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Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
enters human cells using the angiotensin-converting enzyme 2 (ACE-2) receptor.
ACE2 single nucleotide polymorphisms (SNPs) can influence susceptibility by
affecting viral binding or gene expression. This study investigated the association
between ACE2 SNPs, rs2285666 and rs2106809, and the SARS-CoV-2 infection
susceptibility in a Ghanaian population.

Methods: Genomic DNA was extracted, using a magnetic bead-based method,
from blood samples of a random-subset of 1,334 participants drawn from a two-
stage cluster, population-based household cross-sectional SARS-CoV-2 IgG
seroprevalence survey. Data collected included, socio-demographic
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characteristics, medical history, vaccination, and smoking status. Genotyping of the
ACE2 SNPswas performed using Allele-SpecificOligonucleotide Polymerase Chain
Reaction (ASO-PCR) combined with melting curve analysis. Logistic regression
models were utilized to assess the association between the ACE2 SNPs and the
susceptibility to SARS-CoV-2 infection

Results: The median age of participants was 33 [Interquartile range (IQR) = 24–46]
years. Females accounted for themajority of the sampled population, 64.3%. SARS-
CoV-2-IgG seropositivity was (58.4%, 95%CI: 52.6%–64.2%) among the male
population and (54.1%, 95%CI: 49.54%–58.61%) in the female population. There
were no significant differences in overall allele or genotype frequencies of
ACE2 SNPs between SARS-CoV-2 IgG seropositive and seronegative individuals
for both females and males. Among females, those with the T allele of
ACE2 rs2285666 had a 38% decreased susceptibility to SARS-CoV-2 infection
under the dominant [adjusted odds ratio (aOR) = 0.62; 95%CI = 0.45–0.85, P =
0.003] and heterozygous advantage models (aOR = 0.62; 95%CI = 0.45–0.86, P =
0.004), after adjusting for confounders, but not thee recessive model (aOR = 0.41;
95%CI = 0.03–5.22, P = 0.490). No significant association was observed among
males. Overall, the ACE2 rs2106809 was not associated with the susceptibility to
SARS-CoV-2 infection in both males and females.

Conclusion: This study found no association between ACE2 rs2106809 genetic
variant and susceptibility to SARS-CoV-2 infection, whilst the rs2285666 T-allele
was associated with a decreased frequency for SARS-CoV-2 infection among
Ghanaian females. These findings enhance our understanding of genetic factors
influencing SARS-CoV-2 susceptibility, which could help identify at-risk
populations and inform more targeted public health interventions in future
outbreaks.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was identified as the causative agent of the recent global
pandemic, coronavirus disease 2019 (COVID-19) (Zhu et al., 2020).
Declared as a pandemic in early 2020 (WHO, 2020b), this outbreak
significantly disrupted global health systems, societal norms, and
economic structures, resulting in widespread morbidity and
mortality. As of June 2024, over 700 million confirmed cases and
7.1 million deaths have been recorded globally. Through a
combination of scientific innovation, global collaboration, and
coordinated public health efforts, the world has made remarkable
progress in recovering from the COVID-19 pandemic. The rapid
development, approval, and rollout of vaccines have played a critical
role in the process. As such, focus has shifted from emergency
response to managing COVID-19 as an endemic situation, with the
WHO officially announcing it no longer a Public Health Emergency
of International Concern (PHEIC) (Statement on the fifteenth
meeting of the IHR, 2005). Despite the progress made, it is
important to remain vigilant, as the virus still looms as a
formidable challenge to global health systems due to its ability to
evolve and persist, and also the risk of other emerging
infections remains.

The SARS-CoV-2 virus penetrates human cells via attachment
of the trimeric SARS-CoV-2 spike (S) protein receptor binding

domain (RBD) to the angiotensin-converting enzyme 2 (ACE2)
(Hoffmann et al., 2020; Letko et al., 2020; Wan et al., 2020; Zhou
et al., 2020). Host genetics has long been known to play a key
function in establishing the outcome of host-pathogen interactions
(susceptibility or protection) and subsequently influencing
infection outcomes (mild, moderate, or severe) (De Silva and
Stumpf, 2004; Samson et al., 1996; Martinson et al., 1997). Such
genetic factors also contribute to population-specific traits,
potentially explaining disparities in disease burden and severity
across different populations, as highlighted in the context of
COVID-19.

