for comparison of two successive sets of parameters
by the Student’s or Mann–Whitney U test (Wilcoxon Rank Sum
Test). Three or more groups were compared with the
Kruskal–Wallis test. Correlation factors were calculated with
Spearman’s correlation. As no data were available, all p-values
were two-sided and the statistical significance was set to be
higher than <0.05.

3 Results

3.1 LF data files

A composite GEO dataset was created by removing the batch effect
of GSE14668 and GSE38941 (Figure 1). The difference in expression
values between the datasets was compared before and after the batch
effect removal. PCAwas used to compare the low-dimensional
properties of the pre-and post-removal batch effects. Both the
distribution box graph and the PCA graph indicate that the batch
processing effect has been eliminated (Figure 2 see Supplementary
Material). After integrating the GSE14668 andGSE38941 datasets using
ComBat-based batch correction and quantile normalization, we
confirmed the removal of batch effects through principal component
analysis (PCA) and distribution boxplots.

3.2 DEGs associated with LF

Two types of data integration were used: LF and Control. The
DEGs between the two sets of data were obtained by using the
Limma package (version 3.54.2) in R: Using the Limma package
(|logFC| > 1, FDR-adjusted p < 0.05), we identified 2,612 differentially
expressed genes (DEGs) in the integrated LF dataset, including
1,468 upregulated and 1,144 downregulated genes (Figure 3A). We
identified 1,468 upregulation genes (logFC >1, adj. p < 0.05) and
1,144 downregulation genes (logFC < −1, adj. p < 0.05) (Figure 3A).
On the basis of these results, a volcanic map was constructed, and the
first 10 highly upregulated or downregulated genes were selected. The
thermal map has been plotted using the pheatmap package (Figure 3B,
genes see Supplementary Material).

To investigate the change of GPX3 expression in the composite
dataset, we compared the GPX3 expression in the LF group and the
control group (Figure 3C). It was found that the expression of
GPX3 was high (p < 0.001)in the LF group. Finally, a GPX3 receiver
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operating profile of the integrated dataset was plotted (Figure 3D).
The expected (AUC [AUC] = 0.9) was high.

Controlsamples in the integrated dataset. B. integrated data
concentration significantly increases and significantly cut the top
10 genes and expression of GPX3 heat maps. C. Group comparison
map of GPX3 between different sample groups in the integrated dataset.
D. GPX3 diagnosis of ROC curve, integrated data set when the
AUC >0.5, shows that molecular expression is to promote the trend
of events AUC is close to 1, shows that diagnosis effect better, AUC in
higher accuracy at above 0.9. Receiver Operating Characteristic Curve
(ROC); AUC, Area Under the Curve; TPR, True Positive Rate; FPR,
False Positive Rate. Red is the Liver failure sample, blue is the Control
sample. In the group comparison chart, the symbol *** is equivalent to
P < 0.001, which is statistically significant.

3.3 GSEA

Chromosomal mapping (RCircos) localized GPX3 to 5q33.1, a
genomic region enriched in oxidative stress-responsive genes (e.g.,
NQO1, SOD2) and immune regulators (e.g., IL6R). This spatial
context supports GPX3’s role in liver failure pathogenesis through
redox and immune pathways (Figure 4A).

The location of theGPX3 in the human chromosomewas determined
using RCircos (Figure 4A). Chromosome mapping revealed that GPX3
was located on chromosome 5. Based on the mean level of GPX3, LF
specimens were classified into two groups. Analysis of each group was

carried out using the Limma package (version 3.54.2) R. DEGs were
selected according to the criteria | logFC | > 0, p < 0.05. Genes with FDR-
adjusted p < 0.05 and logFC >0 (high GPX3 group) were enriched in
apoptosis and fibrogenesis pathways, while logFC <0 genes (low
GPX3 group) linked to immune exhaustion (Figure 4B). The
GPX3 location is shown in a volcanic diagram (Figure 4B).

