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Introduction: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder
that poses a significant global health burden due to its profound effects on
systemic physiological homeostasis. Without timely intervention, the disease can
progress insidiously, leading to multisystem complications such as
cardiovascular, renal, and neuropathic pathologies. Consequently,
pharmacological intervention becomes crucial in managing the condition.
Leeches have been traditionally used in Chinese medicine for their potential
to inhibit the progression of T2DM and its associated complications; however, the
specific mechanisms underlying their action and target pathways remain poorly
understood. The objective of this study was to predict potential therapeutic
targets of leeches in the treatment of T2DM.

Methods: We collected active components and targets associated with leeches
from four online databases, while disease-related targets were sourced from the
GeneCards and OMIM databases. Following this, we performed Gene Ontology
(GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis. Gene expression data were obtained from the
GSE184050 dataset. Important immune cell types were identified through
immunoinfiltration analysis in conjunction with single sample enrichment
analysis (ssGSEA). Additionally, weighted co-expression network analysis
(WGCNA) was utilized to identify significantly associated genes. Finally, we
employed LASSO regression, SVM-RFE, XGBoost, and random forest
algorithms to further predict potential targets, followed by validation through
molecular docking.

Results: Leeches may influence cellular immunity by modulating immune
receptor activity, particularly through the activation of RGS10, CAPS2, and
OPA1, thereby impacting the pathology of Type 2 Diabetes Mellitus (T2DM).

Discussion: However, it is important to note that our results lack experimental
validation; therefore, further research is warranted to substantiate these findings.
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1 Introduction

Type 2 diabetes is a chronic disease that seriously threatens
human health (Kautzky-Willer et al., 2016). Current studies suggests
that the pathogenesis of type 2 diabetes mellitus is primarily
attributed to both insulin resistance and impaired systemic
capacity to metabolize surplus glucose (Lee et al., 2022).
Diminished cellular glucose oxidation (DeFronzo, 2004) and
dysregulated mitochondrial bioenergetics (Rovira-Llopis et al.,
2017) constitute significant contributors to the pathogenesis of
type 2 diabetes mellitus (T2DM). Pharmacotherapy remains the
primary therapeutic approach for type 2 diabetes mellitus (T2DM);
however, adverse drug reactions persist as a significant clinical
challenge affecting a substantial patient population.

Leech-derived bioactive constituents demonstrate targeted anti-
hyperglycemic efficacy, while concomitant administration with
exogenous insulin achieves synergistic glycemic regulation,
thereby overcoming the therapeutic constraints inherent to
conventional monotherapeutic approaches targeting isolated
pathways (Mohammed et al., 2013). Concurrently, experimental
studies have revealed that leech therapy ameliorates streptozotocin
(STZ)-induced nephrotic microangiopathy in diabetic rats by
suppressing endothelial cell migration and angiogenesis (Pang
et al., 2020). Hirudin ameliorates kidney injury in diabetic
nephropathy by suppressing GSDMD-mediated pyroptosis,
thereby reducing the release of renal inflammatory factors (e.g.,
IL-1β and IL-18) (Han et al., 2023). The bioactive components of
leeches ameliorate diabetic nephropathy and preserve renal function
through anticoagulant, antifibrotic, antithrombotic, and anti-
inflammatory mechanisms (Tian et al., 2024). These results
suggest that leeches may play a role in the treatment of T2DM,
however, the specific mechanisms require further study.

Network pharmacology is an effective method to explore the
underlying mechanisms of drugs and diseases, and the mechanism
of action and potential targets of leech therapy for T2DM are
explored in combination with immunoinfiltration analysis, and
verified by molecular docking.