Researchers have suggested that genetic changes including
single nucleotide polymorphisms (SNPs) within ACE2 could
either alter the binding affinity to the virus or gene expression
levels, thereby influencing an individual’s susceptibility or
protection from infection (Martínez-Gómez et al., 2022;
Möhlendick et al., 2021; Mahmood et al., 2022; Liu et al., 2016).
While there is ample research exploring the impact of host
genetics, particularly, ACE2 SNPs on SARS-CoV-2 infection in
Europe, Asia, and other global regions, there is considerable
knowledge gap regarding these genetic associations within the
African population. This is due to the absence of a well-established
and robust laboratory technology pipeline such as high throughput
next-generation sequencing and genotyping approaches, which are
essential to conducting similar studies (Petersen et al., 2022).
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Additionally, the distinct genetic diversity of Africa, shaped by
early human origins (Stringer, 2016), endemic diseases (Adimulam
et al., 2023), and a large socio-cultural structure (Schlebusch et al.,
2012), distinguishes it from other populations (Campbell and
Tishkoff, 2008; Yu et al., 2002). Consequently, the current
global evidence derived from existing studies lacks
comprehensive representation of genetic diversity, limiting our
ability to draw consistent conclusions across populations. In sub-
Saharan Africa, several SNPs have been associated with infectious
diseases. For example, constant exposure to the parasite in malaria-
endemic regions have driven the natural selection for protective
genetic variations (Dhangadamajhi et al., 2010). The unique
genetic background raises critical concerns about the
generalizability of genetic findings across diverse global
populations, including African populations.

ACE2-rs2285666 (C>T) and ACE2-rs2106809 (A>G) have been
recognized as important SNPs that regulates ACE2 expression levels,
which may, in turn affect the number of available receptor sites for
SARS-CoV-2 virus attachment to cause an infection, thereby
potentially conferring resistance to infection (Dhangadamajhi
et al., 2010; De et al., 2021).

Ghana reflects the broader trends of Sub-Saharan Africa, with
significant genetic diversity, unique epidemiological profile, and a
history of malaria endemicity (WHO, 2023b). Investigating
ACE2 SNPs in the Ghanaian population may reveal insights into
COVID-19 susceptibility patterns and inform therapeutic strategies
for future (coronavirus) outbreaks.

Investigating the association between ACE2 SNPs and the
susceptibility to SARS-CoV-2 infection using SARS-CoV-2 IgG
seropositivity, determined through robust methods as a proxy
allows for a more inclusive and practical solution, particularly in
resource-limited settings like Ghana. Other diagnostic methods,
such as PCR testing, though the reference standard, are
expensive and logistically difficult to scale, leading to testing
strategies that primarily target specific groups rather than the
broader population in such settings (COVID-19, 2024). While
PCR testing detects acute infections, seropositivity provides
evidence of past infections and thus captures the cumulative
exposure to SARS-CoV-2 over time. This broader temporal
coverage makes seropositivity particularly suitable for
studying genetic susceptibility to infection in population-
based studies.

By leveraging SARS-CoV-2 IgG serostatus from a highly
representative population sample, this approach provides an
alternative framework for conducting genetic association studies.
Unlike traditional case-control studies, which require carefully
matched controls and active cases, this alternative framework
addresses the challenges of control selection–particularly
in situations with high rates of asymptomatic cases, as seen with
COVID-19 (Zhao et al., 2020; Oran and Topol, 2020). Based on this
framework, this study hypothesizes that ACE2 SNPs are associated
with SARS-CoV-2 infection susceptibility in the Ghanaian
population. Specifically, it aims to (a) assess the sex-specific
genetic association of ACE2-rs2285666 (C>T) and ACE2-
rs2106809 (A>G) with SARS-CoV-2 IgG seropositivity, and (b)
evaluate their genotypic and allelic frequencies.

Materials and methods

Study design and population

The study was a sub-study of a larger SARS-CoV-2 IgG
seroprevalence study in Ghana, conducted in accordance with the
previously published SeroCoV protocol (Lorenz et al., 2021). This
protocol aligned with theWorld Health Organization’s standardized
guidelines for seroepidemiological studies (WHO, 2020a).

Briefly, a non-random subset of participants was drawn from a
two-stage cluster population-based household cross-sectional study
where participants were recruited from three major cities–namely,
Kumasi (Struck et al., 2022), Accra, and Tamale–covering the period
from February 2021, and February 2022. The survey comprised
three phases: the first phase between February 2021, and March
2021, in Kumasi, the second phase between June 2021, and October
2021, in Accra, and the third phase between November 2021, and
February 2022, in Tamale.