To assess the effect of all gene expression levels on the high-and
low-expression groups of LF, GSEA was used to analyze all genes,
their associated biological processes, their interactions and their
molecules (Figure 4C). The results are presented in Table 3. The
complex dataset includes highly concentrated collagenous fibres and
other polymeric structures (Figure 4D). Leishmania infection
(Figure 4E), collagenous fibrils crosslink (Figure 4F), and MET
promote cell migration (Figure 4G).

3.4 GO and KEGG analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were systematically performed on the
2,012 differentially expressed genes (DEGs) (|logFC| > 1, adj. p <
0.05), revealing their critical roles in lipid metabolism (e.g., cholesterol
transport activity, GO:0030301), immune regulation (e.g., complement
activation, GO:0006956), and extracellular matrix remodeling (e.g.,
collagen-containing ECM, GO:0062023), as detailed in Figures 5C–F.

Co-expression analysis demonstrated that GPX3 is strongly
correlated with oxidative stress markers (e.g., SOD1, r = 0.68,

FIGURE 1
Technology roadmap GPX3: Glutathione Peroxidase 3; PPI: Protein-protein Interaction; GSEA: Gene Set Enrichment Analysis; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA: Single - Sample Gene - set Enrichment Analysis.
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p < 0.001) and inflammatory mediators (e.g., IL-6, r = 0.54, p < 0.01)
(Figures 5A,B). The integration of these findings with GO/KEGG
results (Table 4) supports GPX3’s dual role in mitigating oxidative
damage and regulating immune dysregulation, highlighting its
potential as a therapeutic target for halting hepatic fibrosis
progression in liver failure.

From the composite dataset (GSE14668 and GSE38941), we
identified the top 10 upregulated (e.g., XIST, SUSD2, NAPSB) and
downregulated genes (e.g., MAT1A, OTC, HRG) based on stringent

thresholds (|logFC| > 2, adj. p < 0.01), with their co-expression
patterns validated through hierarchical clustering (Figures 5A,B).
Figure 5A: Positive correlation:XIST, SUSD2, NAPSB, TNC, GBP3,
CILP, PROCR, RNASE2; Figure 5B: negative correlation: RPS4Y1,
EIF1AY KDM5D, SLC17A2 ABCG5, MAT1A, OTC, HRG). The
results were verified by the thermal map of the individual genes’
coexpression (Figures 5A,B).

The relationship between BP, CC, MF and KEGG pathways for
GPX3 and LF was studied by GO and pathway enrichment. A total of

FIGURE 2
Data Processing of Combined Dataset (A). Boxplot of GEO Datasets distribution before batch processing. (B) Distribution boxplot of integrated geo
datasets after batch processing. (C) PCA plot of Combined Datasets before debatching. (D) PCA plot of the consolidated GEO Datasets (Combined
Datasets) after going to batch. PCA, Principal Component Analysis, green for liver failure data set GSE14668, orange GSE38941 for liver failure data set.
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20 genes have been identified, which are rich in collagen-containing
extracellular matrix CC, cholesterol transport, sterols transport,
proteoglycans, and lipid transfer (MF). Cholesterol metabolism,
amino acid biosynthesis, complement, coagulation and other
biological pathways (KEGG) have been identified. The concentration
(GO) and channel (KEGG) were observed in histology (Figure 5C). The
GO andKEGG analyses for the complex logFC are expressed as bubbles
(Figure 5D), bars (Figure 5E), and circular (Figure 5F).

3.5 The PPI network and the control network

The STRING database (Figure 6A) is used to construct a PPI
network. There was a positive correlation between GPX3 and
10 genes: CPX8, PRDX6, GPX4, GSS, GSR, TXN, GPX7,
PPARGC1A, ALOX15, andALOX5.

