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Introduction: Individuals with balanced chromosomal rearrangements are at an
increased risk for infertility, recurrent miscarriages, and the birth of infants with
congenital malformations. Traditional cytogenetic techniques are limited by their
low resolution, whereas optical genomemapping offers enhanced capabilities for
detecting chromosomal rearrangements and determining genomic localization
and orientation. This study sought to evaluate the efficacy of optical genome
mapping in identifying complex balanced chromosomal rearrangements that
may contribute to fertility challenges.

Case presentation: A 21-year-old Asian female patient with a history of recurrent
abortions was included in the study. Peripheral blood samples were collected for
high-resolution karyotyping, chromosomal microarray analysis, and optical
genome mapping. The high-resolution karyotype analysis identified complex
chromosomal abnormalities. Optical genome mapping has revealed additional
cryptic chromosomal aberrations, such as ins (2; 12) (p16.1; q12q12), inv (6)
(q21q21), and inv (12) (q12q12), offering a novel perspective on this case.
Notably, the disrupted genes, including CRIM1, MUC19, and PRDM1, have not
been classified as pathogenic by existing databases.

Conclusion: This study underscores the capability of optical genomemapping to
deliver comprehensive and precise information. It is anticipated that optical
genome mapping will emerge as a valuable cytogenetic tool within clinical
genetic methodologies, providing new references and insights for clinical
practice in the future.
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Introduction

Complex chromosomal rearrangements (CCRs) play a critical
role in various human genetic disorders by disrupting protein-
coding genes and cis-regulatory elements. These rearrangements
encompass a range of distinct structural variations on the same allele
within a single mutational signature event (Collins et al., 2020).
Balanced reciprocal rearrangements (BCRs) occur due to the
random de novo breakage and subsequent rejoining of two or
more chromosomes. The incidence rate of BCRs is approximately
7% among infertile couples, a figure that is significantly elevated
compared to the general human population (0.14%) (Kasikova et al.,
2012). Most carriers of BCRs exhibit normal phenotypes, as the
majority of breakpoints (BPs) occur in intergenic or noncoding
regions, where the disruption has minimal interference with gene
expression (Carvalho and Lupski, 2016). However, these individuals
face an increased risk of recurrent miscarriages and the birth of
newborns with chromosomal imbalances (Chow et al., 2020).
Research indicates that the likelihood of identifying normal or
balanced blastocysts in patients with CCRs is less than 6%, while
the probability of achieving pregnancy is below 4%. These factors
may contribute to a diminished number of transplantable embryos
(L. Hu et al., 2018). This may manifest as implantation failure,
miscarriage of established pregnancies, or the birth of infants with
chromosomal syndromes, which poses significant concerns for
affected couples (Wilch and Morton, 2018). In a study involving
300 couples experiencing recurrent miscarriages, chromosomal
abnormalities were identified in 26 cases, representing 8.7% of
the sample. Among these, structural anomalies being the most
prevalent at 57.7%, followed by numerical chromosomal
aberrations at 42.3% (Yildirim et al., 2019). Genetic analyses of
BCRs associated with a normal phenotype hold significant clinical
implications for fertility counseling and the prevention of genetic
disorders in offspring.

Routine cytogenetic analyses are essential for identifying genetic
biomarkers relevant to clinical diagnosis, however, each testing
method presents specific limitations. Karyotyping, recognized as
a fundamental first-line approach, is capable of identifying both
numerical and structural chromosomal aberrations. Nonetheless, it
is characterized by certain drawbacks, including a time-intensive
process, limited microscopic resolution (averaging between 5 and
10 Mb), and a relatively low overall diagnostic yield (Hofherr et al.,
2011; Dremsek et al., 2021; MacLeod and Drexler, 2013). Copy
number variation sequencing (CNV-seq) and chromosomal
microarray analysis (CMA) are capable of identifying variations
as small as a few kilobases (Kb). However, these methods have
limitations in detecting lower-proportion mosaicism and BCRs
(Miller et al., 2010; Waggoner et al., 2018). Fluorescence in situ
hybridization (FISH) serves as a viable method for confirming
suspected cryptic BCRs. However, its application is constrained
by challenges in determining the precise localization beforehand and
the complexities involved in assigning specific fluorescent probes.
Consequently, FISH is not appropriate for comprehensive gene
detection (Cui et al., 2016). Whole genome sequencing (WGS)
facilitates the identification of structural rearrangements and
nucleotide variations within a single experimental framework,
generating significant interest in its potential as a primary
diagnostic tool (Lionel et al., 2017). However, its implementation

is hindered by challenges such as limited read length, high costs, and
reduced sensitivity in repetitive genomic regions (Savara et al.,
2021). Phasing multiple rearrangement breakpoints in complex
B Cell receptor structures using WGS can be a formidable task
(Dong et al., 2017). Consequently, there is a pressing need for a rapid
and reliable method to identify BCRs during clinical testing.

