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Objective: The study aims to explore the potential shared pathogenic processes
between PCOS and RA through bioinformatics analysis to identify novel
therapeutic targets and biomarkers for disease management.

Methods:Microarray datasets for polycystic ovary and RAwere obtained from the
GEO database. Differential gene expression analysis identified commonly
dysregulated genes in both conditions. Gene Ontology (GO) and KEGG
pathway enrichment analyses were performed to understand the biological
processes and pathways associated with the differentially expressed genes
(DEGs). Protein interaction analysis, machine learning algorithms, and
validation analyses were employed to identify core genes with potential
diagnostic value. Immune cell infiltration analysis and evaluation of hypoxia
and angiogenesis scores were conducted to assess the role of the core genes
in immune-related disorders.

Results: Microarray analysis identified differentially expressed genes (DEGs)
commonly dysregulated in PCOS and RA. GO and KEGG enrichment analyses
highlighted the involvement of cell death, inflammation, and redox pathways. Ten
key genes were identified through protein interaction analysis, and machine
learning further narrowed it down to six core genes: CSTA, DPH3, CAPZA2, GLRX,
CD58, and IFIT1. The core genes were overexpressed in PCOS and RA tissues,
suggesting their potential involvement in disease development. Validation
analyses confirmed the diagnostic potential of these genes, especially in RA.
Immune cell infiltration analysis correlated the expression of core genes with
neutrophil and CD8+ T cell infiltration. Hypoxia and angiogenesis scores indicated
the significance of these genes in immune-related disorders.

Conclusion: The study unveils potential molecular links between PCOS and RA,
highlighting the importance of immune dysregulation in their pathogenesis. The
identified core genes offer novel therapeutic targets and potential biomarkers for
disease management, providing insights into the complex interplay between
these two seemingly unrelated conditions.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder
with significant global impact, characterized by polyarthritis, fatigue,
and systemic inflammation (Josef et al., 2016). It imposes a
substantial health burden, particularly affecting women and can
progress from mild symptoms to severe disability, greatly impacting
an individual’s quality of life (Ennio Giulio et al., 2018). The
pathogenesis of RA is closely tied to immune dysregulation,
leading to autoimmunity against joint tissues and systemic
inflammation affecting multiple organ systems (Stefano et al., 2022).

The higher prevalence of RA in women is believed to be
influenced by hormonal factors, with hormonal imbalances
potentially contributing to immune dysfunction and the
development of RA (Deshiré et al., 2016; Joseph et al., 2023).
Polycystic ovary syndrome (PCOS), a common hormonal
disorder in women, is associated with immune system
dysregulation and has been linked to an elevated risk of
autoimmune diseases (Hifsa et al., 2016; Ying-Yi et al., 2022).
Studies suggest a possible association between PCOS and RA,
possibly due to shared genetic factors and hormonal influences
impacting immune responses (Héctor, 2018; Katherine et al., 2024).
Hormonal imbalances, such as those observed in PCOS, can disrupt
immune function and increase susceptibility to autoimmune
conditions like RA (Jingxuan et al., 2023). Metabolic
abnormalities, such as insulin resistance in PCOS, have also been
implicated in the pathogenesis of RA (Miguel and Manuel, 2020).
Genetic links between RA and PCOS have been established,
emphasizing the importance of further investigations to identify
diagnostic markers and therapeutic targets for RA in the context of
PCOS. Utilizing advanced technologies like RNA sequencing and
microarray analyses can offer valuable insights into the molecular
mechanisms underlying the association between PCOS and RA
(Shuji et al., 2018; Zanjirband et al., 2023). By identifying
differentially expressed genes and pathways associated with both
conditions, researchers can uncover potential commonalities and
novel targets for diagnostic and therapeutic advancements.

Further research is warranted to deepen our understanding of
the genetic and molecular connections between PCOS and RA. The
present study aims to investigate shared genetic elements between
these disorders using bioinformatics analyses of gene expression
datasets to elucidate core genes and pathways involved in their
pathogenesis. The subsequent sections will detail the results and
implications of these analyses, shedding light on the potential
interplay between PCOS and RA for improved disease
management strategies.