2 Materials and methods

2.1 Network pharmacological analysis

To investigate the mechanisms underlying the therapeutic
effects of leech therapy in diabetes, we performed a network
pharmacology-based analysis. First, the active ingredients of
leeches were identified using the Herb database (http://herb.ac.
cn/) (Fang et al., 2021), with data retrieval performed through
the “Related Ingredients” section. The SMILES notation of the
ingredients, which represents their structural formulas, was
obtained from the PubChem database. These notations were
subsequently utilized for target prediction analyses. Target data
through SwissTargetPredictio (https://www.swisstargetprediction.
ch/) (Daina et al., 2019), CTD (https://ctdbase.org/) (Davis et al.,
2023), SuperPred (Database (http://prediction.charite.de/) (Gallo
et al., 2022), disease targets from Genecards (www.genecards.org),
OMIM (https://omim.org/) (Stelzer et al., 2016) database access,
Keyword “Type 2 diabetes” was set, and disease targets with

Relevance score > 10 were screened. The leech-active
component-target network was generated using Cytoscape
(version 3.8.2). Node degree centrality was calculated to quantify
connection patterns, with higher values indicating greater nodal
influence within the network architecture. Using the “cytohuub
plugin” in Cytoscape software, select “Degree” to obtain the main
active ingredients of leeches. Finally, microscopic letter platform
(http://www.bioinformatics.com.cn/) to further optimize the “leech
- active ingredient - targets” network diagram. R software
“clusterProfiler” “pathview” package for enrichment analysis.

2.2 Obtain GEO datasets and GSEA analysis
for T2DM

The GSE184050 dataset was retrieved from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.govgeo)
(Barrett et al., 2013). This dataset comprises 116 whole blood
transcriptome samples, including fifty patients with type
2 diabetes and sixty-six healthy controls. The Series Matrix File
and SOFT formatted files were obtained from the database to
facilitate data normalization processes. Differential expression
analysis was performed using GEO2R, with the disease and
control groups defined to generate differentially expressed genes
(DEGs). These DEGs were subsequently processed in R (version 4.2.
1) for downstream analyses. Finally, differential analysis was
conducted using the limma package (Ritchie et al., 2015) in R
software, with significance thresholds defined as p < 0.05 and
absolute fold change (|FC|) > 1. Finally, a differential expression
heatmap was generated from the expression profile dataset. Gene Set
Enrichment Analysis (GSEA) (Canzler and Hackermüller, 2020)
was subsequently conducted to analyze enriched gene sets. Through
GSEA analysis, the gene ontology (GO) and associated signaling
pathway (KEGG) of DEGs were determined.

2.3 Single sample enrichment
analysis (ssGSEA)

Immune-related gene set enrichment in the study samples was
assessed using single-sample gene set enrichment analysis (ssGSEA)
(Jin et al., 2021), a modified version of traditional GSEA specifically
designed for evaluating predefined gene set enrichment at the
individual sample level. This method enables independent
evaluation of immune pathway and related process activity
within individual samples, eliminating the need for comparative
data from other specimens. Transcriptome data was annotated by
GRCh38 genome annotation file, and mRNA was extracted and
normalized into tpm for subsequent analysis (Yi et al., 2020).

2.4 Weighted gene coexpression network
analysis (WGCNA)

WGCNA is designed to identify co-expression patterns of gene
modules associated with specific biological processes, diseases, or
other phenotypes (Xu et al., 2023; Feng et al., 2022). In this study, we
constructed a gene co-expression network using all expressed genes
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(DEGs) and activated CD4 cell scores, activated dendritic cell scores,
central memory CD4 T cell scores, and type 1 T helper cell scores in
the dataset. Firstly, the power scatter plot was established and the
optimal soft threshold (β = 12) was selected to obtain the similarity
matrix between the genes. Then, hierarchical clustering of genes was
performed, and dynamic module identification and clipping were
performed with the minimum module number of 80. The resulting
gene modules were visualized by co-expression patterns, and similar
modules were combined. Correlations between activated DC scores
and each module were assessed by correlation tests, and heat maps
were drawn to show the correlation results.