Optical genome mapping (OGM) represents a sophisticated,
high-throughput cytogenomic methodology that utilizes imaging
techniques to analyze exceptionally long linear single DNA
molecules. OGM offers enhanced sensitivity and specificity in the
detection of various structural variants (SVs), encompassing
aneuploidies, deletions, duplications, inversions, insertions,
translocations, and the absence of heterozygosity (AOH)
(Mantere et al., 2021). The capabilities of preamplification-free
techniques and high-resolution analysis are enhanced through
the fluorescent labeling of specific sequence motifs (Sanders
et al., 2019; Chan Saki et al., 2018). OGM offers significant
advantages, including improved turnaround times and cost-
effective generation of 300–500 × genome-wide coverage. Recent
studies have demonstrated the efficacy of OGM in identifying a
broad spectrum of genetic disorders associated with cancers
(Neveling et al., 2021; Zhang et al., 2023a; Sahajpal et al., 2021).
The finding indicates that OGM demonstrated complete
concordance with cytogenetic assays in detecting genomic
chromosomal aberrations across 85 individuals (Mantere et al.,
2021). Furthermore, OGM has been effectively employed to
elucidate the relationship between genes and phenotypes based
on breakpoint locations. Additionally, OGM possesses the
capability to identify intricate genetic abnormalities and facilitates
the characterization of breakpoints (Wang et al., 2020; Chan EvaKF.
et al., 2018; Jain et al., 2016).

Significant challenges have thus far constrained the objective
assessment of BCRs. We uncovered a complex BCRs by OGM
analysis, which was discribed as 46,XX,ins (6; 2) (q21;
p16.1p22.2) ins (2; 12) (p16.1; q12q12) inv (6) (q21q21) t (6; 12)
(q21; q12) inv (12) (q12q12), which has not been previously
reported. This study aims to investigate the potential of OGM in
detecting complex BCRs in the absence of various clinical
indications, offering valuable references and insights for future
clinical diagnoses.

Case description

A 21-year-old Asian woman participated in this study. She was
diagnosed with pregnancy at the Affiliated Hospital of Jining
Medical University. Eclampsia assessment revealed a high risk,
with a Placental Growth Factor Multiple Of Median of 0.27.
Additionally, mid-trimester Down syndrome screening indicated
a heightened risk of open neural tube malformation, with a Multiple
Of Median of 2.407. At 19 weeks of gestation, the ultrasound
findings indicated the presence of multiple fetal developmental
anomalies, including a reduced size of the cerebellar vermis and
a cystic echo observed in the cerebellar bulbous cisterna. The results
of the auxiliary examinations were normal.

The family opted for labor induction following an abnormal fetal
ultrasound examination. CNV-seq (Copy Number Variation
Sequencing) genetic analysis of the aborted tissue revealed a
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22.5 Mb duplication in the p22.3p16.1 segment of chromosome
2 [seg (GRch38) dup (2) (p22.3p16.1) Chr2:g36,500,001-
59,000,001dup], which is classified as pathogenic According to
the ACMG guidelines (Riggs, E. R., et al. (2019). Genet Med. doi:
10.1038/s 41436-019-0686-8. Relevant databases such as ClinGen,
DECIPHER, OMIM, ClinVar and PubMed and others if required
suggest that the identified duplicated fragment is linked to various
clinical manifestations, including intellectual disability, growth
retardation, neonatal hypotonia, syndactyly, gastroesophageal
reflux, hydrocephalus, anal atresia, and short stature. Given the
significant size of the fragment, the couple was advised to collect
anticoagulant peripheral blood to undergo high-resolution
karyotyping analysis and CMA. The subject exhibited normal
phenotypes, and her CMA results indicated no imbalanced
structural variations according to the American College of
Medical Genetics and Genomics (ACMG) guidelines.
Consequently, we hypothesized that she was a carrier of BCRs.
To validate this hypothesis, we employed high-resolution
karyotyping according to the International System for Human
Cytogenetic Nomenclature (ISCN) 2020 and OGM based on the
GRCh38 human reference genome. The subject’s husband’s
karyotype was characterized as 46,XY (Figure 1A), with normal
CMA results (Figure 1B).