The study included individuals aged 10 years and above who
resided in households within selected sampling frame, provided
informed consent for genetic analysis, and had their SARS-CoV-
2 IgG seropositivity results, and complete demographic and SNP
genotyping data available from the main study. To ensure that
seropositivity reflected natural SARS-CoV-2 infection rather than
vaccine-induced immunity, individuals who had received at least
one of any of the rolled-out COVID-19 vaccination at the time of the
main study were excluded.

Detection of SARS-CoV-2-specific IgG
seropositivity

SARS-CoV-2-specific IgG antibodies were measured in
participant plasma samples using a sensitive and specific
qualitative enzymed-linked immunosorbent assay (ELISA),
following manufacturer’s guidelines.

Fcγ-receptor-based anti-SARS-CoV-2-specific IgG ELISA kit
was developed by the Diagnostics Development Laboratory
(DDL) at the Bernhard Nocht Institute for Tropical Medicine
(BNITM), Hamburg, Germany (patent EP2492689) (Schmitz
et al., 2011), and used to determine SARS-CoV-2 serostatus in
the presented study. This ELISA operates by capturing antigen-
antibody complexes via a solid-phase-bound Fcγ-receptor (FcγR),
with a truncated SARS-CoV-2 nucleocapsid protein (NCP) as the
target antigen and has proven to be highly specific. The assay was
tested and validated using a serum panel derived from 35 COVID-19
patients with 213 longitudinal samples, as well as a control panel of
negative samples containing 790 preCOVID-19 samples sourced
from a variety of geographical regions, including Europe (Germany),
Asia (Laos), and Africa (Ghana, Madagascar, and Nigeria), designed
to address the issue of limited specificity of commercialized ELISA
assays among samples originating from malaria-endemic countries
(Deschermeier et al., 2022; Emmerich et al., 2021). Results were
interpreted based on criteria set by the manufacturer, according to
the batch specific certificate of analysis for the positive and negative
controls used in the assay.
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Genomic DNA extraction

Following blood collection during the initial study, samples were
centrifuged, and the cell pellet resuspended in 8MUrea for stable storage
at room temperature. Genomic DNAwas extracted using theMagMaxi
DNA extraction kit (Biosearch technologies, United Kingdom),
according to the manufacturer’s instructions. Briefly, equal volumes
of sample and lysis buffer were mixed and incubated overnight at 55°C
with 20 µL protease. Magnetic particles were added, and bound DNA
was washed, eluted, and measured using NanoDrop®.

Primer design and information

The Modified Tetra-Primer Assay (MTPA) PCR primer design
tool was used to design primers (Tanha et al., 2015) using GenBank
sequence of ACE2 rs2285666 and ACE2 rs2106809 (NC_000023.10:
g.15610348C>T, and NC_000023.11:g.15599938A>G), respectively.

For each SNP, theMTPAPCR primer design tool revealed two sets
of primers (two outer and two inner primers) (Tanha et al., 2015; Baris
et al., 2013; Etlik et al., 2008). Two distinct primer sets are employed to
amplify two smaller and allele-specific fragments. The outer primers
amplify the common, much larger DNA fragment containing the SNP,
whereas the inner primers (allele-specific primers) amplify the two
allele-specific fragments - wild-type and mutant-type allele-specific
fragments - concurrently. The mutant allele-specific fragment is
amplified by the forward inner primer and the reverse outer
primer, while the wildtype allele-specific fragment is amplified by
the reverse inner primer and the forward inner primer.

TheNCBI online Primer Blast program at (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/) and the online Oligo-Analyzer 3.1 tool by
Integrated DNA Technologies (IDT) (https://eu.idtdna.com/calc/
analyzer) was employed to assess the specificity of the selected
primer. The primers used are shown in Supplementary Table S1.

Genotyping of
ACE2 rs2285666 and rs2106809

Genotyping was performed using real-time PCR on the
LineGene 9600 thermocycler (Hangzhou Bioer Technology Co.
Ltd, China). For each ACE2 SNP, two separate allele-specific
reactions were prepared to target the mutant and wildtype alleles
with concentrations, as specified in Supplementary Table S1.