2 Materials and methods

2.1 Microarray datasets acquisition

Microarray datasets from polycystic ovaries and rheumatoid
arthritis were retrieved from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) with the accession numbers GSE54250 (8 healthy
individuals and 8 with PCOS) and GSE93272 (43 healthy controls
and 232 with RA). Since PCOS is a female-specific disease, only
females from the two datasets were included in this study. The data

underwent normalization and log transformation to address
potential skewness issues. Table 1 shows more information on
these datasets.

2.2 Data preprocessing

Data analysis was conducted using the R software package
(version 4.4.2; https://www.r-project.org/). Probes lacking
annotation were excluded, and duplicate expression values were
averaged. Differentially expressed genes (DEGs) were identified
utilizing the limma package (Matthew et al., 2015) from
Bioconductor (https://www.bioconductor.org/), applying
screening criteria of P < 0.05 and |logFC| > 0.6.

2.3 Co-expressed gene extraction
and screening

Co-expressed genes in the two datasets were extracted and
intersecting genes were screened as potential key genes using
Venn diagrams (Philippe et al., 2014).

2.4 GO and KEGG enrichment analyses

To analyze the biological functions and pathways, Gene
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
performed based on the common differentially expressed genes
using the R package clusterProfiler (Guangchuang et al., 2012).

2.5 Protein-protein interaction (PPI) network

A protein-protein interaction (PPI) network of the DEGs was
built using the STRING database (https://string-db.org/) and
visualized using Cytoscape software (https://cytoscape.org/). The
CytoHubba plug-in in Cytoscape was used to select pivotal genes
from the PPI network based on eight topological approaches (Chia-
Hao et al., 2014).

2.6 Machine learning

Machine learning was carried out using an online web-based
tool available at http://owo-b.com/index. A random forest
algorithm, an ensemble machine learning method, was used to
screen the core genes in GSE54250 and GSE93272. The
intersection of these genes signifies core targets for polycystic
ovaries and rheumatoid arthritis.

2.7 Verification of pivotal genes

The reliability of the identified genes was verified in a dataset
containing samples related to polycystic ovary (GSE54250) and
rheumatoid arthritis (GSE93272). The expression of these genes
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was first verified and compared with normal controls. To evaluate
the predictive efficiency for disease of the identified critical genes,
the accuracy of hub genes was evaluated by ROC validation and the
area under the curve (AUC) values were calculated by an online
website (https://www.xiantao.love/products/). Efficacy evaluation:
non-efficiency (AUC ≤ 0.5); modest-efficiency (0.5 < AUC < 0.
7); high-efficiency (AUC > 0.7).

2.8 Validation of the expression of the
pivotal genes

Blood samples were obtained from 30 healthy controls,
30 patients with PCOS, and 30 patients with RA at the Tai’an
Central Hospital affiliated Qingdao University between 2023 and
2024. All participants provided informed consent and the study
adhered to the ethical requirements of the Helsinki Declaration.
Ethical approval was obtained from the Ethics Committee of the
Tai’an Central Hospital affiliated Qingdao University (2023-06-35).
RNA was extracted from peripheral blood using TRIzol reagent
(Invitrogen, United States) and cDNA was synthesized using a
reverse transcription kit (Applied Biosystems) according to the
manufacturer’s instructions. Quantitative real-time PCR analysis
was performed using the KAPA SYBR Green Fast BioRad icycler kit
(Peqlab) on a BioRad CFX96 real-time PCR system. The expression

levels of target genes were calculated relative to β-actin using the
2−ΔΔCt method. The primer sequences are as follows (Table 2).

2.9 Construction of miRNA-mRNA network

Genes were predicted to be targeted by miRNAs in miRDB
(https://mirdb.org/). A network of miRNA-mRNA was constructed
using Cytoscape software.

2.10 Correlation analysis

Correlation analysis between hub gene expression and the
number of neutrophils was conducted. Also, the correlation
between hub genes and immune cells were analyzed using
Pearson correlation coefficient.