Results

The karyotyping results confirmed that the subject was indeed a
carrier of BCRs, characterized as 46,XX, with a specific
rearrangement involving chromosomes 2, 6, and 12. Specifically,
the p16p22 segment of chromosome two was inserted into the
q21 segment of chromosome 6, accompanied by a mutual
translocation between the q21 segment of chromosome six and
the q13 segment of chromosome 12. This rearrangement was
described as 46,XX,ins (6; 2) (q21; p16p22) t (6; 12) (q21;
q13) (Figure 2A).

OGM identified a reciprocal translocation between
chromosomes 6q21 and 12q12, as well as the insertion of a 2p
segment into 6q21, which closely aligned with the findings from
karyotyping analysis (Figures 2C,D). Furthermore, the insertion
segment of chromosome two was refined from p16p22 to
p16.1p22.2 (Figure 2B). OGM also provided detailed information
regarding additional fragments, including fus (2; 2) (p22.2; p16.1)
involving a 22.1 Mb segment of chromosome 2 (BP: 36,466,829-
58,603,981) (Figure 2B), ins (2; 12) (p16.1; q12q12) with a 141 Kb
segment of chromosome 12 (BP: 40,550,771-40,691,368) and
chromosome 2 (BP: 56,119,045-56,121,630) (Figure 2E), inv (6)
(q21q21) with a 359 Kb segment of chromosome 6 (BP:
105,753,796-106,102,619) (Figure 2D), and inv (12) (q12q12)
with a 115 Kb segment of chromosome 12 (BP: 40,550,771-
40,691,368) (Figure 2D). Additionally, the orientations of the
rearranged chromosomes were determined: the
p22.2p16.1 segment of chromosome two was reversed and
inserted into the q21 segment of chromosome 6, while the
q12q12 segment of chromosome 12 was positively inserted into
the p16.1 segment of chromosome 2. The refinement of breakpoints
and the orientation of segments significantly contributed to the
elucidation of the chromosome rearrangement pattern. The findings
from the OGM analysis were characterized by the chromosomal
alterations 46,XX,ins (6; 2) (q21; p16.1p22.2) ins (2; 12) (p16.1;
q12q12)inv (6) (q21q21) t (6; 12) (q21; q12)inv (12) (q12q12).
Detailed breakpoint information is shown in Table 1.

Discussion

CCRs are known to encompass both balanced and imbalanced
categories, which can lead to a range of phenotypic outcomes.
Additionally, BCRs may result in congenital anomalies in the
absence of identifiable causative agents, indicating potential
disruptions in gene function and long-range regulatory
interactions (Sanders et al., 2019; Sinnerbrink et al., 2013). While

FIGURE 1
The karyotyping and chromosomal microarray analyses of the subject revealed significant findings. (A) The arrows indicate the presence of
abnormal chromosomes. The karyotyping analysis demonstrated the insertion of the p16p22 segment from chromosome 2 into the q21 region of
chromosome 6, as well as a translocation between the q21 segment of chromosome 6 and the q13 segment of chromosome 12. This was characterized
as 46,XX,ins (6; 2) (q21; p16p22) t (6; 12) (q21; q13). (B) In contrast, the chromosomal microarray analysis yielded normal results.
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the majority of BCRs carriers do not exhibit clear clinical
phenotypes, there is a significant increase in the risk of
spontaneous abortion, infertility, or the birth of abnormal
offspring (Liao et al., 2014), the refinement of cryptic BCRs
presents a significant challenge.

In this study, high-resolution karyotyping indicated two
breakpoints (2p16, 2p22) on chromosome 2, one breakpoint (6q21)
on chromosome 6, and one breakpoint (12q13) on chromosome 12.
Balanced rearrangements may not necessarily correlate with abnormal
phenotypes; however, certain reverse transfers can alter the orientation

FIGURE 2
Genome-wide visualization of optical genome mapping reveals significant chromosomal structural rearrangements. (A) The Circos plot integrates
all identified chromosomal alterations, with the default view organized from the outer to the inner circle: cytoband locations numbered 1 to 24 (1–22, XX).
Color-coded interstitial structural variations are highlighted at specific locations, alongside observed copy number changes for each chromosome or
region, illustrating translocations, insertions, and inversions represented as lines. Notably, the Circos plot indicates connections between
chromosomes 2, 6, and 12 at genomic loci, depicted with red lines. (B) The genome map view illustrates the inversion of chromosome 2p16.1p22.2. (C)
The genome map view details the breakpoint junction of an insertion, ins (6; 2) (q21; p16.1p22.2). (D) The genome map view presents the breakpoint
junction of a translocation, t (6; 12) (q21; q12). (E) The genomemap view highlights the breakpoint junction of another insertion, ins (2; 12) (p16.1; q12q12).
Abbreviations used include INS for insertion, DEL for deletion, INV for inversion, DUP for duplication, and TRA for translocation.