PCR amplification conditions were set up as follows: initial
denaturation at 95°C for 5 min. For rs2285666, amplification
continued with 40 cycles of 95°C for 10 s (denaturation), 50.9°C
for 20 s (annealing), and 72°C for 30 s (extension). For rs2106809,
30 cycles were performed with an annealing temperature of 55°C.
After amplification, allele-specific fragment product melting curves
were analysed by first heating the samples to 95°C for 15 s, cooling to
65°C for 1 min, and then gradually increasing the temperature to
97°C at a rate of 0.2°C/min for 15 s, while continuously measuring
the change in fluorescence. The thermocycler calculated the negative
derivative of the fluorescence change and generated a melting curve
for each sample. Melting peaks were visualized as the negative
derivative of fluorescence versus temperature (-dF/dT) of the
melting curve for amplification products.

In each PCR run, specific known genotyped control samples
were used: NA18499 (CT) and NA19118 (CC) for rs2285666, and
HG02769 (AG) and NA19118 (AA) for rs2106809. Control samples
were selected from the National Human Genome Research Institute
(NHGRI) repository, using genotype data available through the
Ensembl database (https://www.ensembl.org/), and were obtained
from the Coriell Institute for Medical Research (http://www.coriell.
org/). These controls were essential for validating primer specificity
and optimizing PCR conditions, enabling precise differentiation
between heterozygous and homozygous genotypes. For details on
control samples used, see Supplementary Table S2. As an additional
verification step, PCR-specific products were run on 1.5% agarose
gel electrophoresis to confirm the presence and band sizes of
products obtained (Supplementary Figure S1).

Statistical analysis

Data analyses were carried out with the Statistical Package for
the Social Sciences (SPSS) version 26.0 (IBM Corp. Released 2019.
IBM SPSS Statistics for windows, Version 26.0. Armonk, N.Y: IBM
Corp) and R studio software (R: The R Project for
Statistical Computing).

The Chi-square test was used to assess Hardy-Weinberg
Equilibrium (HWE) analysis for the two SNPs and compare the
genotype and allele frequencies of rs2285666 (C>T) and rs2106809
(A>G) between SARSCoV-2 IgG-seropositive and seronegative
participants. SARS-CoV-2 IgG seropositivity was used as a proxy
to assess the susceptibility to SARS-CoV-2 infection. To determine
the association between ACE2 SNPs and infection susceptibility,
logistic regression was used to estimate odds ratios (ORs) and 95%
confidence intervals (CIs). This analysis considered each SNP as a
predictive variable while adjusting for potential confounders,
including participant age, underlying health conditions, and
smoking status. Additionally, the study site was included as an
offset variable to account for potential variations in seropositivity
due to differences in sampling times across the three study sites.

Given the ACE2 gene is located on the human X chromosome
(gene locus Xp22.2), its inheritance patterns differ between
sexes—males (XY) having a single copy (hemizygous) and
females (XX) having two copies (homozygous or heterozygous).
Therefore, separate analyses were performed to account for potential
sex-specific differences. Various inheritance models, including
dominant, heterozygous advantage, recessive, and allele models,
were considered in the association analysis for each SNP. For all
tests, the statistical significance level was set at α = 0.05. All P-values
were adjusted for multiple testing using the Benjamini–Hochberg
(BH) procedure, where appropriate.

Results

Socio-demographic and clinical
characteristics of study participants

1,993 participants from 910 households in Kumasi, Accra, and
Tamale were eligible for analysis. However, 354 subjects had
received at least one dose of the COVID-19 vaccination and
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TABLE 1 Socio-demographic and clinical characteristics of study participants.

Characteristic SARS-CoV-2-IgG seropositive
N = 742

SARS-CoV-2-IgG seronegative
N = 592

Overall (N = 1334)

Study Site n (%)

Kumasi 150 (20.2%) 221 (37.3%) 371 (27.8%)

Accra 231 (31.1%) 250 (42.2%) 481 (36.1%)

Tamale 361 (48.7%) 121 (20.4%) 482 (36.1%)

Sex n (%)

Female 464 (62.5%) 394 (66.6%) 858 (64.3%)

Male 278 (37.5%) 198 (33.4%) 476 (35.7%)

Age (in years)/sex strata n (%)

10–19, Female 54 (7.3%) 42 (7.1%) 96 (7.2%)

10–19, Male 51 (6.9%) 33 (5.6%) 84 (6.3%)

20–44, Female 291 (39.2%) 246 (41.5%) 537 (40.3%)

20–44, Male 160 (21.6%) 98 (16.6%) 258 (19.3%)

