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Introduction: Mouse models share significant genetic similarities with humans
and have expanded our understanding of how embryonic tissue-specific genes
influence disease states. By improved analyses of temporal, transcriptional data
from these models, we can capture unique tissue codon usage patterns and
determine how deviations from these patterns can influence
developmental disorders.

Methods: We analyzed transcriptomic-weighted data from four mouse strains
across three different germ layer tissues (liver, heart, and eye) and through
embryonic stages. Applying a multifaceted approach, we calculated relative
synonymous codon usage, reduced the dimensionality, and employed
machine learning clustering techniques.

Results and discussion: These techniques identified relative synonymous codon
usage differences/similarities among strains and deviations in codon usage
patterns between healthy and disease-linked genes. Original transcriptomic
mouse data and RefSeq gene sequences can be found at the associated
Mouse Embryo CoCoPUTs (codon and codon pair usage tables) website.
Future studies can leverage this resource to uncover further insights into the
dynamics of embryonic development and the corresponding codon usage biases
that are paramount to understanding disease processes of embryologic origin.
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1 Introduction

Embryogenesis is a dynamic process that is orchestrated through
precise spatiotemporal control of gene expression, affecting the
growth, division, reorganization, localization, and differentiation
of specific cell types (Tam and Loebel, 2007; Asp et al., 2019;
Thompson et al., 2014; Kang et al., 2011). Disruptions to these
sophisticated expression programs can lead to developmental
diseases and tissue malformation (Ben-Porath et al., 2008;
Zimmer et al., 2011; Barker, 2004). Recent insights into human
embryology have largely been derived from studying developmental
parallels within animal models, particularly embryonic mice (Mus
musculus) (Shahbazi and Zernicka-Goetz, 2018). Additional insight
has emerged from ex utero mouse embryogenesis (Aguilera-
Castrejon et al., 2021) and complex genetic studies involving
single-cell spatial transcriptomics of embryos (Tyser et al., 2021;
Srivatsan et al., 2021; Pour and Yanai, 2022). These new systems
have improved our understanding of tissue-specific gene function
across developmental stages by providing access to large quantities
of raw transcriptomic data on spatiotemporal variations in gene
expression throughout embryonic stages (Theiler, 1972; Wong et al.,
2015; Qiu et al., 2023; Cardoso-Moreira et al., 2019; Wang et al.,
2021), which can be leveraged to gain further understanding of
molecular processes underlying organogenesis and the etiology of
developmental disorders.

Although the biological steps of developmental embryonic
stages are mostly elucidated, it remains unclear what factors
control the genetic programming of development and to what
extent variations in the cell-state-specific transcriptome can
impact healthy tissue development (Ren et al., 2007). In adult
tissues, a tissue’s codon usage landscape can be substantially
influenced by differential gene expression (Aguet et al., 2017;
Shen-Orr et al., 2010). Synonymous codon usage is biased and
derives from the degeneracy of the genetic code, whereby a set of
61 codons encodes for the 20 standard/common amino acids
(AAs) used in protein synthesis. Codon usage bias (CUB) is
present in genes, tissues, and organisms (Kames et al., 2020;
Alexaki et al., 2019; Meyer et al., 2021), and some codons are
determined to be “optimal” or “suboptimal” due to their capacity
to influence mRNA stability and the variability in host tRNA
concentrations, which can influence translational rates (Brule and
Grayhack, 2017; Bae and Coller, 2022; Bali and Bebok, 2015). In
most cases, genes requiring consistently high levels of expression
contain more optimal codons to ensure stable and accurate
translation of mRNAs (Bae and Coller, 2022; Hanson and
Coller, 2018). Uddin (2024) found an overrepresentation of the
valine codon GTG in all protein-coding genes related to
Parkinson’s disease (Uddin, 2024). Divergent CUB in various
tissues has been associated with numerous diseases (Meyer
et al., 2021; Fornasiero and Rizzoli, 2019; Gun et al., 2017). For
example, the conversion of an isoleucine (Ile) codon (ATC to ATT)
associated with cystic fibrosis can introduce translational pauses
causing changes in the mRNA structure and protein expression
levels (Bartoszewski et al., 2010). A CUB skew toward AGG
(arginine), as opposed to CTA (leucine, Leu), GTA (valine,
Val), CAA (glutamine, Gln), and CGT (arginine, Arg), can be
used as a gene editing target for the therapeutic treatment of
neurodegeneration and cancer (Khandia et al., 2023).

Different organisms have exhibited dynamic
transcriptome–proteome landscapes with distinct time-oriented
gene expression profiles that affect the specification of embryonic
tissue development (Shen-Orr et al., 2010; Allen et al., 2022).
Alterations to mRNA transcriptomic patterns and associated
codon usage have been proposed as a potential biomarker for
many different diseases (Brule and Grayhack, 2017; Hanson and
Coller, 2018; Malakar et al., 2016; Gillen et al., 2021), and therefore,
characterizing CUB at various stages of embryonic development may
yield an improved understanding of the molecular basis of congenital
disorders. Rossi et al. (2022) found that biased codons are significantly
more prevalent in disease-causing human genes, and this pattern is
conserved across mammals (Rossi et al., 2022). However, most
patients with congenital heart, liver, or eye disease do not carry
any identifiable DNA mutations or chromosomal abnormalities
attributable to structural disease (Moore-Morris et al., 2018;
Portmann and Roberts, 2012; Francis, 2006). Variation in codon
bias tends to show that a pattern of A/T-ending codons is expressed
more coordinately across tissues and developmental stages than
G/C-ending codons (Benisty et al., 2023). Increased understanding
of normal/abnormal development will undoubtedly help better
understand many risk factors for human birth defects and
potentially allow for the development of novel strategies for both
the prevention and treatment of these defects.