2.5 Machine learning analysis of
intersection targets

Immune-related targets for leeches to treat diabetes were
screened by machine learning algorithms. First, the intersection
targets of leeches and WGCNA core modules were selected as
objects, and the targets were further screened by LASSO
regression (Hohberg and Groll, 2024), SVM-REF (Yang et al.,
2024), xgboost algorithm (Hou et al., 2020) and random forest
algorithm (Hu and Szymczak, 2023). LASSO regression is a feature
screening algorithm. The intersection targets are set as high data,
and the ten-fold crossover algorithm is used to avoid overfitting and
maintain the accuracy of the algorithm. SVM-REF algorithm is a
classification algorithm, which reduces the error through
classification and screening method. Xgboost algorithm and
random forest algorithm can process data more efficiently, and
process variables through cross-analysis method to realize high-
latitude data sorting.

2.6 Molecular docking

The macromolecular structures were downloaded from the PDB
website (Prestegard, 2021), specifically for RGS10, CAPS2, and
OPA1, with PDB numbers 2DLR, Q86UW7, and 6JT,
respectively. The small molecule structure compositions were
sourced from PubChem (https://pubchem.ncbi.nlm.nih.gov/)
(Kim, 2016), while the CAPS2 molecular structure was obtained
from AlphaFold (https://alphafold.ebi.ac.uk). AutoDockTools-1.5.
7 was used to process both small and large molecules. This involved
“dehydrating and hydrogenating,” setting the docking box, and
calculating the binding energy based on the number of hydrogen
bonds and interactions between the small and large molecules. For
visualization, we utilized PyMOL 3.1, presenting the final results
with both overall and partial views of the docking.

2.7 Statistical analysis

All statistical analyses were conducted using R software (version
4.3.1), with a p-value of less than 0.05 deemed statistically
significant. For network pharmacology investigations, Cytoscape
(version 3.8.2) and its plugins were utilized to construct and
analyze networks. The topological assessment of the “drug-
component-target” network was primarily based on node degree

centrality. Protein-protein interaction (PPI) network clusters were
identified using Cytoscape’s MCODE plugin with the following
parameters: degree cut-off = 2, node score cut-off = 0.2, K-core =
2, and maximum depth = 100. Core targets were subsequently
determined through node degree ranking. Molecular docking
simulations were performed with an energy range of 5 kcal/mol
and exhaustiveness set to 400.

3 Results

3.1 Network pharmacological analysis

A total of 19 active components from leeches were obtained
through the HERB database. Subsequently, 461 component targets
were identified using SWI, while 96 drug targets were retrieved from
the CTD, and 258 drug targets were sourced from SuperPred. After
removing duplicates, a total of 736 unique drug targets were
identified. A total of 9,487 disease targets were identified through
screenings from GeneCards and OMIM. The results revealed that
there are 636 common targets associated with both leeches and
diabetes mellitus (Figure 1A). Protein interaction analysis was also
performed (Figure 1B). The component-target network illustrated
the relationship between the effective components and targets of
leeches (Figure 1C). The results indicate that the main active
ingredient of leeches is hirudin, geniposide, ursolic acid,
croomionidine (Figure 1D). The results of the GO enrichment
analysis for biological processes indicated that leeches are
involved in the positive regulation of immune response, humoral
immune response, oxidative stress response, and inflammatory
response. The molecular function analysis revealed that Hirudo is
involved in immune receptor activity, protein serine/threonine
kinase activity, and protein tyrosine kinase activity (Figure 1E);
KEGG results showed involvement in AGE-RAGE signaling
pathway and chemical carcinogenic-receptor activation signaling
pathway (Figure 1F).