TABLE 1 Detailed characterisations of the rearrangements on chromosomes 2, 6, and 12 by Bionano Access Software.

Type Chr Involved#1 Chr Involved#2 Breakpoint#1 (bp) Breakpoint#2 (bp) ISCN

Transl 2 2 36,466,829 58,603,981 ogm [GRCh38]fus (2; 2) (p22.2; p16.1)

Transl 2 6 36,507,200 106,113,348 ogm [GRCh38]t (2; 6) (p22.2; q21)

Transl 2 6 58,598,126 105,752,975 ogm [GRCh38]t (2; 6) (p16.1; q21)

Transl 2 12 56,119,045 40,550,771 ogm [GRCh38]t (2; 12) (p16.1; q12)

Transl 2 12 56,121,630 40,691,368 ogm [GRCh38]t (2; 12) (p16.1; q12)

Transl 6 12 105,753,796 40,536,406 ogm [GRCh38]t (6; 12) (q21; q12)

Transl 6 12 106,102,619 40,421,695 ogm [GRCh38]t (6; 12) (q21; q12)

Chr, chromosome; bp, base pair; Transl, translocation.
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of repetitive DNA, leading to the formation of inverted loops during
meiosis, which results in a 50% probability of producing imbalanced
gametes, characterized by partial duplications and deletions.
Consequently, there is an elevated risk of genetic diseases in the
offspring of carriers with inversions (Watson et al., 2014; Antonacci
et al., 2010).

The precise region and orientation of rearrangements in BPs are
crucial for elucidating the genetic underpinnings of diseases. However,
existing molecular technologies are inadequate for accurately
determining the location and orientation of abnormal segments that
disrupt or fuse genes. OGM demonstrates the ability to detect
significant types of chromosomal aberrations, facilitating the
identification of genes located within breakpoint intervals, which can
enhance the clinical interpretation of genetic disorders, particularly
concerning intragenic rearrangements in prenatal diagnosis.
Furthermore, OGM achieves 100% concordance with karyotype
analysis for all aberrations involving non-centromeric breakpoints
(Sahajpal et al., 2021; Mantere et al., 2021; Wang et al., 2020).

In our study, The findings of OGM, which were challenging to
distinguish through karyotyping, provide new insights into this case.
Additionally, the orientations of the rearranged chromosomes were
determined: the p22.2p16.1 segment of chromosome twowas reversed
and inserted into the q21 segment of chromosome 6, while the
q12q12 segment of chromosome 12 was positively inserted into
the p16.1 segment of chromosome 2. The refinement of
breakpoints and the orientation of segments significantly
contributed to the elucidation of the chromosome rearrangement
pattern. Collectively, our results suggest that OGM demonstrates
superior potential and enhanced resolution in identifying specific
breakpoints (Table 1) and the orientations of abnormal chromosomal
segments, aligning with the observations made by Mantere T. et al.

(Mantere et al., 2021). According to the GRCh38 assembly, the
CRIM1 gene was disrupted in the region of chromosome 2 (BP:
36,466,829-36,507,200), theMUC19 gene was disrupted in the region
of chromosome 12 (BP: 40,550,771-40,421,695), and the PRDM1 gene
was disrupted in the region of chromosome 6 (BP: 105,752,975-
106,102,619). However, no variants with established pathogenic
significance for the genes have been reported. Based on the OGM
analysis, we have simulated a schematic diagram of the rearrangement
occurring in this case (Figure 3). OGM represents a cutting-edge
methodology focused on the manipulation of megabase-length DNA
molecules to develop a “fluorescent barcode DNA map.” This
innovative approach integrates microfluidics, high-resolution
microscopy, and automated image analysis, facilitating high-
throughput whole-genome imaging and de novo assembly
(Sahajpal et al., 2021). The data analysis of OGM employs two
advanced pipelines that demonstrate heightened sensitivity for
detecting large segments based on coverage depth, as well as small
CNVs through the comparative analysis of assembly maps against
reference maps. OGM offers significant advantages in identifying
previously unrecognized clinically relevant SVs and accurately
determining the location and orientation of BPs (P. Hu et al.,
2024; Zhang et al., 2023b). The study conducted by Mantere et al.
(2021) demonstrated that OGM achieved a remarkable 100%
consistency with standard tests in identifying known chromosomal
aberrations across 85 blood or cultured cell samples. The study
demonstrated a 100% concordance between OGM and karyotype
analysis and/or CMA, indicating the efficacy of OGM in identifying
genomic alterations in prenatal samples (Goumy, 2023).