In this study, using publicly available sequencing data (Fumagalli
et al., 2024), we identified distinct codon signatures between healthy
and disease-associated genes throughout embryonic development. In
addition, we also performed a comprehensive analysis of CUB in the
developing liver, heart, and eye tissues through a variety of different
clustering approaches and identified a unique set of synonymous
codons characteristic for different strains and embryonic periods. This
analysis pipeline represents the most comprehensive source of
information on codon usage patterns across murine embryogenesis
and can be effectively applied to future studies of
developmental diseases.

2 Systems and methods

2.1 Mouse embryonic tissue samples:
curation and quality control

Details on data curation and quality control of the mouse
embryo FASTQ files are discussed by Fumagalli et al. (2024)
(Figure 1, steps 1, 2, and 3). Associated with these data is a user-
friendly database, Mouse Embryo CoCoPUTs, which provides
access to median GC content, codon, codon pair, dinucleotide,
and junction dinucleotide usage values for the four strains
discussed in this study (C57BL/6, C57BL/6J, C57BL/6N, and CD-
1), 15 tissue types, 26 embryonic days (E), and 18 Theiler stages
(https://dnahive.fda.gov/hivecuts/mouse_embryo/).

2.2 Tissue-specific gene filtering and
transcriptomic gene weights

Transcript per million (TPM) samples were filtered based on
tissue type (ectoderm: eye, mesoderm: heart, and endoderm: liver)
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(Figure 2). To filter the genes, we identified genes associated with
healthy and diseased tissues using expression data from the Jackson
Laboratory Mouse Gene Informatics gene expression database
(https://www.informatics.jax.org/marker). For the disease-
associated genes, we selected protein-coding genes as the feature
type and searched individually by eye, liver, and heart under the
“Mouse phenotypes and mouse models of human disease” section.
For the healthy- or normal-associated genes, we ran a standard
search on their gene expression data. After collecting the tissue-
specific genes, we removed known pseudogenes [as listed in the
study by Fumagalli et al. (2024)] and duplicates and retained only
those on the Mouse Embryo CoCoPUTs gene list
(Supplementary Table S1).

Then, we normalized the transcriptome-weighted codon usage
by 1,000 (Figure 1, step 4). In this analysis, we did not process

diseased and healthy mice but rather compared healthy tissue
samples, weighted by sets of genes associated with disease or
healthy tissue. Any genes overlapping with our TPM and RefSeq
genes were kept as tissue-specific weights (Supplementary Table S1).
We compared weighted data for the following categories: 1) healthy
liver vs. diseased liver, 2) healthy eye vs. diseased eye, and 3) healthy
heart vs. diseased heart.

2.3 Relative synonymous codon usage and
normalization

2.3.1 Relative synonymous codon usage
Relative synonymous codon usage (RSCU) is a relative

measurement of synonymous codon usage for a given amino

FIGURE 1
Murine embryonic data bioinformatics pipeline. (1) Literature research for bulk RNA-seq mouse embryo samples. (2) Quality control by removing
cross-strain, genetically modified, drug-treated, or samples from mice on specialized diets. (3) All known pseudogenes should be removed from the
transcripts permillion (TPM) sample list and RefSeq select genes. (4) TPM counts should be used to weigh the codon usage of the RefSeq select genes. (5)
The relative synonymous codon usage (RSCU) for all strains (C57BL/6, C57BL/6J, C57BL/6N, and CD-1) must be calculated across all embryonic
stages (ranging from 6 to 18). (6) Batch effects must be checked among the strains, and the RSCU values should be used for all samples to calculate the
principal component analysis (PCA). (7) Clustering heuristics must be used for determining the best-estimated number of clusters. (8) Embryonic data
must be input through several clustering algorithms: Spectral, KMeans, DBSCAN, and agglomerative. (9) Evaluation metrics must be run for differences in
the target groups and resulting clustering. (10) Finally, RSCU statistics must be calculated for strains, embryonic stage, tissue states, and clusters.
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acid. This calculation has previously been described in the literature
using similar thresholds (1.5: “highly overrepresented” and 0.5:
“highly underrepresented”) (Figure 1 step 5) (Sharp and Li, 1987;
Sharp et al., 1986; Chen et al., 2021; Yu et al., 2021). The average and
standard deviation are reported in Supplementary Table S2.

2.3.2 Batch effects
Batch effects are systematic variations in data that arise from

technical sources rather than biological differences. They can
confound analysis, particularly in high-throughput sequencing
data, and correcting for these effects is crucial for accurate
downstream analysis. Batch effects were accounted for using the
Python pyComBat library (Behdenna et al., 2021) (Figure 1 step 6).
Batch effects were corrected by library, using identifiers from the
NCBI Sequence Read Archive (SRR), European Genome-phenome
Archive (ERR), and DDBJ Sequence Read Archive (DRR). The
differences in the data extracted from these libraries can be
found in Additional File 2 (Fumagalli et al., 2024). The most
notable differences in data used from these three sources are the
varying sequencing methods and data types.

2.3.3 Dimensionality reduction
After removing the three stop codons (TGA, TAG, and TAA)

and two codons that each encode a single amino acid—ATG
(coding for Met) and TGG (coding for Trp)—we used principal
component analysis (PCA) to reduce the dimensionality from
59 to 5 or fewer components (Figure 1, step 6). Data were
transformed using the scikit-learn StandardScaler Python
package, and the number of principal components (PCs) was
determined using the cumulative explained variance (scikit-learn

Decomposition Python package); the threshold was met when
80% of the variance of the original features (codons) was captured
(Pedregosa et al., 2011). To focus our discussion, we highlight
PCs with loading values greater than 0.2 or less than −0.2 that
contribute more than one synonymous codon for a given amino
acid. The PC values were evaluated, and the discussion was
limited to values greater than five. Our justification for these
cutoffs is based on our data results. The majority of the loading
values were between ± 0.2, and the majority of the PC values were
less than 5. We focused our discussion on values that fall outside
these ranges.