3.2 GSEA analysis of differential genes

Whole blood transcriptome data were obtained from the
GSE184050 dataset, which included 116 patients—50 with type
2 diabetes and 66 healthy controls. By standardizing the sample
data and using gene IDs instead of probe IDs, expression profiles
for both the normal and disease groups were constructed. A total
of 17,732 gene data were collected, resulting in the identification
of 3,939 differentially expressed genes that were upregulated. The
heat map shows the significantly different genes (Figure 2A).
Correlations among the top 20 differentially expressed genes
were established (Figure 2B). GSEA analyzed the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
related to disease genes. The results indicated that bioengineering
primarily influences organic morphogenesis, organ development,
and the skeletal system (Figure 2C). In terms of molecular
functions, it is involved in transmembrane transport and
organ development. The KEGG pathway analysis highlighted
that the main focus is on signaling pathways, including neural
active ligand-receptor interactions, calcium signaling, and DNA
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FIGURE 1
(A) Venn diagram of leeches and T2DM targets; (B) PPI maps of intersection targets. In the PPI picture of the intersection target, the size of the circle
represents the correlation, and the color represents the P-value. The smaller the P-value, the darker the color. (C) The network diagram for “Leech -
active ingredient - target” illustrates the relationships between different components. In this diagram, the size of each circle indicates the importance of
the composition, with larger circles signifying a stronger correlation. The primary active components of leeches include hirudin, geniposide, ursolic
acid, and croomionidine, which play key roles in their medicinal properties. (D) Table of degree values of main active ingredients of leech. (E) The GO
function analysis histogram visually presents the different categories of gene functions. In this representation, Biological Processes (BP) are marked in
dark cyan, Cellular Components (CC) in sienna, and Molecular Functions (MF) in steel blue. The analysis indicates that leeches are significantly involved in
the positive regulation of immune processes, humoral immune response, and inflammatory response under Biological Processes. Furthermore, they play
a role in Molecular Functions related to immunoreceptor activity and protein serine/threonine kinase activity. (F) Sankey plot by KEGG enrichment
analysis. Shows the link between signaling pathways and genes.
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replication. The enrichment results were categorized into
different gene clusters based on gene classification
(Figure 2D). These findings suggest that maintaining the
stability of the body’s internal environment and the
functionality of cell receptors play significant roles in the
development of Type 2 Diabetes Mellitus (T2DM).

3.3 Immunoinfiltration and single sample
enrichment analysis (ssGSEA)

Through network pharmacology results, we found that leeches
may be involved in the regulation of type 2 diabetes through
immunomodulatory regulation of relevant immune cells and
receptors. In order to obtain immune-related targets, we
performed immunoinfiltration analysis. Gene sets for 28 immune
cells, encompassing a total of 782 genes, were downloaded from the
TISIDB database. The results are presented in (Figures 3A–E). We
also conducted ssGSEA analysis, which revealed that several key
immune cells were involved. Activated CD4 cells and central
memory CD4 T cells were highly expressed in the normal group,
while activated dendritic cells, type 1 T helper cells, and type
2 T helper cells showed higher expression levels in the T2DM
group (Figure 3F).

3.4 Analysis of weighted gene co-
expression network

To further identify immune-related targets for T2DM treatment
in leeches, we conducted WGCNA analysis. Gene co-expression
networks were constructed for activated CD4 cells, activated
dendritic cells, central memory CD4 T cells, type 1 T helper
cells, and type 2 T helper cells using the GSE184050 dataset.
Assessment of outliers No significant outliers were detected in
the data (Figure 4A). A soft threshold power assessment of 10,
with a scale-free index of 0.9, indicates that the connectivity within
the network is reasonable (Figure 4B). The correlation trend and
correlation heatmap among different samples were generated, and a
multi-level modular clustering tree was created using a weighted co-
representation network (Figure 4C). The final results indicated that
all samples were categorized into a normal group and a disease
group, which were further divided into 26 distinct modules. The
correlation between these modules was represented by P-values
(Figure 4D). The correlation coefficients between phenotypes and
modules were calculated. The results revealed that the
MEdarkturquoise module (cor = 0.5, p = 5e-04) and the
MElightgreen module (cor = 0.54, p = 1e-04) displayed the most
significant correlations with Type 2 Diabetes Mellitus (T2DM).
Module membership (MM) and gene significance (GS) reflect the