≥45, Female 119 (16.0%) 106 (17.9%) 225 (16.9%)

≥45, Male 67 (9.0%) 67 (11.3%) 134 (10.0%)

Educational level n (%)

None 208 (28.0%) 97 (16.4%) 305 (22.9%)

Primary 299 (40.3%) 263 (44.4%) 562 (42.1%)

Secondary 149 (20.1%) 141 (23.8%) 290 (21.7%)

Tertiary 86 (11.6%) 91 (15.4%) 177 (13.3%)

Primary occupation sector n (%)

Low Riska 158 (21.3%) 139 (23.5%) 297 (22.3%)

Moderate Riskb 140 (18.9%) 82 (13.9%) 222 (16.6%)

High Riskc 309 (41.6%) 244 (41.1%) 553 (41.5%)

Unknown Riskd 135 (18.2%) 127 (21.5%) 262 (19.6%)

Underlying conditions n (%)

No 653 (88.0%) 510 (86.1%) 1163 (87.2%)

Yese 89 (12.0%) 82 (13.9%) 171 (12.8%)

Smoking n (%)

No 724 (97.6%) 574 (97.0%) 1298 (97.3%)

Yes 18 (2.4%) 18 (3.0%) 36 (2.7%)

Symptom profile ≤ 12 months before study recruitment n (%)

Asymptomaticf 332 (44.7%) 238 (40.2%) 570 (42.7%)

Paucisymptomaticg 194 (26.1%) 164 (27.7%) 358 (26.8%)

Symptomatich 216 (29.1%) 190 (32.1%) 406 (30.4%)

Contact with confirmed COVID-19 case n (%)

No 716 (96.5%) 544 (91.9%) 1260 (94.5%)

Yes 26 (3.5%) 48 (8.1%) 74 (5.5%)

(Continued on following page)
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308 did not have complete SNP genotyping data. As a result, data
from 1,334 participants and 691 households were included in this
analysis, with the majority (64.3%) being female subjects. To
determine the relationship between ACE2 SNPs and the
susceptibility to SARS-CoV-2 infection, two groups were
compared: 55.6% (742) SARS-CoV-2 IgG seropositive, and 44.4%
(592) SARS-CoV-2 IgG seronegative.

The median age was 33 (IQR = 24–46) years among SARS-CoV-
2-IgG seronegative and 31 (IQR = 23–45) for SARS-CoV-2-IgG
seropositive individuals. SARS-CoV-2-IgG seropositive and SARS-
CoV-2-IgG seronegative participants varied considerably across
study sites (except for Accra), demographic groups, and socio-
behavioral factors (Table 1). Overall, females predominated
(64.3%). Males demonstrated a seropositivity rate of 58.4%, (95%
CI: 52.6%–64.2%) while females reported a seropositivity rate of
(54.1%, 95%CI: 49.54%–58.61%), when seropositivity was analysed
within sex. Education levels differed across participants, with
primary education being the most frequently reported, and a
higher proportion of seropositive individuals having no formal
education compared to seronegatives. Nearly 41.5% were engaged

in high-risk occupations, while the vast majority had no underlying
health conditions (87.2%) and did not smoke (97.3%). Clinically,
42.7% reported no symptoms in the 12 months before the study,
while 26.8% were paucisymptomatic and 30.4% symptomatic.
Reported exposure to confirmed COVID-19 cases was low
(5.5%), though room sharing (80.5%) and outdoor work (43.3%)
were common. Most participants had 10 to fewer than 50 daily
contacts, and 41.0% reported a history of travel. The full version of
the table, including 95% confidence intervals is available in the
Supplementary Table S3.

Genotype and allele frequencies
of ACE2 SNPs

Table 2 shows the genotype and allele frequency distribution of
ACE2 SNPs among the study population. Males (XY) were
represented by allele frequencies due to their hemizygosity, while
females (XX) were represented by genotype frequency (homozygous
or heterozygous). The distribution for both SNPs were consistent

TABLE 1 (Continued) Socio-demographic and clinical characteristics of study participants.