2.4 Clustering heuristics and methods

2.4.1 Clustering heuristics
Several heuristics were calculated using scikit-learn to identify

an appropriate expected number of clusters (Figure 1, step 7)
(Pedregosa et al., 2011). For each data analysis, four heuristics
[namely, silhouette coefficient, Calinski–Harabasz score
(maximum score determines the best-expected number of
clusters), maximum inertia (with the optimal number
determined by the “knee” point using the Python repository
Kneed, version 0.8.5), and Davies–Bouldin score (better scoring
clusters are further apart and less dispersed)] were calculated and
compared. These metrics may report different “best” numbers of
clusters. We did not prioritize one metric over another. Instead, if
two or more heuristics agreed, then we selected that “best” number.
If there were no two heuristics that agreed, we used the median
value across the tools.

FIGURE 2
Embryonic stage (E) sample count per strain and tissue type. Each sub-plot contains a corresponding number of stacked bar graphs as E stages that
describe the count of each strain for a specified tissue type. Strain colors: red, C57BL/6; green, C57BL/6J; blue, C57BL/6N; and orange, CD-1. Tissue
plots: (A) eye, (B) liver, and (C) heart.
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2.4.2 KMeans
This is an unsupervised machine learning technique that uses a

specified number of clusters to initiate partitioning (scikit-learn
KMeans) (Figure 1, step 8) (Pedregosa et al., 2011). For each data
analysis, five attempts and three iterations were run with 30% of a
random sample to determine the “best centers.” These centers, along
with the expected number of clusters, were used to set up a final run
using all tissue samples.

2.4.3 Spectral
This clustering method can be beneficial when the clusters are

highly non-convex. The data are normalized (scikit-learn
preprocessing normalize) before calculating the PCA (Figure 1,
step 8) (Pedregosa et al., 2011). The number of neighbors is
defined by dividing the total number of samples per data analysis
by four. Two types of affinity were evaluated [“rbf” (Gaussian) and
“near-neighbors” (Euclidean)], and the highest silhouette score was
used for further analysis.

2.4.4 DBSCAN
This is a density-based clustering method (scikit-learn

DBSCAN) that requires the input of two parameters: epsilon
(eps) and a minimum number of samples (Figure 1, step 8)
(Pedregosa et al., 2011). Eps or epsilon, a maximum distance
neighborhood measurement, can be estimated using the scikit-
learn NearestNeighbors and KneeLocator functions. The
minimum number of samples was determined as twice the
number of PCA dimensions.

2.4.5 Hierarchical
This is an agglomerative clustering method that uses linkage

distance (SciPy cluster hierarchy linkage) (Virtanen et al., 2020)
(Figure 1, step 8). The “method” parameter for this clustering
technique was set to “ward” to reduce variance within each
cluster, and a dendrogram was used to display relationships
between embryo tissue samples.

2.5 Clustering validation

Clustering results with one or more clusters were evaluated based
on performance using several similarity metrics—adjusted rand index
(ARI), adjusted mutual information (AMI), and V-measure
(normalized mutual information with the arithmetic averaging
method) [range between 0 and 1 (uniform)] (Rosenberg and
V-Measure, 2007). We also examined the homogeneity and
completeness of the clusters (range between 0 and 1). These metrics
highlight tissue-type clusters and were implemented using Python’s
scikit-learn metrics (Figure 1, step 9) (Pedregosa et al., 2011). The
clustering tool with the best separation between the embryonic day and
the tissue state was chosen for further discussion. The outcome of each
test for each tissue type can be found in Supplementary Table S7.

2.6 Statistics

We statistically compared RSCU between healthy and diseased
tissues per mouse strain (Supplementary Table S2) and for each

embryonic stage (Supplementary Table S3). We used Python’s
(version 3.8) SciPy library (Virtanen et al., 2020) and Pandas
(McKinney, 2010) to run an exact two-sided Mann–Whitney U
test to find raw p-values for each of the tests performed (Figure 1,
step 10). Adjusted p-values for multiple comparisons were calculated
using the Bonferroni correction via the Multipletests function from
statsmodels (v0.15.0). The stringency of the correction depends on
the number of comparisons (N). The null hypothesis was rejected for
adjusted p-values ≤0.05. If the p-value is less than the threshold, the
null hypothesis is rejected. Significance was calculated between
codons for resulting tissue clusters. The magnitude of the p-value
effect size was determined by calculating Cohen’s d, with the
assumption of unequal variances. Effect sizes can be “very small”
(0–0.1), “small” (0.2–0.35), “medium” (0.36–0.65), “large”
(0.66–0.9), and “very large” (>1).

2.7 Human comparison

Human genomic codon usage data were downloaded from
TissueCoCoPUTs (Kames et al., 2020). These data were then
converted into RSCU values, where a codon is overrepresented
with a value of ≥ 1.5 and underrepresented with a value of ≤ 0.5
(Sharp et al., 1986).

2.8 Figure preparation

All figures were created using Matplotlib 3.5.1. (Hunter, 2007),
seaborn, and BioRender.

3 Results

3.1 RSCU patterns in embryonic tissues
across developmental stages

We performed a comparison across embryonic stages, spanning
approximately from E6 to E18, for four different murine strains
(namely, C57BL/6, C57BL/6J, C57BL/6N, and CD-1). We examined
RSCU, a common method for qualifying CUB, for individual liver,
heart, and eye samples. The chosen individual tissues are each
representative of a developmental germ layer [endoderm (liver),
mesoderm (heart), and ectoderm (eye)]. We observed differences in
the identities of over- and underrepresented synonymous codons
across mouse strains weighed by different sets of tissue-specific
genes (Table 1). RSCU heatmaps and their observed significant
differences can be found in Supplementary Figure S1 and
Supplementary Tables S2,S3.