FIGURE 2
(A) Heat map of differential analysis. The top 20 genes in the differential analysis were shown. (B) Correlations among the top 20 differentially
expressed genes were established. (C) GSEA Enrichment Analysis Diagram. The results indicated that bioengineering primarily influences organic
morphogenesis, organ development, and the skeletal system. The KEGG pathway analysis highlighted that the main focus is on signaling pathways,
including neural active ligand-receptor interactions, calcium signaling, and DNA replication. The enrichment results were categorized into different
gene clusters based on gene classification. (D)GSEA enriched cell cluster. GSEA enriched cell clusters were categorized into different gene clusters based
on gene classification.
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correlation of genes within a particular module. The scatter plot
shows that the MM and GS coefficients of MEdarkturquoise module
are positively correlated (cor = 0.075, p = 0.32), MM and GS
coefficients of MElightgreen module were positively correlated
(cor = 0.23, p = 5.2e-05). The MEdarkturquoise module and the
MElightgreen module may be critical modules that play the most
significant roles in Type 2 Diabetes Mellitus (T2DM), and they are
also associated with activated dendritic cells. (Figures 4E,F).

3.5 Machine learning

By intersecting the leech targets with those analyzed through
WGCNA, a total of 122 overlapping targets were identified, which
served as the focus for machine learning (Figure 5A). The correlation
among the top 20 targets is illustrated in a heatmap (Figures 5B,C). In
the LASSO regression analysis, we performed 10-fold cross-validation
(10-fold CV) using cve. glmnet to optimize the hyperparameter λ, and
selected the optimal λ value based on binomial deviance: λ_min =
0.02197 (corresponding to 13 features). λ_1se = 0.11727 (all features are
compressed to 0, the regularization intensity is high). And 13 key genes
were selected (Figure 6A). During the training process of the random
forest model, we determined the optimal mtry value using tuneRF and
selected the corresponding ntree that yielded the minimum out-of-bag
(OOB) error for hyperparameter optimization. Finally, we selected the
top 20 key genes based on the feature importance ranking (Figure 6B).
During the XGBoost training, we used eval_metric = “error” to monitor
model errors and selected the best model based on the final training

errors. To optimize model performance, we adjusted hyperparameters
such as max_depth, eta, and gamma through Grid Search (Figure 6C).
SVM-RFE employed 10-fold cross-validation to assess model
performance and ensure the generalization capability of feature
selection. This method divided the data into training and test sets,
resulting in the identification of 39 variables to build the model
(Figure 6D). Ultimately, we identified three common targets: RGS10,
CAPS2, and OPA1 (Figure 6E).

3.6 Molecular docking

Due to the large molecular weight of hirudin, the error in the
molecular docking process is significantly affected; therefore, the
hirudin component was excluded from the docking analysis. To
better validate our results, geniposide, ursolic acid, and
croomionidine were selected along with CAPS2, RGS10, and
OPA1 as the top three components for docking analysis,
respectively. The binding heat energy was less than -5 kcal/mol,
indicating good bonding results. The results indicated that the
binding affinity of CAPS2-ursolic acid is −8.9 kcal/mol, with a
docking score of −8.93 kcal/mol. Additionally, the binding affinity of
OPA1-croomionidine is −7.37 kcal/mol. The docking score
is −7.68 kcal/mol, while the minimum binding affinity of RGS10-
ursolic acid is −8.69 kcal/mol, and the docking score is −8.7 kcal/mol.
The binding affinities and docking scores are largely consistent,
indicating a strong binding strength between the ligand and the
receptor (Figures 7B–D). All docking scores are displayed in Figure 7A.

FIGURE 3
(A–F) Single Sample enrichment analysis (ssGSEA) of important immune cells. They were activated CD4 cells, activated dendritic cells, central
memory CD4 T cells, type 1 T helper cells, and type 2 T helper cells.
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4 Discussion

Type 2 diabetes mellitus (T2DM) constitutes a major global
health burden, with its associated complications significantly
compromising patient quality of life. Current clinical
management primarily relies on pharmacological interventions;
however, therapeutic outcomes demonstrate significant

interindividual variability (Kautzky-Willer et al., 2016). To
improve disease control, optimize treatment efficacy, and mitigate
complication risks, the discovery of novel therapeutic agents and
mechanisms remains critically imperative. Emerging evidence
demonstrates the therapeutic potential of Traditional Chinese
Medicine (TCM) in T2DM management, particularly in
ameliorating diabetic nephropathy (Cao et al., 2025).