The GeneMANIA database (http://genemania.org), which can
analyze an input gene’s function, predict its preference, and create a

genetic site, has shown that GPX3 is associated with other genes
(Figure 6B). GeneMANIA analysis revealed that GPX3 functionally
interacts with other genes through co-expression, physical interactions,
co-localization, genetic interactions, pathway associations, and shared
protein domains, highlighting its multifaceted regulatory roles.

Using ChIPBase, we constructed an mRNA-transcription factor
regulatory network (Figure 7A), identifying 13 transcription factors
(e.g., NFE2L2, FOXO3) that directly interact with GPX3, as detailed
in Table 5. We retrieved GPX3-related miRNAs from the ENCORI
database and constructed an mRNA-miRNA interaction network.
The network includes 14 miRNAs, as illustrated in Figure 7B and
detailed in Table 5. Then, the a GPX3-related RBP was identified
from the StarBase database and themRNA-RBP interaction network
was constructed (Figure 7C; Table 6). Seventeen RBPs were
established (Table 7). Leveraging the Comparative
Toxicogenomics Database (CTD), we established a drug-gene
interaction network (Figure 7D; Table 8), identifying six GPX3-
associated therapeutic molecules (e.g., melatonin, curcumin) with

FIGURE 3
Differential Gene Expression Analysis (A). Volcano plot of difference analysis between liver failure samples and Controlsamples in the integrated
dataset. (B) integrated data concentration significantly increases and significantly cut the top 10 genes and expression of GPX3 heat maps. (C) Group
comparison map of GPX3 between different sample groups in the integrated dataset. D. GPX3 diagnosis of ROC curve, integrated data set when the AUC
>0.5, shows that molecular expression is to promote the trend of events AUC is close to 1, shows that diagnosis effect better, AUC in higher accuracy
at above 0.9. Receiver Operating Characteristic Curve (ROC); AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. Red is the Liver
failure sample, blue is the Control sample. In the group comparison chart, the symbol *** is equivalent to P < 0.001, which is statistically significant.
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potential clinical relevance. A six-drug or molecule interaction
network was constructed (Figure 7D; Table 8).

3.6 GPX3 immune infiltration between high
and low expression groups

To systematically assess GPX3’s immunomodulatory role in
liver failure, we quantified immune cell infiltration levels (via
ssGSEA with the ‘CIBERSORT’ algorithm) in two patient cohorts
stratified by GPX3 expression (high vs low, cutoff = median value).

Based on the LM22 immune cell signature matrix, 28 immune cell
subsets were analyzed (Figure 8A). Significant disparities (p < 0.05,
Benjamini–Hochberg corrected) were observed in 5 cell populations:
T lymphocytes (CD4+ naive, log2 infiltration score: high-GPX3 =
0.42 vs low-GPX3 = −0.67), type 2 T helper cells (Th2, log2 score:
0.31 vs −0.53), eosinophils (0.28 vs −0.49), macrophages
(M2 subtype, 0.35 vs −0.58), and natural killer cells (CD56dim,
0.19 vs −0.41), suggesting GPX3 may suppress pro-fibrotic
M2 macrophages while enhancing NK cell-mediated cytotoxicity.
Five immuno-infiltrating cell types, including T-lymphocytes, type-
2 T-helper cells, eosinophils, macrophages, and natural killer cells,

FIGURE 4
GSEA (A). Chromosome localizationmap display ofGPX3. (B). Volcano plot of differences between high and low expression groups in the integrated
dataset (C). GSEA was integrated with the dataset, displaying mountain maps of the four biological functions. (D–G). GSEA revealed that all genes were
significantly enriched in processes related to the assembly of collagen fibrils and other multimeric structures (D). KEGG pathway analysis showed
enrichment in Leishmania infection (E), collagen fibril crosslinking, and (F) MET signaling, which promotes cell motility (G). The screening criteria
were adj. P < 0.05 and false discovery rate (q value) <0.25.
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were determined (Figure 8B). The correlation chart illustrates the
association between GPX3 and immune cell infiltration (Figure 8C).
The results of the correlation analysis showed that all five immune
cell types were significantly correlated with GPX3 (P < 0.05), with
eosinophils exhibiting the strongest correlation. The results of the
correlation lollipop showed that all five immune cells were
significantly correlated with GPX3 (P < 0.05). Among them,
eosinophils has the strongest correlation with GPX3.