2.11 CIBERSORTs analysis

Analysis of GSE54250 and GSE93272 was conducted using
CIBERSORTs (Aaron et al., 2015) (https://cibersort.stanford.edu/) to
evaluate the difference in immune cell types between the two conditions.

2.12 Hypoxia and angiogenesis scores

Hypoxia scores and angiogenesis scores were calculated using
the ssGSEA method as described in the study (Li et al., 2009) which
are critical for immune-related diseases, were calculated. Correlation
analysis was conducted to assess the relationship between these
scores and the expression of the identified genes.

2.13 Statistical analyses

R studio software (Version 4.2.3) and GraphPad Prism 8.0 software
were used to draw graphics and conduct statistical analysis. All of the
data are shown as mean ± SD. P < 0.05 indicated statistical significance.

3 Results

3.1 Data acquisition and initial analysis

To identify genes co-expressed in polycystic ovaries and
rheumatoid arthritis, we obtained microarray data from two datasets
(GSE54250 and GSE93272) as a training set. After normalization and
log-transforming the data, we used the R software to remove probes

TABLE 1 The summary of datasets used in this study.

GEO accession Platform Tissue type Samples

GSE54250 GPL10558 peripheral blood samples in PCOS patients 8 vs. 8

GSE93272 GPL570 Whole blood gene expression of RA 43 vs. 232

Notes: Annotation: (Illumina HumanHT-12 V4.0 expression beadchip); GPL570: (hgu133plus2).

TABLE 2 Primer sequence for qRT-PCR.

Target gene Primer sequence (5′–3′)

CSTA Forward 5′-TCCAGAAATCCAGGAGATTGTTGA-3′

Reverse 5′-ATCACCTGCTCGTACCTTAATGT-3′

DPH3 Forward 5′-CGAGGACTTCCAATATGACGAGG-3′

Reverse 5′-AATGAGAGAGCAGCTAGGACAC-3′

CAPZA2 Forward 5′-TGGAGTCTGCACTGTGTATGG-3′

Reverse 5′-TGAGTGGTTGAAGGAGTGATTGT-3′

GLRX Forward 5′-CACAGCCACCAACCACACTAAC-3′

Reverse 5′-GACTAGATCACTGCATCCGCCTAT-3′

CD58 Forward 5′-CTGTGTCAGGTAGCCTCACTATC-3′

Reverse 5′-TGCACAAGTTAGTGTGGGAGA-3′

IFIT1 Forward 5′-GCCTCCTTGGGTTCGTCTACA-3′

Reverse 5′-GGACCTTGTCTCACAGAGTTCTCA-3′

BACTIN Forward 5′-GGCACCCAGCACAATGAAG-3′

Reverse 5′-CCGATCCACACGGAGTACTTG-3′
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without annotation information and calculated averages in the presence
of duplicate expression data. Genes with screening criteria of P <
0.05 and |logFC|>0.6 were identified as differentially expressed genes

(DEGs). A total of 425 DEGs (396 upregulated and 29 downregulated
genes) were identified in the GSE54250 dataset and 182 DEGs
(176 upregulated and 6 downregulated genes) were identified in the

FIGURE 1
Differential Gene Analysis between PCOS and RA Gene Sets (B) Volcano plot of GSE54250. (B) Heatmap of differentially expressed genes in
GSE54250. (C) Volcano plot of GSE93272. (D) Heatmap of differentially expressed genes in GSE93272.
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GSE93272 dataset. Differential genes were displayed as volcano plots in
Figures 1A,C, respectively, and the top-ranked differential genes were
displayed with clustered heatmaps (Figures 1B,D).