3.1.1 Disease-associated liver (endoderm) and eye
(mesoderm) genes exhibit unique codon usage
preferences

For the liver, we compared C57BL/6, C57BL/6J, and CD-1
across E10 through E18 for changes in RSCU variation over time
(Supplementary Figures S1A–C, respectively). We identified 13, 6,
and 9 highly overrepresented codons and 12, 8, and 9 highly
underrepresented codons for the C57BL/6, C57BL/6J, and CD-1
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healthy liver samples, respectively. This is in contrast with the lower
representation observed in diseased liver codons—6, 3, and
5 overrepresented codons and 9, 9, and 8 underrepresented
codons in the respective strains. Uniquely represented codons
across tissues can be found in C57BL/6 healthy liver samples
[CTT (Leu), TCA (Ser), and GTT (Val)] and C57BL/6J healthy
[AGA (Arg)] and diseased liver samples [AGA (Arg) and
CGT (Arg)].

Along with the difference in the representation of codons,
disease-associated liver genes demonstrate unique differences in
CUB properties. Compared to healthy liver, disease-associated
liver samples exhibit less variation, on average, in RSCU
(Supplementary Figures S1D–F). In addition, RSCU between
healthy and diseased liver genes are significantly different among
synonymous codons. We found that 95% of synonymous codons
showed significantly different RSCU values between healthy and
diseased C57BL/6 samples (Mann–Whitney U test; p-value<0.05),
and 90% of this variation came from E14 samples (Supplementary
Table S3). Effect sizes were calculated, and most notable time points
were E14 [medium effect: CTG (Leu; 0.38)] and E17 [large effect:
AGC (Ser; 0.70) and CTG (Leu; 0.66)]. C57BL/6J E15 liver samples
show that 78% of CUB is significantly different, but the effect sizes
are very small for most codons [the highest showing a small effect for
CTG (Leu; 0.21)]. The CD-1 liver samples possess 88% of codons
showing a significant difference, with the E12–E18 embryonic stage
range contributing the most to this variation. Codon AGC (Ser)
resulted in the most embryonic stages with the greatest effect sizes,
peaking in E15 (0.44).

In contrast to the liver samples, when we compare eye tissue
samples that span from E10 through E18 with strains C57BL/6,
C57BL/6J, and C57BL/6N (Supplementary Figures S1G–L), we
identify similar numbers of over- and underrepresentation of
codons between diseased and healthy genes. We identified 6, 8,

and 10 highly overrepresented codons and 9 highly
underrepresented codons for the C57BL/6, C57BL/6J, and
C57BL/6N healthy eye samples, respectively (7, 7, and 12 DEW
codons with RSCU >1.5 and 9, 9, and 10 codons with RSCU <0.5,
respectively) (Table 1).

However, between healthy and diseased eye genes, 93% of the
synonymous codons for C57BL/6 samples had statistically different
RSCU (<0.05), and all the contributing variation was present during
E11, E12, and E14 stages (Supplementary Table S3). Effect sizes for
C57BL/6 were calculated for all stages, with the majority of the top
10% occurring at E15, showing a large effect for codon GGG (Gly,
9.01) and a very large effect for E18 CCG (Pro, 48.88). In contrast,
C57BL/6J and C57BL/6N samples show only 25% of synonymous
codon usage, which is significantly different from healthy
eye samples.

3.1.2 Fewer codon usage biases are exhibited in
diseased and healthy heart genes

Heart samples span stages E9–E18 and belong to strains C57BL/
6, C57BL/6J, and CD-1 (Supplementary Figures S1M–R). The
healthy and diseased heart-related genes show similarities with
liver- and eye-associated genes, but no unique differences were
observed within the heart tissue. We identified six highly
overrepresented codons and nine highly underrepresented codons
for the C57BL/6, C57BL/6J, and CD-1 healthy heart samples (5, 7,
and 7 diseased heart codons with RSCU >1.5 and nine codons with
RSCU <0.5). C57BL/6 healthy heart samples possess one highly
overrepresented codon ACC (Thr) that is not shared with the
C57BL/6 diseased heart samples (Table 1). C57BL/6J and CD-1
diseased heart samples are both highly biased toward the codon
AGC (Ser), while healthy heart samples are not. All highly
underrepresented codons are shared among the healthy and
diseased heart samples. In summary, AGC (Ser) was uniquely

TABLE 1 Over- (>1.5) and underrepresented (<0.5) synonymous codons per tissue per murine strain.

Tissue Strain Overrepresented codon (>1.5) Underrepresented codon (<0.5)

Liver CD-1 Ala-GCCa, Arg-AGG, Gln-CAG, Ile-ATCa, Leu-CTGa, Ser-AGC, Ser-
TCT, Thr-ACCa, Val-GTGa

Ala-GCGa, Gln-CAA, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

C57BL/6J Ala-GCC, Arg-AGAa, Leu-CTGa, Ser-AGC, Thr-ACC, Val-GTGa Ala-GCGa, Arg-CGT, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

C57BL/6 Ala-GCCa, Ala-GCT, Arg-AGG, Gln-CAGa, Gly-GCC, Ile-ATCa, Leu-
CTGa, Pro-CCC, Ser-AGC, Ser-TCT, Thr-ACCa, Val-GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-CTT, Leu-TTAa, Pro-
CCGa, Ser-TCA, Ser-TCGa, Thr-ACGa, Val-GTT, Val-GTAa

Heart CD-1 Ala-GCCa, Gln-CAGa, Ile-ATCa, Leu-CTGa, Ser-AGC, Thr-ACCa, Val-
GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

C57BL/6J Ala-GCCa, Gln-CAGa, Ile-ATCa, Leu-CTGa, Ser-AGC, Thr-ACCa, Val-
GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

C57BL/6 Ala-GCCa, Gln-CAGa, Ile-ATCa, Leu-CTGa, Val-GTGa Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