Characteristic SARS-CoV-2-IgG seropositive
N = 742

SARS-CoV-2-IgG seronegative
N = 592

Overall (N = 1334)

Shared room n (%)

Not reported 2 (0.3%) 7 (1.2%) 9 (0.7%)

No 129 (17.4%) 122 (20.6%) 251 (18.8%)

Yes 611 (82.3%) 463 (78.2%) 1074 (80.5%)

Working time n (%)

Not reported 250 (33.7%) 206 (34.8%) 456 (34.2%)

Both 57 (7.7%) 67 (11.3%) 124 (9.3%)

Indoor 85 (11.5%) 91 (15.4%) 176 (13.2%)

Outdoor 350 (47.1%) 228 (38.5%) 578 (43.3%)

Contact in a day n (%)

Not reported 29 (3.9%) 27 (4.6%) 56 (4.2%)

less than 5 66 (8.9%) 89 (15.0%) 155 (11.6%)

5 to less than 10 197 (26.5%) 127 (21.5%) 324 (24.3%)

10 to less than 50 270 (36.4%) 195 (32.9%) 465 (34.9%)

50 or more 180 (24.3%) 154 (26.0%) 334 (25.0%)

Travel history n (%)

Not reported 1 (0.1%) 4 (0.7%) 5 (0.4%)

No 455 (61.4%) 327 (55.2%) 782 (58.6%)

Yes 286 (38.5%) 261 (44.1%) 547 (41.0%)

aLow risk include unemployed
bModerate risk include agriculture, building and construction, education, and civil/public servants
cHigh risk include business/trade/retail, healthcare, and transportation
dUnknown risk include not reported and other
eUnderlying conditions include diabetes, hypertension, heart disease, obesity, and lung disease
fAsymptomatic: no symptoms
gPaucisymptomatic: one or two mild symptoms reported, excluding loss of taste or smell and shortness of breath
hSymptomatic: multiple or major symptoms reported including fever, loss of taste or smell, or shortness of breath.

Frontiers in Genetics frontiersin.org06

Boakye et al. 10.3389/fgene.2025.1555515

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1555515


with Hardy-Weinberg equilibrium, with (P = 0.697) for
rs2285666 and (P = 0.366) for rs2106809.

The analysis did not reveal significant differences in overall allele
or genotype frequencies between SARS-CoV-2 IgG seropositive and
seronegative individuals, for both females and males. For
ACE2 rs2285666, genotype distribution was 75.4% CC, 24.4%
CT, and 0.2% TT in SARS-CoV-2-IgG seropositive females and
97.1% C and 2.9% T in SARS-CoV-2-IgG seropositive males, with a
minor allele frequency (MAF) of 0.12 and 0.03 for the T-allele in
females and males, respectively. The genotypes for
ACE2 rs2106809 in SARS-CoV-2 IgG seropositive individuals
were distributed as follows: 83.2% AA, 16.6% AG, 0.2% GG in
females and 97.1% A and 2.9% in males. The minor allele frequency
(MAF) for the G allele was found to be 0.09 and 0.03 in SARS-CoV-
2-IgG seropositive females and males, respectively.

Association between ACE2 SNPs and the
susceptibility to SARS-CoV-2 infection

The association between ACE2 SNPs and the susceptibility to
SARS-CoV-2 infection is shown in Table 3. To account for sex-
specific differences, association analysis was conducted separately

for males and females. Briefly, there was no evidence for an
association between ACE2 - rs2285666 and rs2106809 SNPs and
the susceptibility to SARS-CoV-2 infection under the crude model.
After adjusting for age, underlying conditions, and smoking, with
the study site set as an offset variable to account for study site-
specific variations the analysis revealed sex-specific patterns for
ACE2 rs2285666 and the susceptibility to SARS-CoV-2 infection.
Among females, those with at least one copy of the T allele showed
38% reduced odds of susceptibility to SARS-CoV-2 infection under
both the dominant (aOR = 0.62; 95%CI = 0.45–0.85, BH-adjusted
P = 0.017) and heterozygous advantage models (aOR = 0.62; 95%
CI = 0.45–0.86, BH-adjusted P = 0.017). The effect estimate under
the recessive model was similar in direction but had substantially
wider confidence intervals (aOR = 0.41; 95%CI = 0.03–5.22, BH-
adjusted P = 0.637), reflecting the small number of individuals with
two copies of the T allele. Among males, no clear direction of
associations was found under the dominant (aOR = 1.00; 95% CI =
0.30–3.32; BH-adjusted P = 0.998), and recessive models (aOR =
1.00; 95% CI = 0.30–3.32; BH-adjusted P = 0.998). Notably, in the
allelic model, where the C allele was treated as the effect allele, an
increased odds of susceptibility to SARS-CoV-2 infection was
observed (aOR = 1.62, BH-adjusted P = 0.017), which aligns with
the protective role associated with the T allele observed under the

TABLE 2 Genotype and allele frequency distributions among study participants.