3.2 Identification of Co-expressed genes
and pathway analysis

Subsequently, we extracted the co-expressed genes in the two
datasets and screened 27 intersecting genes as potential key genes by
Venn diagrams (Figure 2A), suggesting that polycystic ovaries and
rheumatoid arthritis may share a common pathogenesis. To further
analyze the biological functions and pathways, we performed GO
enrichment and KEGG pathway enrichment analyses based on the
common differentially expressed genes. As shown in Figures 2B,C,

the results of KEGG enrichment analysis showed that the apoptosis,
necroptosis, and endocytosis pathways were significantly enriched;
The GO enrichment results showed that the differences were mainly
in peptide disulfide oxidoreductase activity, protein disulfide
oxidoreductase activity, and specific granule. Taken together,
these results strongly suggest that the intracellular environment
and immune cell function play an important role in the pathogenesis
of polycystic ovaries and rheumatoid arthritis.

3.3 Protein-protein interaction network and
core gene identification

To further investigate the interactions of common differentially
expressed genes (DEGs) between polycystic ovaries and rheumatoid

FIGURE 2
Intersection of Gene Sets and Enrichment Analysis. (A) Intersection of GSE54250 and GSE93272 gene sets. (B) Gene Ontology (GO) enrichment
analysis of the intersection genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the intersection genes.
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FIGURE 3
Construction of PPI Network andMachine Learning Selection. (A) Protein-Protein Interaction (PPI) network of the intersection genes. (B)Hub genes
identified in the PPI network. (C) Random forest selection of key genes from GSE54250. (D) Random forest selection of key genes from GSE93272. (E)
Intersection of selected genes using Venn diagram.
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FIGURE 4
Validation of Hub Genes and ROC Efficiency. (A) Validation of hub genes in PCOS. (B) Validation of hub genes in RA. (C) ROC curve analysis for
diagnostic efficiency of hub genes in RA.
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arthritis, we built a protein-protein interaction (PPI) network of
27 DEGs based on the STRING database and visualized it using
Cytoscape software (Figure 3). We used the CytoHubba plug-in in
Cytoscape to select pivotal genes from the PPI network based on

eight topological approaches including intermediacy, bottleneck,
EPC, degree, MCC, MNC, radiality, and stress (Table 1). After
cross-tabulation analysis, we identified 10 genes: S100A12, IFIT1,
IFIT3, ANXA3, SLPI, TNFSF10, CSTA, CLEC4D, SAMD9, and

FIGURE 5
Gene Set Enrichment Analysis (GSEA) of Hub Genes. (A) GSEA analysis of hub genes in PCOS. (B) GSEA analysis of hub genes in RA.
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BCL2A1. And obtained the functional information of these genes
(Table 2). Therefore, a random forest algorithm in machine learning
was used to screen the core genes in GSE54250 and GSE93272 to

take the intersection and obtain CSTA, DPH3, CAPZA2, GLRX,
CD58, IFIT1. These genes can be considered as the core targets for
polycystic ovaries and rheumatoid arthritis.

FIGURE 6
Correlation Analysis of Hub Genes with Immune Cells. (A) Comparison of immune cell profiles in PCOS. (B) Correlation between hub genes and
immune cells in PCOS. (C) Comparison of immune cell profiles in RA. (D) Correlation between hub genes and immune cells in RA.
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3.4 Gene expression verification and
diagnostic ability evaluation

To verify the reliability of these six pivotal genes, the expression
of these genes was first verified in a dataset containing samples
related to polycystic ovary GSE54250 and rheumatoid arthritis
GSE93272. As shown in Figures 4A,B, four genes were
significantly upregulated in polycystic ovary and all six genes
were significantly upregulated in rheumatoid arthritis compared
with normal controls. To further evaluate the diagnostic ability of
the hub genes in the two diseases, we plotted ROC curves based on
these gene expression data. Due to the small number of samples in
the PCOS group, it was not meaningful to plot ROC curves;
therefore, ROC curves were plotted only for the expression data
in GSE93272. The AUCs were 0.887 for CSTA, 0.916 for DPH3,
0.893 for CAPZA2, 0.896 for GLRX, 0.90 for CD58, and 0.73 for
IFIT1 (Figure 4C). Taken together, these pivotal genes may have a
strong ability to differentiate between polycystic ovaries and
rheumatoid arthritis as potential biomarkers.