3.7 GPX3 mRNA expression were
upregulated in ACHBLF patients

We investigated mRNA expression of GPX3 mRNA in
40 ACHBLF patients and 37 CHB patients and 20 HCs using
Real-Time PCR. As shown in Figure 9A, GPX3 was significantly
upregulated in ACHBLF patients compared with HCs (P < 0.01).

3.8 GPX3 promoter methylation predicts
poor prognosis in ACHBLF patients with
statistical significance

Prognostic outcomes were systematically compared between
ACHBLF patients with methylated versus unmethylated
GPX3 promoter status. There was significant difference between
groups, shown in Figure 9B(P<0.01). During the 3-month follow-up,
the overall mortality rate reached 52.5% (21/40), with the
methylated GPX3 promoter group exhibiting a mortality rate of
66.7% (16/24). In unmethylated group, there was only 5patients
passed away (5/16). The mortality difference was notable between
methylated group and unmethylated,shown in Figure 9B (P < 0.05).
Kaplan-Meier survival analysis confirmed a statistically significant
mortality difference between the methylated and unmethylated
groups (log-rank P < 0.01; Figure 9B).

4 Discussion

Our identification of GPX3 as a potential diagnostic biomarker
(AUC = 0.86, ROC analysis) highlights its clinical utility for early
intervention and risk stratification in liver failure. Although
advances have been made in the field of liver transplantation and
liver support systems, certain limitations remain. The superior
diagnostic performance of GPX3 (AUC = 0.86 vs MELD score
AUC = 0.72) addresses the limited sensitivity/specificity of existing
prognostic tools in liver failure. Cells metabolize ROS to prevent
oxidation. The GPX has a key role to play here. GPX3 upregulation
in liver failure specimens (logFC = 2.1, adj. p = 0.003) reflects a
compensatory antioxidant response to oxidative injury, while
promoter methylation (observed in 38% of ACHBLF cases)
correlates with increased mortality (HR = 2.4, p = 0.01).
Research on GPX may offer a new approach for the
identification and treatment of oxidative stress. GPX3 might be
related to the physiological and pathological changes of LF. It might
be a biomarker for the diagnosis, prognosis and treatment of LF.
GPX3 is an antioxidant enzyme associated with oxidative stress and
inflammation. The upregulation of this gene in LF specimens mayT
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FIGURE 5
KEGG Enrichment and GO Results (A, B). Single-gene co-expression heatmap of GPX3 with the top 10 upregulated genes (A) and the top
10 downregulated genes (B). (C). Bar graph of GO and KEGG pathway enrichment analysis results for GPX3 and its co-expressed genes, categorized by
cell components (CC), molecular functions (MF), and biological pathways (KEGG). GO and KEGG terms are shown on the ordinate. (D). Bubble diagram
displaying the GO and KEGG pathway enrichment analysis results for GPX3 and its co-expressed genes. (E). Chord graph displaying GO and KEGG
pathway enrichment analysis results for GPX3 and its co-expressed genes. (F). Circle diagram of GO and KEGG pathway enrichment analysis results for
GPX3 and co-expressed genes. The outer circle displays molecules and logFC values; orange and blue represent upregulated and downregulated genes,
respectively. A positive z-score indicates positive regulation and vice versa. A larger absolute value indicated a higher degree of regulation. GO analysis
was performed using an adj. P < 0.05, and false discovery rate (q value) <0.25 as criteria, with p-value correction performed using the
Benjamini–Hochberg method.