OGM was originally primarily used in the diagnosis of
hematological diseases (Levy et al., 2022; Nilius-Eliliwi et al., 2023)
as well as germline SVs of individual study participants (Barseghyan

FIGURE 3
Schematic diagram of the complex chromosome rearrangement pattern in chromosomes 2, 6 and 12 based on OGM analysis.
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et al., 2018; Du et al., 2018) and rare diseases (Shieh et al., 2021).
Subsequently it was applied to the prenatal and postpartum diagnosis
(Sahajpal et al., 2021; P; Hu et al., 2024; Zhang et al., 2023a; Goumy,
2023). Researches (Zhang et al., 2023a; Mantere et al., 2021) indicate
that OGM is recognized as a precise and thorough technique for
identifying cryptic balanced translocations. This capability is
instrumental in the genetic diagnosis of patients experiencing
unexplained recurrent abortion or infertility. Furthermore, OGM has
the potential to forecast disruptions in genes caused by breakpoints,
which may lead to the formation of fusion genes (Halgren et al., 2018).
The destruction of known pathogenic genes may result in structural
abnormalities that can subsequently give rise to clinical syndromes,
attributable to inadequate haploid function of the associated genes (Lee
et al., 2020; Schluth-Bolard et al., 2019). The study (Wang et al., 2020)
identified breakpoint regions in nine subfertile patients with various
balanced reciprocal translocations using OGM. It was determined that
four disrupted genes, specifically NUP155, FNVDC3A, DPY19L1, and
BAI3, are associated with male infertility. Additionally, three genes are
currently no definitive pathogenic reports, which may account for the
normal phenotype observed in the individual. To date, there have been
no documented cases involving ins (6; 2), inv (6) (q21q21), or inv (12)
(q12q12). Over the past 3 decades, only ten cases of t (6; 12) have been
reported, with the involved sites differing and potentially associated
with other chromosomal abnormalities (Vandeweyer et al., 2012;
Bernheim et al., 2007; Bianco et al., 2011; Coccé et al., 2016), all of
which exhibited a variety of clinical manifestations, while other
instances may remain unreported due to the absence of identifiable
clinical phenotypic abnormalities.

However, OGM presents certain limitations. Primarily, the
absence of a comprehensive human reference genome, coupled
with the presence of excessively long repeat sequences in the
centromeric regions, hinders OGM’s ability to accurately detect
balanced structural variations, breakpoints, and fusion sites within
structural heterochromatin areas, including centromeres and the
short arms of telomeric chromosomes (Qu et al., 2023). The
successful completion of telomere-to-telomere genome assembly
and the subsequent gap filling of the human reference genome
offer promising prospects for overcoming the limitations associated
with OGM (Gershman et al., 2022). A recent study indicates that the
integration of sequencing techniques and OGM could facilitate the
comprehensive assembly of the human X chromosome from
telomere to telomere (Miga et al., 2020). Secondly, it is essential
to provide specific technical support to ensure the accuracy of the
BPs identified by OGM at the single nucleotide level. Furthermore,
the relationship between the newly identified variations and the
corresponding phenotypes requires additional verification.

Conclusion

The sensitivity of OGM in this study surpasses that of other
established molecular technologies for detecting large-fragment
translocations and small-fragment CNVs inversions.
Furthermore, OGM offers specific breakpoint information for
complex structural aberrations and can predict the potential
destruction of breakpoint genes, thereby serving as a valuable
reference for disease diagnosis, prevention, and assisted
reproduction in patients with structural variations. Nonetheless,

the high costs and the requirement for more sophisticated testing
techniques and analytical processes currently limit its widespread
application in clinical practice. Looking ahead, OGM is anticipated
to become a widely adopted tool in clinical settings.
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