3.5 GSEA analysis and immune cell analysis

By performing GSEA analysis of six Hub gene in PCOS and RA,
respectively, it was observed that the KEGG pathways that function
in PCOS (Figure 5A) and RA (Figure 5B) are different. Analysis of
GSE54250 and GSE93272 by CIBERSORTs revealed significant
differences in neutrophils and CD8+ T cells, among others, in
GSE54250 (Figure 6A); and in GSE93272, neutrophils and CD8+

T cells, among others, also differed significantly (Figure 6B).
Subsequently, by correlation analysis of hub genes and immune
cells, it was found that in polycystic ovaries, GLRX was positively
correlated with neutrophils (R = 1.00) and negatively correlated with
CD8+ T cells (R = −0.99), and that CD58 was positively correlated
with neutrophils (R = 0.98) and negatively correlated with CD8+

T cells (R = −0.98) (Figure 6C); in RA, IFIT1 was positively
correlated with DC cells (R = 0.66) (Figure 6D).

3.6 Hypoxia and angiogenesis
scores analysis

Hypoxia scores and angiogenesis scores are critical for immune-
related diseases, and the analysis revealed significant differences in
hypoxia scores in PCOS and in both hypoxia scores and
angiogenesis scores in RA (Figures 7A-D). Correlation analysis
revealed that GLRX and CD58 were negatively correlated with
hypoxia score in PCOS, and all six hub genes were negatively
correlated with hypoxia score in RA, and CSTA, DPH3,
CAPZA2 and GLRX were negatively correlated with angiogenesis
score (Figures 7E,F).

3.7 Blood sample validation and miRNA-
mRNA network

Validation of the expression levels of key genes in the collected
blood samples was consistent with the analyses (Figure 8A); A

miRNA-mRNA network was constructed using Cytoscape
(Figure 8B); among the miRNAs predicted by the key genes,
there were three intersections with differential miRNAs: miR-28-
5p, miR-330-3p and miR-140-5p (Figure 8C).

4 Discussion

This study aims to explore the potential shared pathophysiological
mechanisms between polycystic ovary syndrome (PCOS) and
rheumatoid arthritis (RA), focusing on co-expressed genes and their
potential as biomarkers and therapeutic targets. By analyzing
microarray data from two independent datasets (GSE54250 and
GSE93272), we found interesting correlations between these two
diseases. Our analysis revealed 27 differentially expressed genes
common to both diseases, which are associated with alterations in
the intracellular environment and immune cell functions. Further
analysis using the Random Forest algorithm identified six core genes
with the highest potential: CSTA, DPH3, CAPZA2, GLRX, CD58, and
IFIT1. Immune cell-related analysis unveiled the importance of
neutrophils and CD8+ T cells in both diseases, particularly
highlighting the strong association of GLRX, CD58, and IFIT1 with
these cell types. Additionally, significant differences were observed in
hypoxia and angiogenesis scores between patients with PCOS and RA,
suggesting that microenvironmental regulation in immune-related
diseases may be influenced by these critical genes. The validation
phase confirmed the differential expression of these key genes and
identified three miRNAs associated with them (miR-28-5p, miR-330-
3p, and miR-140-5p), indicating their potential role in disease
regulation.

Our study identified 27 genes that exhibited differential
expression in both PCOS and RA. GO functional and KEGG
pathway enrichment analyses provided further insights,
suggesting that alterations in the intracellular environment and
immune cell functions could be key shared factors between the
two diseases. PCOS is characterized by a microenvironment within
the ovary influenced by various interrelated factors, including
insulin resistance, inflammation, and abnormal steroid hormone
synthesis. These factors lead to hyperandrogenism, disrupting the
internal environment balance within the ovary (Han et al., 2023).
Additionally, the endometrium of PCOS patients displays abnormal
immune characteristics, with an increased proportion of specific
immune cell populations (such as macrophages) and upregulated
expression of immune markers (Elisabet et al., 2024). In the case of
RA, the synovial microenvironment influences the behavior of mast
cells. Degranulation of mast cells in inflamed joint tissues is
mediated by the MRGPRX2 receptor, a potential therapeutic
target (Yunxuan et al., 2024). Recent studies have proposed
nanomotor strategies to actively modulate the arthritic
microenvironment, which may play a crucial role in exacerbating
inflammation (Cong et al., 2022). Immune cells are pivotal in the
pathogenesis of RA, impacting joint inflammation and destruction
through intricate interactions and signaling pathways. Both T cells
and B cells are involved in the inflammatory response, with
autoantibodies produced by B cells aggravating the disease
process (Noriko and Hiroshi, 2022).