Eye C57BL/6N Ala-GCCa, Arg-CGCa, Gln-CAGa, Gly-GGCa, Ile-ATCa, Leu-CTC, Leu-
CTGa, Phe-TTC, Pro-CCC, Ser-TCCa, Ser-AGC, Thr-ACCa, Val-GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCA, Ser-TCGa, Thr-ACGa, Val-GTAa, Val-GTT

C57BL/6J Ala-GCCa, Gln-CAGa, Gly-GGC, Ile-ATCa, Leu-CTGa, Ser-AGCa, Thr-
ACCa, Val-GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

C57BL/6 Ala-GCCa, Gln-CAGa, Ile-ATCa, Leu-CTGa, Ser-AGC, Thr-ACCa, Val-
GTGa

Ala-GCGa, Gln-CAAa, Ile-ATAa, Leu-CTAa, Leu-TTAa, Pro-CCGa, Ser-
TCGa, Thr-ACGa, Val-GTAa

aCodon shared between healthy and disease-weighted samples. Italicized codons are found only in disease-weighted samples. Bold codons are strain-specific per tissue.
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overrepresented for CD-1 and C57BL/6J diseased heart samples and
ACC (Thr) for C57BL/6 healthy heart samples.

We found only a few C57BL/6 (32% with a small effect size for
E9, E10, and E12) and C57BL/6J diseased heart samples (36% with a
small effect size for some codons in E9 and E13) that were
significantly different between healthy and diseased heart RSCU
(Supplementary Table S3). The CD-1 heart samples possess codons
that are 72% significantly different—most embryonic stages
contribute to codon usage variation except for E14 and E17
(small effect size for only the top 10%). Therefore, codon usage
biases and codon representation during development vary
considerably among the three germ layers and are strain-specific.

3.2 Dimension reduction and embryonic
clustering interpretations

The RSCU data highlighted the often-significant CUB between
healthy and diseased embryonic samples. To further understand
these CUB differences, we used the PCA to reduce the
dimensionality of our data and identify important codons
contributing toward the deviation between healthy and diseased
genes. The PCA allows us to visualize how distinct codons are
projected (through loading values) onto the sample landscape. With
multiple different clustering methods available with different
advantages and disadvantages, we were also interested in how
clustering methods segregate samples into specific clusters. These
analyses aim to determine whether clusters are differentiated by
tissue state and whether the codon usage within each cluster is
statistically different from one another.

3.2.1 Distinct separation in codon usage and
clustering between healthy and diseased liver-
associated embryonic genes

Figure 3 shows liver samples split distinctly by disease
association. We observed how codons were projected into the

PCA sample space by analyzing the loading values (codon’s
contribution to a PC) and individual PC values. From
Supplementary Table S4, we identified which codons
contribute more significantly to different PCs. In summary,
Supplementary Table S5 shows samples with all loading values
contributing minimally to PC1. Extreme loading values that fall
outside 0.2 and −0.2 will be considered for further discussion.
Many codons contributed more heavily to PC2 (≥0.2 or ≤ −0.2;
range chosen to highlight the higher-valued codons) for all
strains, sharing asparagine (AAT and AAC). Many of the
PC2 codons were unique to each strain: C57BL/6—isoleucine
(ATC, ATT, and ATT) and phenylalanine (TTC and TTT),
C57BL/6J—arginine (CGG and AGA) and proline (CCA and
CCG), and CD-1—Gln (CAA and CAG) and Val (GTC and
GTT). C57BL/6J and CD-1 share the same heavily
contributing codons to PC3 belonging to amino
acids—isoleucine (ATA and ATT), phenylalanine (TTT and
TTC), and tyrosine (TAT and TAC) (Supplementary Table
S5). After identifying numerous codons that contribute to
different PCs, we further analyzed them to identify
relationships between individual samples and these
important codons.

Supplementary Table S6 lists PC values for each sample—a high
positive value (>5) for a given PC is interpreted as an important
descriptor. Samples with PCs <5 or codons with a loading value
between 2 and −2 are not easily interpretable and excluded from
further analyses. Interestingly, C57BL/6 PC2 best describes a single
diseased E14 liver sample, dominated by A/T-enriched codons when
positively correlated (+corr) and T/C-biased codons when
negatively correlated (−corr) (Supplementary Table S6). For
C57BL/6J samples, PC2 best describes two healthy liver samples
with a bias for the C nucleotide, and PC3 best describes one diseased
liver sample with a nucleotide preference T>A = C>G. The PCA of
the CD-1 samples showed that PC2 best describes eight of the
diseased liver samples (all E17 and E18) as A-nucleotide-biased,
while PC3 describes six healthy liver samples (half E17 and all E18)

FIGURE 3
Healthy vs. diseased liver-weighted PCA and clustering example for each embryonic strain. Each figure is labeled with healthy (large markers) and
diseased liver samples (small markers). Thesemarkers are denoted by the embryonic stage (E) (shape of marker) and the cluster of each sample (cluster 0:
black and cluster 1: red). All comparisons are split into two clusters using the agglomerative method. (A) C57BL/6 and (B) C57BL/6J samples split by
sample type (tissue state). (C) CD-1 samples are not split by sample type and healthy liver samples from the E17 and E18 groups with the diseased
liver samples.
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as A-nucleotide-biased (+corr) or C-nucleotide-biased (−corr). To
analyze these samples more broadly and collectively, we used several
clustering techniques.

Four different clustering methods were applied to our PCA
dataset with clustering heuristics to help determine method
parameters (Supplementary Table S7). If samples are split by
tissue state, this reinforces the differences shown in the RSCU
comparisons. In this study, we highlight interesting clusters for
tissue comparisons.