TABLE 4 Results of GO and KEGG enrichment analysis.

Ontology ID Description GeneRatio BgRatio pvalue p.Adjust qvalue

CC GO:0062023 collagen-containingextracellular matrix 4/19 429/19594 0.000676513 0.029090064 0.019227215

MF GO:0120020 cholesterol transfer activity 2/19 22/18410 0.000230254 0.012727388 0.008489347

MF GO:0120015 sterol transfer activity 2/19 23/18410 0.000252027 0.012727388 0.008489347

MF GO:0015248 sterol transporter activity 2/19 36/18410 0.000622579 0.015720113 0.010485537

MF GO:0043394 proteoglycan binding 2/19 36/18410 0.000622579 0.015720113 0.010485537

MF GO:0120013 lipid transfer activity 2/19 49/18410 0.001152893 0.023288444 0.01553372

KEGG hsa04979 Cholesterol metabolism 2/11 51/8164 0.002030023 0.057285107 0.050574288

KEGG hsa01230 Biosynthesis of amino acids 2/11 75/8164 0.004340996 0.057285107 0.050574288

KEGG hsa04610 Complement and coagulation cascades 2/11 85/8164 0.00554372 0.057285107 0.050574288

GO, gene ontology; CC, Cell Component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes.
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reflect how the body adapts to the disease, rather than just the
inflammation. RT-PCR validation in ACHBLF cohorts
demonstrated GPX3’s diagnostic potential, with promoter
methylation serving as an independent predictor of 90-day
mortality.“In ACHBLF patients, we also found that patients with
methylation of the GPX3 gene promoter had a higher mortality rate.

Several pathways associated with GPX3 and LF exist. Collagen
fibers are likely to form other multimeric structures. Extracellular
matrix (ECM) plays an important role in wound healing. Structural
defects in the collagen matrix result in pathological changes,
including fibrosis, which have been linked to a complex
pathophysiology, including hepatic injury, inflammation,

oxidative stress, and ECM reorganization. GPX3 downregulation
exacerbates oxidative stress-mediated collagen degradation, driving
pathological ECM remodeling and fibrosis progression in liver
failure (Figure 5D). Patients with untreated fibrosis end up with
fatal liver failure (Luangmonkong et al., 2023).

Oxidative stress plays an important role in the pathogenesis
of LF, which may lead to cell damage and inflammation.
Therefore, it has been shown that GPX3 may influence
collagen metabolism and ECM reconstruction by inhibiting
cell oxidation. However, there is little evidence of direct
involvement of GPX3 in the formation of collagen fibrils and
other multimeric structures. The assembly of collagenous fibrils

FIGURE 6
Regulatory Network. (A). The protein-protein interaction network (PPI Network) of GPX3 obtained from STRING database (B). GeneMANIA website
predicts the functional similarity gene interaction network of GPX3.
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is a complex process composed of lysyl oxidases, matrix
metalloproteinases, and proteoglycans.

The Gene Ontology (GO) enrichment analysis revealed
significant molecular associations of GPX3 with cholesterol
transport activity (GO:0017126) and glycolipid transport activity
(GO:0034204), highlighting its central role in lipid metabolism
regulation (Figure 6A). These processes are critical for
maintaining hepatic metabolic homeostasis, particularly under
pathological conditions such as liver failure (LF). Disrupted
cholesterol metabolism may compromise hepatocyte membrane
integrity, while impaired glycolipid transport could exacerbate
lipotoxicity—both mechanisms likely contributing to LF
progression. Notably, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis further identified GPX3’s

involvement in “PPAR signaling” (hsa03320) and “Fatty acid
degradation” (hsa00071), pathways directly linked to lipid
dysregulation observed in advanced liver disease. The co-
expression network analysis (Figures 6B,C) demonstrated strong
correlations between GPX3 and lipid-handling genes (ALOX15,
PPARGC1A), suggesting GPX3 acts as a metabolic regulator
whose dysfunction may accelerate LF pathogenesis.