SNP SARS-CoV-2 IgG
seropositive

SARS-CoV-2 IgG
seronegative

P-value (BH-adjusted) Overall

Allele
Frequency

Allele
Frequency

Allele
Frequency

rs2285666 C T

N (%) C T N (%) C T N (%) 0.91 0.09

Females 0.88 0.12 0.86 0.14 1.000

CC 350 (75.4%) 285 (72.3%) 1.000 635 (47.6%)

CT 113 (24.4%) 107 (27.2%) 1.000 220 (16.5%)

TT 1 (0.2%) 2 (0.5%) 1.000 3 (0.2%)

Males 0.97 0.03 0.97 0.03 1.000

C 270 (97.1%) 193 (97.5%) 1.000 463 (34.7%)

T 8 (2.9%) 5 (2.5%) 1.000 13 (1.0%)

rs2106809

A G

N (%) A G N (%) A G N (%) 0.94 0.06

Females 0.91 0.09 0.91 0.09 1.000

AA 386 (83.2%) 327 (83.0%) 1.000 713 (53.4%)

AG 77 (16.6%) 67 (17.0%) 1.000 144 (10.8%)

GG 1 (0.2%) 0 (0.0%) 1.000 1 (0.1%)

Males 0.97 0.03 0.99 0.01 1.000

A 270 (97.1%) 197 (99.5%) 0.414 467 (35.0%)

G 8 (2.9%) 1 (0.5%) 0.414 9 (0.7%)
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dominant and heterozygous models. These findings may be
explained by a potential sex-specific genetic effect, with the T
allele of ACE2 rs2285666 being more protective against SARS-
CoV-2 infection in females than males (Table 3).

Discussion

The COVID-19 pandemic presented with varying infection rates
between and within populations (Bialek et al., 2020; WHO, 2023a).
Factors contributing to this disparity, includes behavioral (Betsch
et al., 2020; Chinazzi et al., 2020; Courtemanche et al., 2020), social
(Dorn et al., 2020; Lewer et al., 2020; Yancy, 2020), physiological
(Kellam and Barclay, 2020; Guan et al., 2020), and biological
variables (Kellam and Barclay, 2020; Eshetie et al., 2023). As of
June 26, 2022, there were 542,018,955 confirmed cases globally, with
WHO regional disparities in distribution (WHO, 2023): 1.7% in the
African region, 29.9% in the Americas, 4.0% in the Eastern

Mediterranean, 41.8% in Europe, 10.8% in South-East Asia, and
11.7% in the Western Pacific. In Ghana, over 100,000 confirmed
cases and 1,450 deaths were recorded during the same period,
reflecting the pandemic’s varied impact across regions and
populations (GHS, 2023).

ACE2 is the major receptor for SARS-CoV-2, which mediates
cell entry (WHO, 2023a). Within the complex network of disease
pathogenesis, SNPs in key genes have long been recognized as
critical influencers affecting an individual’s susceptibility to
infection (Gray et al., 2000). ACE2 SNPs have already been
linked to various human illnesses, including hypertension (Bosso
et al., 2020), heart failure (Chaoxin et al., 2013), malaria
(Dhangadamajhi et al., 2010), and diabetes (Chaoxin et al., 2013).
Recent findings have shown inconsistent findings on the association
between ACE2 SNPs and the likelihood of SARS-CoV-2 infection,
with an emphasis on Eurasian populations and limited
investigations undertaken in African populations (Petersen et al.,
2022). Differences in these findings may be attributed to genetic and

TABLE 3 Association between rs2285666 and rs2106809 and susceptibility to SARS-COV-2 infection.