Liver samples showed the highest similarity metrics when using
the agglomerative method. For the C57BL/6 and C57BL/6J samples,
all clustering results were split by tissue state (Figures 3A,B). The
outbred strain, CD-1, split into two clusters that were mostly defined
by tissue state (Figure 3C). The characteristic codons of the mostly
diseased liver cluster (black cluster 0—serine and arginine) are not
shared with those of the mostly healthy liver cluster (red cluster
1—leucine, threonine, tyrosine, and histidine), and their nucleotide
preference is flipped (A = G>C>T vs. T>C>A>G, respectively). All
codons were significantly different between the two clusters, except
for two arginine codons (AGG and CGC) and a threonine codon
(ACG), despite their overlap in sample type
(Supplementary Table S8).

3.2.2 Temporal progression in the embryonic stage
and tissue state distinction found in C57BL/
6N samples

C57BL/6, C57BL/6J, and C57BL/6N strains spanning
E10–E18 demonstrated that eye samples split by tissue state
with some overlap. Unlike liver tissue, in the eye, embryonic
stage progression is less obvious. Supplementary Table S5
shows C57BL/6J codons contributing heavily to PC1 [cysteine
(TGT and TGC), histidine (CAT and CAC), and phenylalanine
(TTT and TTC]—mainly diseased E14 and E15 eye samples {bias
toward C (+corr) and T nucleotides (−corr)}], unlike C57BL/6 and
C57BL/6N samples (Supplementary Table S4). The majority of
C57BL/6 E15 and E18 diseased eye samples (+corr: C

nucleotide, −corr: C/G) and C57BL/6J healthy and diseased eye
E17 samples (+corr: A, −corr: G) share glycine (GGA and GGC)
for PC2. Additionally, C57BL/6 [primarily E16 samples (+corr:
T/C, − corr: G) and C57BL/6J (mostly diseased eye samples from
E17 (+corr: C, −corr: G)] share the serine codon TCT and uniquely
possess TCG and TCC for PC3, respectively (Supplementary Table
S6). Across all weighted samples, liver samples tend to use codons
with A/T nucleotides (+corr) and T/C nucleotides (−corr); in
contrast, the eye samples tend to use codons with C (+corr)
and G (−corr).

Supplementary Table S7 provides a summary of the clustering
evaluation metrics for each of the eye-weighted strains. For C57BL/6
(Figure 4A), DBSCAN clustering assigned four clusters, which were
split by the tissue state and embryonic stage: 1) healthy E11, 2)
healthy E12, 3) diseased E11, and 4) diseased E12 eye samples. These
clusters highlight the potential importance of CUB in the E11 and
E12 stages of embryonic eye development. Cluster 3
(orange—healthy eye E11) is slightly more similar in codon
usage to cluster 1 (blue—diseased eye E11) than to cluster 2
(greenhealthy eye E12). Figure 4 presents a different clustering
method listed for panel A compared to panels B and C. We
chose to highlight only the clustering methods with the highest
clustering metrics (seeMethods). Figure 4B shows that the C57BL/6J
dendrogram split samples into two clusters—one healthy E17 eye
sample clustered with the diseased eye samples, although many
codons were significantly different (Supplementary Table S8). The
diseased eye cluster (black) was AA enriched for isoleucine and
asparagine, and the healthy eye cluster (red) was enriched for
arginine and aspartic acid, although both were similarly biased
toward A and against T nucleotides. C57BL/6N samples, as
shown in Figure 4C, split into two mixed clusters: 1) cluster 0
(black)—all diseased eye samples except E16 and 2) cluster 1 (red)—
all healthy eye and E16 diseased eye samples. Cluster 0 characteristic
codons are AA enriched for arginine and are biased toward C>T =
G = A nucleotides (Supplementary Table S4). Cluster 1 is not biased
for any AAs and has a nucleotide bias T>C>A>G, suggesting that,

FIGURE 4
Healthy vs. diseased eye-weighted PCA and clustering example for each embryonic strain. Each figure is labeled with healthy (large markers) and
diseased eye samples (small markers). These markers are also denoted by the embryonic stage (E) (shape of marker) and the cluster of each sample. (A)
DBSCAN split the C57BL/6 samples (E10–12, E14–16, and E18) by sample type (tissue state), excluding three of the healthy eye samples from E12 (black:
outliers, red: cluster 0, blue: cluster 1, green: cluster 2, and orange: cluster 3). (B) The dendrogram split the C57BL/6J samples (E12–15 and E17–18)
by sample type, except for one healthy eye sample fromE17 (black: cluster 0 and red: cluster 1). (C) The dendrogram split the C57BL/6N samples (E10, E12,
E14, and E16) by sample type, except for the diseased eye samples from E16 (black: cluster 0 and red: cluster 1).
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unlike diseased eye genes, healthy embryonic eye development
exhibits less codon usage preferences.

3.2.3 Large codon usage variance found in healthy
and diseased heart genes

This comparison includes strains C57BL/6, C57BL/6J, and CD-1
spanning E9 through E18. Figure 5 shows that C57BL/6J and CD-1
diseased heart samples lie in the positive PC2 quadrants and C57BL/
6 in the negative PC2 quadrants. None of the strains show any
distinct embryonic stage patterning. Supplementary Table S5 shows
that CD-1 samples possess several codons contributing heavily to
PC1, predominantly from aspartic acid and glutamic acid. There is
no overlap in the strains’ AAs for PC2 or PC3. CD-1 heart-weighted
samples show codons related to arginine and leucine for PC4.