FIGURE 4
(A) Expression differences in sample data; (B) represents connectivity graph; (C) sample represents cluster graph; (D) module correlation heat
map. The darker the color, the stronger the correlation. MEdarkturquoise module (5e-04) and MElightgreen module (1e-04) had the strongest
correlation, both belonging to activated dendritic cells; (E) MM and GS correlation coefficient maps. MEdarkturquoise module are positively correlated
(cor = 0.075, p = 0.32); (F) MM and GS coefficients of MElightgreen module were positively correlated (cor = 0.23, p = 5.2e-05).
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Furthermore, multimodal therapeutic strategies for T2DM include
metabolic regulation through reduction of serum triglyceride and
cholesterol levels (Tong et al., 2018), as well as pharmacological
modulation of α-glucosidase activity (Zhou et al., 2023).

Hirudo (leech), an animal-derived traditional Chinese medicine,
has been historically employed for its therapeutic properties in
activating blood circulation and resolving stasis. Empirical studies
have validated its antidiabetic efficacy, particularly through its
principal bioactive component - hirudin. This naturally occurring
thrombin inhibitor (Greinacher and Lubenow, 2001), identified as a
core bioactive constituent in our network pharmacological analysis,
exhibits dual therapeutic mechanisms: α-thrombin inhibition and
anti-thrombotic activity. The bioactive constituents of Hirudo
(leech) are primarily administered through dual delivery
pathways: enteral absorption via oral intake and transdermal
permeation through topical application. Hirudin, a thrombin-
specific polypeptide inhibitor, demonstrates bioavailability
contingent upon intestinal mucosal permeability and resistance to
proteolytic degradation. Pharmacokinetic investigations reveal that
while partial enzymatic cleavage in the gastrointestinal tract converts
hirudin into low-molecular-weight peptides, these derivatives
maintain substantial bioactivity (Stepensky, 2018). Hepatic and
renal systems predominantly mediate hirudin metabolism,
yielding amino acid derivatives and bioactive peptide fragments
that may modulate endogenous biosynthetic pathways (Yuan et al.,
2013). Notably, hirudin’s potent thrombin-inhibiting capacity
necessitates cautious clinical application due to dose-dependent
hemorrhagic risks and potential toxicological manifestations in
coagulopathic patients.

Modern pharmacological studies have demonstrated that
blood sugar and lipids in the blood vessels of diabetic patients
are prone to deposition. Prolonged deposition can induce
inflammation and damage to blood vessels (Lee et al., 2020),
as well as result in blood vessel blockage, giving rise to
microvascular complications involving the heart, brain, and
kidneys (Opazo-Ríos et al., 2020). Hirudin has the ability to
regulate blood lipids and exerts a preventive effect against blood

vessel blockage induced by diabetes (Cheng et al., 2022).
Simultaneously, hirudin can inhibit the inflammatory response
via the P38 MAPK/NF - κB pathway and treat kidney injury in
diabetic rats (Han et al., 2020). In particular, it can regulate
inflammatory factors such as TNF - α, IL - 1, and IL - 6, thereby
preventing the occurrence of diabetic nephropathy (Vaidya et al.,
2011). In addition to hirudin, the main active components of
hirudin analyzed in this network pharmacological study were
geniposide, ursolic acid, croomionidine, nadroparin, etc.,
Geniposide has also been confirmed to have anti-blood sugar
effects. In vitro studies indicate that geniposide can help lower
blood sugar by regulating α-glucosidase. This was confirmed by
the analysis conducted by Zhou H et al. using PLC-ESI-QTOF-
MS/MS. Additionally, geniposide can regulate the AKT-FOXO1
pathway to inhibit liver glucose production (Yang et al., 2018).
Ursolic acid has been shown to reduce postprandial blood glucose
levels in patients. Additionally, enzyme kinetics experiments
have demonstrated that ursolic acid can inhibit the activities
of α-amylase and α-glucosidase, making it an important
hypoglycemic component (Wang et al., 2020; Camer et al., 2014).