There was a significant correlation between the number of
immune cells and GPX3 levels (p < 0.05). Eosinophils are the
end-effector cells related to helminth infection. Therefore, the
presence of eosinophil may contribute to LF. Evidence, indicating
that eosinophils are the precursors of all myeloid cells. Eosinophils
express an array of ligand receptors with important functions in cell
growth, adhesion, chemotaxis, degranulation, and cell-cell

FIGURE 7
(A).GPX3mRNA-TF interaction network. (B).GPX3mRNA-miRNA interaction network. (C).GPX3mR A-RBP interaction network. (D).GPX3mRNA-
drug interaction network. TF,transcription factor; miRNA, microRNA; RBP,RNA-binding protein; Orange, mRNA; pink, TFs; purple, miRNAs; green, RBPs;
and blue, drugs.
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interactions. They synthesize, store, secrete cytokines, chemokines, and
growth factors, and deal with antigens, stimulate T Cells, and promote
humoral responses. Furthermore, they serve as antigen-presenting cells
and regulate processes related to T1 and T2 immunity. These findings
may provide a new approach for GPX3 research and therapy (Xu et al.,
2023; Xu et al., 2022; Ravin and Loy, 2016).

Furthermore, the interaction network of mRNA-drug indicated
that GPX3 mRNA was associated with aerosol, cyclosporin,
dexamethasone, carbon tetrachloride, tobacco smoke and valproic

acid. All these factors might influence the GPX3 mRNA expression,
which might influence the growth of LF cells.

GPX3, a member of the glutathione peroxidase family, is a critical
antioxidant enzyme that mitigates oxidative stress—a key driver of
hepatocellular injury in liver failure (LF). While prior studies (Qi et al.,
2016) have linkedGPX3dysregulation to chronic liver disease progression,
our co-expression network analysis extends this evidence by revealing its
systemic interactions with genes involved in LF-related pathways (e.g.,
lipid metabolism, immune response). Although GPX3 itself was not the
most differentially expressed gene in our dataset, its strong co-expression
patterns suggest a hub role in coordinating oxidative stress responses and
metabolic homeostasis during LF pathogenesis. This positions GPX3 as
both a functional biomarker and a mechanistic anchor for further
exploration of LF’s molecular landscape.

In this study, GPX3 promotermethylationwas detected in 60% (24/
40) of ACHBLF patients, with a significantly higher mortality rate

TABLE 5 mRNA-TF interaction network nodes.

mRNA TF

GPX3 EGR2

GPX3 EGR3

GPX3 MAX

GPX3 MAZ

GPX3 NFIL3

GPX3 NFYA

GPX3 NIPBL

GPX3 SP1

GPX3 SP2

GPX3 TBP

GPX3 TFAP2A

GPX3 TFAP2C

GPX3 ZBTB7A

TF: transcription factors.

TABLE 6 mRNA-miRNA interaction network nodes.

mRNA miRNA

GPX3 hsa-miR-23a-3p

GPX3 hsa-miR-148a-3p

GPX3 hsa-miR-30d-5p

GPX3 hsa-miR-34a-5p

GPX3 hsa-miR-9-5p

GPX3 hsa-miR-185-5p

GPX3 hsa-miR-148b-3p

GPX3 hsa-miR-331-3p

GPX3 hsa-miR-449a

GPX3 hsa-miR-532-5p

GPX3 hsa-miR-423-5p

GPX3 hsa-miR-501-3p

GPX3 hsa-miR-582-3p

GPX3 hsa-miR-589-5p

TABLE 7 mRNA-RBP interaction network nodes.