In addition, E9–E12 seem to be critical periods of heart
development that can be separated through PCA clustering
across strains. CD-1 samples were split across four PCs with
varying nucleotide preferences dependent on codon correlation.
CD-1 samples show several codons contributing more heavily to
PC1 (≥0.2 or ≤ −0.2), predominantly from aspartic acid (GAT and
GAC) and glutamic acid (GAA and GAG). Supplementary Table S4
shows that C57BL/6 diseased E12 heart samples best describe
PC2 with a codon preference toward C (+corr) and T nucleotides
(−corr) (also observed in C57BL/6J healthy E9 heart samples).
However, this similarity in nucleotide preference does not
directly translate into the same preferred codons. Supplementary
Table S6 shows that there is very little overlap in the strains’ amino
acids for PC2. No amino acids are shared between the C57BL/6J
(arginine—AGG and CGA; leucine—TTA and CTC) and CD-1
(serine—TCC and TCT; threonine—ACC and ACT; valine—GTG
and GTT) samples for PC3. CD-1 has no other strain comparison
for PC4 but shows many heavily contributing codons,
predominantly from arginine (AGG and CGA), leucine (CTG
and CTC), and serine (TCC and AGC). Combining all strains,
tissue states, and embryonic stages shows that the heart-weighted
samples are slightly more similar to the eye-weighted samples than

the liver-weighted samples in that they more often possess codons
with C nucleotides when positively correlated. In contrast to both
the liver- and eye-weighted samples, the heart-weighted samples
tend to be C-dominated codons when negatively correlated.

3.2.4 Greater codon usage separation between
healthy and diseased heart genes in
C57BL/6 samples

The agglomerative clustering method grouped the C57BL/
6 samples clearly by disease association (Figure 5A). The diseased
heart cluster’s (black cluster 0) characteristic codons are not overly
influenced by any AAs (C>A>T>G). In contrast, the mostly healthy
heart-weighted genes (red cluster 1) are heavily influenced by serine,
threonine, and arginine AAs and biased toward C>G>T>A. For CD-
1 in Figure 5C, when comparing the diseased heart clusters [cluster 1
(red) and cluster 3 (green)], all codons are significantly different,
except for those primarily belonging to glycine, leucine, and arginine
(Supplementary Table S8). If we take a closer look at the
characteristic codons of the diseased heart samples, cluster 3
(green) is AA-enriched for valine, leucine, alanine, phenylalanine,
asparagine, and tyrosine [compared to cluster 1 (red)] and biased for
C>T>G>A [cluster 1 (red): G>C>A>T].

4 Discussion

In this study, we investigated CUB dynamics based on
comparisons of liver-, heart-, and eye gene-weighted RSCU for
four murine strains across many embryonic stages (Fumagalli et al.,
2024) [Mouse Embryo CoCoPUTs (https://dnahive.fda.gov/
hivecuts/mouse_embryo/)]. Our work uncovered many significant
differences in codon usage across tissue-specific weighed samples,
which can be separated based on disease association, unique strains,
and embryonic stages (Supplementary Table S2). Among these
comparisons, we observed the following: 1) CUB patterns vary
among individual tissue groups, most notably with the eye

FIGURE 5
Healthy vs. diseased heart-weighted PCA and clustering example for each embryonic strain. Each figure is labeled with healthy (large markers) and
diseased heart samples (small markers). These markers are also denoted by the embryonic stage (E) (shape of marker) and the cluster of each sample
(cluster 0: black, cluster 1: red, cluster 2: blue, and cluster 3: green). All comparisons were split into clusters using the agglomerative method. (A) C57BL/
6 samples (E9–10, E12, and E14) split by sample type (tissue state), except for one of the E9 diseased heart samples. (B) C57BL/6J samples (E9 and
E11–18) split by sample type, except for two E9 diseased heart samples. (C) CD-1 samples (E10-17) are split by sample type into four clusters.
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having the greatest RSCU variation and the liver having the least,
and 2) disease-associated genes show distinct CUB relative to
healthy genes in embryonic development.

We demonstrated that these tissue developmental differences in
RSCU persist across all tissue types with slight differences in over-
and underrepresented codons and variation/identity of CUBs. These
differences in codons encoding AAs can have a significant impact on
gene expression patterns, affecting developmental processes. For
example, arginine, one of many codons we identified to have
significant CUB, is critical for embryonic survivability (Wu et al.,
2013). AGA (Arg), along with glycine, is the first rate-limiting step in
creatine synthesis, which influences the embryonic development of
neurological and skeletal muscle. Single-gene disorders are also
linked to the use of CGN codons over AGG or AGA (Rossi
et al., 2022; Schulze et al., 2020). Interestingly, CGT (Arg) usage
is highly variable among human tissues like skin, muscle, and
kidney, with a large overrepresentation in muscle disease-causing
genes (Rossi et al., 2022). Conversely, neurodegeneration and cancer
are linked to an overrepresentation of AGG (Arg) and an
underrepresentation of CGT (Arg) (Khandia et al., 2023).

In this study, we found that CGCwas preferred in all healthy and
diseased eye and healthy heart CD-1 samples, but CGG usage was
preferred in the CD-1 diseased heart samples. Liver-weighted
strains, C57BL/6, C57BL/6J, and CD-1, showed variation in
preferred codons—AGG, AGA, and AGG, respectively. In
comparison, variation was only found between tissue states for
the least-used codon (CGA in healthy samples and CGT in
diseased samples). The eye-weighted samples show no variation
within or between sample types for the most preferred codon
(GCG). However, there is some variation within and between
sample types found for the least-preferred codon (C57BL/6 and
C57BL/6J healthy and diseased eye: CGT; C57BL/6N healthy eye:
CGA; C57BL/6N diseased eye: CGC). The heart-weighted samples
revealed variation in arginine usage both within and between tissue
states for the most preferred codon (C57BL/6 and C57BL/6J healthy
and diseased heart: AGA; CD-1 healthy heart: CGC; CD-1 diseased
heart: CGG), but no variation was observed in the least-preferred
codon (CGT for all strains and tissue states). These observations
suggest that different germ layers may require certain codon usage
biases, such as for the critical AA arginine, to support the expression
of genes important for healthy development.