The results of network pharmacology indicate that the active
targets of leeches in diabetes treatment primarily revolve around
immune regulation. Studies have found that the main active
components of leeches are linked to immune regulatory
functions. Hirudin, a natural anticoagulant protein, has
demonstrated an anti-thrombotic effect in recent years. This
effect is achieved not only through its inhibition of thrombin but
also by regulating immune receptors and pathways, which may
influence inflammatory responses and immune cell function (Liu
et al., 1991). It also functions as a natural antibody, reducing the
activity of human T cells (Asgari et al., 2017). Geniposide exhibits a
variety of biological activities, including anti-inflammatory,
antioxidant, and immunomodulatory effects (Zhou et al., 2019).
In vitro experiments show that geniposide can enhance the immune
response by regulating immune receptors such as STAT and JAK
(Gong et al., 2024). It has also been shown to inhibit the expression
of TLR4 and MMP9 proteins, thereby influencing the MyD88/NF-

FIGURE 5
(A) Wynn diagram of drug targets and WGCNA core module targets; Correlation heat map of the top 20 intersection targets in (B, C).
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κB p65 signaling pathway involved in immune regulation (Liu
et al., 2024).

If the active ingredients of leeches and their targets can treat
diabetes through immune regulation, what are the specific targets of
their effects? To investigate this, we combined the
GSE184050 dataset to search for relevant immune cells using
single-sample enrichment analysis. Ultimately, five important
types of immune cells were identified: activated CD4 cells,
activated dendritic cells, central memory CD4 T cells, type
1 T helper cells, and type 2 T helper cells. These five cell types
may play an important role in the treatment of diabetes in leeches.

To further investigate the correlation between the active
components of leeches and immune cells, we conducted
WGCNA analysis and identified 26 analysis modules based on
the phenotyping of the five immune cells. Among these, the
MEdarkturquoise and MElightgreen modules were the most
significant, exhibiting the strongest immune correlations in this
study. By combining the genes from both modules, a total of
572 module genes were obtained. We intersected the drug genes
with the core module genes and identified 122 common targets.

Machine learning can be utilized to identify potential targets by
developing predictive models. In this study, to further explore the

FIGURE 6
(A) LASSO regression model; (B) Random forest algorithmmodel; (C) Xgboost algorithm model; (D) SVM-REF algorithmmodel; (E)Wayne diagram
of intersection targets obtained by four algorithms.
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potential immune targets of leeches in the treatment of diabetes, we
constructed a prediction model using 122 intersection targets. This
was achieved through LASSO regression, random forest algorithms,

SVM-REF, and XGBoost algorithms frommachine learning. LASSO
regression is an effective analytical method that allows for feature
selection in high-dimensional data. It helps prevent overfitting and

FIGURE 7
(A) Table of docking scores; (B) CAPS2-ursolic acid molecular docking diagram; (C) RGS10-ursolic acid molecular docking diagram; (D) OPA1-
croomionidine molecular docking diagram.
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enhances the predictive performance of the model (Yan et al., 2023).
By incorporating L1 regularization terms, LASSO regression
compresses the regression coefficients and automatically selects
the features that are most relevant to the target variable. To
prevent overfitting, we selected the optimal regularization
parameter (λ) using 10-fold cross-validation. Ultimately, we
identified 16 important variables to construct the model. To
further identify genes associated with the disease, we trained the
data using a random forest algorithm. This involved constructing
multiple decision trees and aggregating the predictions from each
tree. Compared to traditional single decision tree models, random
forest can more efficiently handle high-dimensional data and
prevent overfitting. During the model-building process, we set
the number of trees to 56 (ntree = 56), optimizing this parameter
through cross-validation to ensure minimal error. Additionally, we
calculated the importance of each variable and selected the top
20 variables as disease-related genes. The SVM-REF algorithm
combines support vector machine (SVM) and recursive feature
elimination (RFE) methods to facilitate effective feature selection
(Zhao et al., 2022). In the SVM model, recursive feature elimination
optimizes the model by incrementally removing the features that
contribute the least to classification, based on the importance of
weights or support vectors. This process ultimately retains the
features with the greatest classification power. When evaluating
the SVM-REF model, we used accuracy and error rate as evaluation
metrics. We selected the top 39 variables, which exhibited the
highest accuracy and the lowest error rate, to construct the
model. The XGBoost algorithm is an effective machine learning
model, so we incorporated it into our research. Ultimately, by
building this machine learning model, we identified the core
targets RGS10, CAPS2, and OPA1.