By constructing a protein-protein interaction (PPI) network, we
identified 10 key genes that play central roles in the network and
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may significantly influence the disease process. Further analysis
using the Random Forest algorithm helped us identify six core genes
with the highest potential: CSTA, DPH3, CAPZA2, GLRX, CD58,
and IFIT1. These genes are associated with various diseases,
including skin disorders, translation-related diseases, cancer,
neurodegenerative diseases, and autoimmune conditions
(Diamond and Farzan, 2013; Nils et al., 2014; Vikas et al., 2018;
Yalu et al., 2021; Rui et al., 2022; Xiao-Man et al., 2024). CSTA
inhibits proteases, protecting the skin and mucous membranes (Zhi-
Jie et al., 2023). DPH3 is involved in regulating protein synthesis
(Shihui et al., 2006). CAPZA2 modulates the cytoskeleton, which is
essential for cell morphology and movement (Vina et al., 2023).
GLRX is an antioxidant enzyme that protects cells from oxidative
stress-induced damage (Qiu et al., 2021). CD58 molecules facilitate
immune cell interactions and T cell activation (Zhu et al., 2006).
IFIT1 participates in antiviral defense responses (McDougal et al.,
2024). ROC curve analysis indicated that these genes have diagnostic
value in distinguishing PCOS from RA, underscoring their potential
as biomarkers.

Immune cell-related analysis revealed that neutrophils and
CD8+ T cells play crucial roles in both PCOS and RA. Regarding
neutrophils, studies have shown that they play a critical role in
immune regulation in PCOS patients. Certain proteins associated
with neutrophils, such as neutrophil gelatinase-associated lipocalin
(NGAL) and its complex with matrix metalloproteinase-9 (MMP-9),
are significantly decreased in concentration in PCOS patients,
suggesting a potential protective mechanism (Ying-Yi et al.,
2022). Additionally, changes in white blood cell counts and the
neutrophil-lymphocyte ratio (NLR) in PCOS patients are associated
with low-grade inflammation and correlate with assisted
reproductive outcomes (Xin et al., 2023). In the context of CD8+

T cells, alterations in their function and quantity in PCOS patients

are believed to be linked to the immune mechanisms of the disease
(Mengting et al., 2021). Some studies indicate a reduced proportion
of CD8+ T cells in PCOS patients, suggesting a possible disruption in
their immune surveillance function (Buckner, 2010). Moreover, the
functionality of CD8+ T cells may also be altered in PCOS patients,
implying that their immune responses might differ from the norm,
impacting disease progression (Cong et al., 2020). Concerning the
relationship between neutrophils and RA, neutrophils play a pivotal
role in the pathogenesis of RA by releasing cytotoxic molecules and
exerting immunomodulatory functions (Liam and Mariana, 2019).
They contribute to joint tissue damage and interact with fibroblasts
in the synovium, inducing antigen-presenting functions and an
inflammatory phenotype (Lucy-Jayne et al., 2021). Additionally,
extracellular traps (NETs) released by neutrophils are implicated in
the pathogenesis of RA, leading to a loss of immune tolerance in
patients and the production of autoantibodies (Venizelos, 2017).
CD8+ T cells are also critical in RA, and their homeostatic alterations
are associated with the onset and persistence of the disease. These
cells exhibit a heterogeneous phenotype, including both pro-
inflammatory and anti-inflammatory characteristics, and they
lose their sensitivity to regulation in the chronic inflammatory
environment (Alessandra and Femke, 2016). Newly identified
tissue-resident populations of CD8+ T cells and their interactions
with antigen-presenting cells may play pivotal roles in the pathology
of RA (Justin et al., 2020).