Furthermore, important observations were the differences in
distinct codon signatures across embryonic mouse strains,
potentially demonstrating changes in their overall differentiation
patterns and highlighting the selectivity required for choosing
strains for testing preclinical therapeutics (Chebib et al., 2021;
Keane et al., 2011). The average CUB of the C57BL/6 samples
deviated from that of other strains when weighted by healthy liver
genes—underrepresenting: CTT (Leu), TCA (Ser), and GTT (Val).
C57BL/6J diseased liver samples uniquely underrepresent GCT
(Arg). We also found a divergence in the C57BL/6N strain when
weighted with diseased eye genes—overrepresented: CTC (Leu),
TTC (Phe), and CCC (Pro) and underrepresented: GTT (Val).
Interestingly, in contrast to liver and eye tissues, the heart
showed no differences in over- and underrepresented codons
across strains when weighted by both healthy and diseased-
associated genes. As different tissues each have their unique gene
expression patterns, it is possible that different germ layers may have

different temporal embryonic gene expression needs and may be
represented by differences in CUB. Although organ tissues may
develop similarly phenotypically across different murine strains,
organogenesis may differ, with changes based on the strain and
environment. The strain response to injury, drugs, and disease
processes may vary and influence murine models of congenital
diseases compared with humans (Sellers, 2017).

When we look at human genomic RSCU, codons CTG (Leu), GCA
(Ala), and GTG (Val) are overrepresented and TCG (Ser), GCG (Ala),
CGT (Arg), CTA (Leu), CCG (Pro), and ACG (Thr) are
underrepresented (Supplementary Table S9) (Kames et al., 2020).
Interestingly, compared to our mouse embryo data, we found that
GCA (Ala) is neither overrepresented in any of our strains nor in
tissues, and CGT (Arg) is only underrepresented in strain C57BL/6J for
the liver. Humanized mouse models are one approach attempting to
tackle codon usage differences across strains and tissues. For example,
modifying three specific murine codons in the amyloid precursor
protein (APP) gene reconstructs the condition necessary for the
development of Alzheimer’s disease (Reaume et al., 1996). To study
sickle β-thalassaemia in mice, knockout of the adult β-globins failed to
create what had been observed in human patients; however, the
replacement of the mouse β globin genes with human codon bias
improved postnatal survival (Huo et al., 2009). We note, however, that
the relationship between CUB and gene expression is rather complex.
Codon usage is known to affect exonic transcription factor binding and
transcription efficiency, mRNA splicing, biogenesis and stability, the
efficiency/stringency of mRNA decoding, and finally protein biogenesis
and folding (Komar, 2016;Wu and Bazzini, 2023; Bailey et al., 2021; Liu
et al., 2021; Moss et al., 2024). Future studies analyzing gene expression
data and CUB relationships will provide insight into the exact
underlying mechanism and potential differences in individual germ
layer development across various strains.

To reduce codon complexity, we used PCA to compile the
variance of 59 codons and then project the codons (features) into
our sample space. We identified potential critical embryonic periods
that may be important temporal points in development, requiring
certain codon usage preferences. Among many other specific periods
discovered, we identified E15 as a potentially critical period for liver-
associated genes as disease genes separated most clearly from healthy
genes. Elevated expression of the Lxts1 gene has been shown during
E15, and mutation can lead to hepatocellular carcinoma (Mu et al.,
2020). Further analysis is required to determine whether specific
timed sequences of gene expression, which are essential for
determining cell fate, are present at the codon level during
embryogenesis. These temporal relationships likely require a
deeper analysis of individual high- or low-expressing genes.

Important AAs per strain were defined as having a PCA codon
loading value of ≥0.2 or ≤ −0.2 and possessing at least two
synonymous codons that met this criterion. Under these
assumptions, a strain weighted by a specific set of genes tends to
show uniquely critical AAs (Supplementary Tables S2, S4, S6, S8). Of
these AAs and across all gene-weighted comparisons, C57BL/6 and
C57BL/6J samples were more often associated with nonpolar AAs,
C57BL/6N samples with polar AAs, and CD-1 samples with equally
nonpolar and negatively charged AAs. Many of the comparisons
revealed quite a bit of difference in PC heterogeneity—making it
difficult to relate specific codons to whole tissue state groups.
Nonetheless, PCA analysis was able to reveal unique codon
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preferences for individual strains and highlighted the codon usage
differences between diseased and healthy tissues.

To further capture better and more insightful patterns in CUB
based on changes to embryonic stages, strains, and tissue states, we
used a set of clustering methods, evaluation metrics, and the known
biology of the samples to focus further analyses. This revealed that
clustering methods resulting in the highest evaluation metrics often
produced clusters with the most significantly different codons.
There were a few examples of clusters splitting strictly by tissue
state. C57BL/6 healthy and diseased liver clusters resulted in 95% of
their CUB being significantly different and both preferred nucleotide
C. C57BL/6J healthy and diseased E15 liver clusters showed that 80%
of their codon usage was significantly different, with their nucleotide
preferences completely flipped from one another. In another case,
CD-1 healthy and diseased heart clusters were split into four, and
diseased heart clusters were independently shown to be closer in
CUB to the healthy heart clusters than to each other. The results of
these clustering analyses highlight the need for further investigation
into other sources of variation (i.e., GC content and codon pair bias)
that might contribute to these clusters.

Thus, in this study, we demonstrated that CUB patterns differ
across embryonic development between strains, tissue types, and tissue
states. We highlighted critical embryonic stages that showed significant
deviations in CUB preferences within individual tissues. Further pairing
of temporal gene expression data with this codon usage analysis may
help elucidate the biological relationships mediated by gene expression
that are important for embryogenesis. These data are also of interest for
comparing tissue-specific CUB between embryonic and adult tissues
and describing how CUB changes during embryogenesis impact genes
that influence liver cancer or liver fibrosis later in life. Future studies
evaluating different mouse strains, especially developmental studies
spanning multiple embryonic stages or strain targeting for the pre-
clinical testing of therapeutics (e.g., mRNA-based), should be aware of
the impact of these CUB differences. These findings are critical for
understanding the relationship between codons and embryonic
development stages and provide the necessary biological context for
future studies evaluating disease gene expression relationships across
development.
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