RGS10 is a member of the RGS protein family, primarily
functioning to enhance the GTPase activity of G proteins. This
action modulates the signaling pathways associated with G protein-
coupled receptors (GPCRs). These pathways are essential for various
cellular processes, including metabolism and hormone secretion.
Animal studies have shown that RGS10 can help maintain metabolic
homeostasis by mitigating inflammatory responses, which in turn
reduces insulin resistance (Fang et al., 2019). Additionally, RGS10 is
recognized as a significant immune-related target in diabetic
retinopathy (Xia et al., 2024). CAPS2 (also known as NLRP3) is
an inflammatory body protein that plays a crucial role in the innate
immune system. The precise relationship between CAPS2 (NLRP3)
and diabetes is not yet fully understood; however, recent
investigations suggest that NLRP3 and its associated
inflammatory pathways may play a role in the pathogenesis of
diabetes (Duan et al., 2020; Jiang et al., 2017). CAPS2 may
influence insulin resistance and beta cell dysfunction by
regulating the release of inflammasomes and pro-inflammatory
cytokines, such as IL-1β (Kelley et al., 2019). Mitochondria are
essential energy and metabolic organelles. Diabetes can cause
mitochondrial dysfunction, leading to a range of metabolic
abnormalities. OPA1 plays a crucial role in regulating
mitochondrial fusion. It can mitigate the impairment of
mitochondrial fusion caused by diabetes, potentially reducing the
development of complications such as diabetic cardiomyopathy
(Wang et al., 2023). Research has indicated that OPA1-mediated
mitochondrial fusion exerts both regulatory and protective effects

against liver and myocardial damage induced by diabetes, primarily
through the PKG-STAT3 pathway (Wang et al., 2022; Chang et al.,
2023). Existing studies have shown that OPA1 can influence the
energy acquisition of dendritic cells by regulating mitochondrial
morphology (Virga et al., 2024). We can speculate that a similar
effect may also be present in diabetic patients. CAPS2 promotes
differentiation of Activated CD4 T cells by initiating Caspase-1-
dependent interleukin-1β secretion (Arbore et al., 2016).

To summarize, this study predicts immune targets and
regulations using network pharmacology and bioinformatics
methods, which could represent novel molecular mechanisms for
leeches in treating T2DM. The coordinated multi-target interaction
of RGS10, CAPS2, and OPA1 may play a significant role in
regulating metabolism, secretion, and mitochondrial function in
the treatment of T2DM. However, our study has some limitations.
The database analysis is constrained by sample size, which restricts
the scope of our research. Additionally, further experimental studies
are needed to explore how RGS10, CAPS2, and OPA1 targets
dynamically regulate T2DM, particularly how these dynamic
changes occur during the early, middle, and late stages of disease
development. Current research agrees that leeches possess
anticoagulant properties, and anticoagulant treatment proves to
be highly beneficial for managing diabetic complications and
cardiomyopathy (Bhatt et al., 2020). Therefore, we can anticipate
that future studies will further explore the potential of leeches in
integrating Chinese and Western medicine through their unique
anticoagulant and immune-regulating properties, ultimately
benefiting a greater number of diabetic patients.
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