Notably, GLRX, CD58, and IFIT1 exhibit significant
associations with these immune cell types. GLRX, or
glutaredoxin, is a redox regulator that plays a crucial role in
immune responses (Fernando et al., 2021). Neutrophils produce a
substantial amount of reactive oxygen species (ROS) during their
functions (Winterbourn et al., 2016), and GLRX, with its antioxidant
properties, helps maintain redox balance, thereby protecting cells

FIGURE 7
Correlation Analysis of Hub Genes with Hypoxia and Angiogenesis Scores. (A) Comparison of hypoxia scores in PCOS. (B) Comparison of hypoxia
scores in RA. (C) Comparison of angiogenesis scores in PCOS. (D) Comparison of angiogenesis scores in RA. (E) Correlation between hub genes and
hypoxia scores in PCOS. (F) Correlation between hub genes and angiogenesis scores in RA.
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from damage. Studies have shown that GLRX is highly enriched in
certain tumors and is closely associated with tumor immune
processes (Yuanhao et al., 2020). CD58, also known as

Lymphocyte Function-Associated Antigen-3 (LFA-3), is a cell
surface protein that plays a critical role in immune responses and
the regulation of intercellular interactions in the immune system

FIGURE 8
Validation and Network Analysis of Hub Genes. (A) Expression levels of hub genes in the validation cohort for PCOS and RA. (B) miRNA network
associated with hub genes. (C) Intersection of predicted miRNA network with the dataset.
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(Makgoba et al., 1989). Its expression on neutrophils and CD8+

T cells is closely linked to immune functions and regulation.
CD58 interacts with CD2 on the surface of neutrophils,
contributing to the regulation of T cell activation and cytokine
production, and it can enhance neutrophil survival and
antimicrobial capacity (Rölle et al., 2016). In the context of CD8+

T cells, CD58 interaction with CD2 on antigen-presenting cells or
target cells is essential for effective T cell activation and function,
facilitating immunological synapse formation and antigen
presentation (Leitner et al., 2015). IFIT1, also known as
Interferon-Induced Protein with Tetratricopeptide Repeats 1, is
an important component of the innate immune response and
exhibits specific relationships with neutrophils and CD8+ T cells
(Wu et al., 2023). IFIT1 expression in neutrophils enhances their
antimicrobial capacity, particularly against viral infections
(Diamond and Farzan, 2013). In CD8+ T cells, IFIT1 expression
can bolster their antiviral functions and cytotoxicity by inhibiting
viral replication (Franco et al., 2023).

Additionally, we analyzed hypoxia and angiogenesis scores, as
they are closely related to immune-associated diseases (Carmeliet,
2003; Luo et al., 2022). The results showed significant differences in
these scores between PCOS and RA patients. The analysis
underscored the correlation between key genes and these scores.
For instance, in PCOS, GLRX and CD58 were negatively correlated
with hypoxia scores, suggesting their potential involvement in
regulating oxygen partial pressure within the microenvironment.
In RA, all six core genes were negatively correlated with hypoxia
scores, indicating a broader role for these genes in modulating
hypoxia in this autoimmune disease. Furthermore, CSTA, DPH3,
CAPZA2, and GLRX were negatively correlated with angiogenesis
scores in RA patients, implying that these genes may play a pivotal
role in the disease’s characteristic angiogenic processes.

However, our study has some limitations. Firstly, our findings
are based on bioinformatics analyses and require experimental
validation to confirm the results. Additionally, we did not
consider the potential impact of demographic factors such as age,
ethnicity, and lifestyle, which may affect the universality of the
results. Future studies should aim to validate the findings in different
patient populations and utilize experimental models to elucidate the
exact roles of the identified genes in the pathogenesis of the diseases.

5 Conclusion

In conclusion, this study provides novel insights into the shared
molecular mechanisms underlying PCOS and RA, offering potential
avenues for therapeutic development and disease management
strategies. Future research should endeavor to refine our
understanding of these shared pathways and their role in disease
pathogenesis for improved patient outcomes.
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