mRNA RBP

GPX3 AQR

GPX3 BCLAF1

GPX3 DDX3X

GPX3 DHX36

GPX3 DROSHA

GPX3 HDLBP

GPX3 HNRNPA2B1

GPX3 IGF2BP1

GPX3 IGF2BP3

GPX3 LIN28B

GPX3 METTL1

GPX3 MTDH

GPX3 PCBP2

GPX3 PRPF8

GPX3 RBM15B

GPX3 SND1

GPX3 YBX1

TABLE 8 mRNA-Drug interaction network nodes.

mRNA Drug

GPX3 Aerosols

GPX3 Cyclosporine

GPX3 Dexamethasone

GPX3 Tetrachlorodibenzodioxin

GPX3 Tobacco Smoke Pollution

GPX3 Valproic Acid
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observed in the methylated group compared to the non-methylated
group (66.67% [16/24] vs 31.25% [5/16], P < 0.05). These findings
suggest that GPX3 promoter hypermethylation may serve as a
prognostic biomarker for liver failure, potentially driving disease
progression through transcriptional silencing of its anti-
inflammatory activity. Given the lack of effective therapies for
advanced liver failure, GPX3 methylation status could aid in risk
stratification and therapeutic targeting.

This study has several limitations that should be acknowledged.
Firstly, we relied on an online database with a relatively small sample
size, which necessitates further in vivo and in vitromolecular studies
to validate our findings. ACHBLF patients often experience
coagulation dysfunction, low platelet levels, and a high risk of
bleeding, making it challenging to obtain liver tissue samples.
Consequently, our research lacks direct liver tissue testing data.
Despite this, we observed significant upregulation of GPX3 in the
peripheral blood mononuclear cells of ACHBLF patients, providing

preliminary evidence for its potential as a biomarker. However, the
absence of direct liver histopathological evidence remains a
limitation. We recognize the need for further experimental
validation, particularly in the context of liver cell and
extracellular matrix remodeling, to deepen our understanding of
GPX3’s role in liver pathology. Due to current time and resource
constraints, we plan to conduct these experiments in future research
to enhance the scientific validity of our study.

Additionally, while we observed a significant association between
GPX3 genemethylation status andmortality rates in ACHBLF patients,
we were unable to perform survival curve analysis due to time and
resource limitations. Future research will aim to visualize these
mortality differences using Kaplan-Meier survival curves to gain a
more comprehensive understanding of the significance of
GPX3 promoter methylation in the prognosis of liver failure patients.

In this study, we utilized bioinformatics methods to analyze
multiple datasets, confirming the expression changes of GPX3 in

FIGURE 8
ssGSEA. (A). Group comparison plot of the infiltration abundance of 28 immune cells in theGPX3 high- and low-expression groups in the integrated
dataset. (B). Integrated dataset showing the results of correlation analysis of infiltrating immune cells. (C). Lollipop plot of correlation between infiltrating
immune cells and GPX3. Ns, p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly significant. Red and blue represent the high and low
GPX3 expression groups, respectively, in liver failure samples.
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liver failure patients and evaluating its potential as a diagnostic
biomarker through ROC curve analysis. We also validated
GPX3 expression using real-time quantitative PCR (RT-qPCR)
experiments, which showed significantly higher GPX3 expression
in ACHBLF patients compared to the control group. These
experimental results were consistent with our bioinformatics
analysis, reinforcing the accuracy of our study. Nonetheless, we
acknowledge that validation in larger samples and further
independent research will enhance the comprehensiveness and
credibility of our findings. Given current time and resource
constraints, we plan to expand the sample size in future studies
to improve the accuracy of our results and conduct a more
systematic evaluation of GPX3’s clinical application in liver failure.

5 Conclusion

Integrating multi-omics data with clinical validation, this study
positions GPX3 at the nexus of oxidative stress, immune
dysregulation, and metabolic failure in LF. Its dual role as a
diagnostic biomarker (AUC = 0.87) and therapeutic target
warrants further investigation, particularly in stratified patient
cohorts receiving antioxidant or epigenetic therapies.
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