SNP Genotype cOR (95%CI) P-value aOR (95%CI) P-value (BH-adjusted)

rs2285666 (C>T)

Dominant

Females CC vs CT + TT 0.85 (0.63–1.16) 0.303 0.62 (0.45–0.85) 0.017

Males C vs T 1.14 (0.37–3.55) 0.816 1.00 (0.30–3.32) 0.998

Heterozygous Advantage

Females CT vs CC + TT 0.86 (0.64–1.17) 0.349 0.62 (0.45–0.86) 0.017

Recessive

Females TT vs CC + CT 0.42 (0.04–4.69) 0.483 0.41 (0.03–5.22) 0.637

Males T vs C 1.14 (0.37–3.55) 0.816 1.00 (0.30–3.32) 0.998

Allelic

Females T vs C 1.17 (0.87–1.59) 0.303 1.62 (1.17–2.25) 0.017

Males T vs C 0.87 (0.28–2.71) 0.816 1.00 (0.30–3.31) 0.998

rs2106809 (A>G)

Dominant

Females AA vs AG + GG 0.99 (0.69–1.41) 0.940 0.72 (0.49–1.05) 0.195

Males A vs G 5.84 (0.72–47.04) 0.098 4.77 (0.50–45.47) 0.253

Heterozygous Advantage

Females AG vs AA + GG 0.97 (0.68–1.39) 0.873 0.71 (0.49–1.04) 0.195

Recessive

Females GG vs AA + AG NAa NAa NAa NAa

Males G vs A 5.84 (0.72–47.04) 0.098 4.77 (0.50–45.47) 0.253

Allelic

Females G vs A 1.01 (0.71–1.45) 0.940 1.39 (0.95–2.03) 0.195

Males G vs A 0.17 (0.02–1.38) 0.098 0.21 (0.02–2.00) 0.253

aOdds ratio could not be computed due to small sample size of females with GG, genotype. Bolded p-values indicate statistically significant associations (p<0.05).
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environmental factors within the investigated populations (Price
et al., 2010; Aschard et al., 2010), as well as variations in study design
and methodology used (Visscher et al., 2017).

The two x-chromosomal ACE2 mutations rs2285666 (C>T) and
rs2106809 (A>G) investigated in this study have been associated
with elevated levels of angiotensin II (AngII), which is known to
protect against severe malaria (Dhangadamajhi et al., 2010). Because
AngII levels are regulated by ACE2 activity within the renin-
angiotensin-aldosterone system (RAAS) (Ferrario, 2006), this
indicates a decrease in ACE2 expression levels, also associated
with these polymorphisms (Dhangadamajhi et al., 2010; Chen
et al., 2018). However, analysis of publicly available GTEx data
indicates that both rs2285666 and rs2106809 are associated with
increased ACE2 expression in multiple tissues, particularly in the
hypothalamus, nucleus accumbens, and pituitary, suggesting a more
complex and tissue-specific regulatory effect than previously
assumed (GTEx Portal, 2025). Membrane-bound (mACE2) and
circulating or soluble ACE2 (cACE2 or sACE2), have been
reported to retain catalytic activity and contain SARS-CoV-
2 binding sites, which may contribute to onset of disease or
disease progression (Medina-Enríquez et al., 2020; Yeung et al.,
2021). Understanding how these polymorphisms modulate
ACE2 expression across different tissues, particularly in
populations with varied genetic backgrounds is needed.

The overall genotype and allele frequency distribution were
comparable between SARS-CoV-2-IgG seropositive and
seronegative groups for both females and males. However, ACE2-
rs2285666 (T-allele) was found to be associated with protection from
SARS-CoV-2 infection among the female population. This
association was observed after adjusting for age, underlying
medical conditions, participants’ smoking status, and study site
sampling variations. In males, no discernible association was
observed. This finding may be explained by a sex-specific
functional role of the T-allele. Dhangadamajhi et al., (2010)
observed that the T allele reduces ACE2 expression levels in
women, specifically (Dhangadamajhi et al., 2010). Factors, such
as sex hormones (Lott et al., 2023) and diverse immune responses
(Ghosh and Klein, 2017), may contribute to such an association.
Future studies investigating the interplay between sex hormones,
humoral responses, and genetics would help understanding sex-
specific differences in susceptibility to SARS-CoV-2 infection.
Consistent with the findings of the rs2285666 SNP in this study,
Möhlendick et al., (2021) reported an almost twofold increased
SARS-CoV-2 infection susceptibility among individuals carrying the
GG genotype (OR = 1.91, 95%CI: 1.13–3.24; P = 0.02) or G allele
(OR = 1.88, 95%CI: 1.12–3.16; P = 0.02) of the rs2285666 SNP.
However, differences exist as the previous study employed a highly
selected cohort of PCR-confirmed SARS-COV-2 cases and controls,
while the current study used population-based SARS-CoV-2-
specific IgG serosurvey data. In addition, the previous study did
not consider possible sex-specific ACE2 SNP-associated SARS-CoV-
2 susceptibility differences as observed in this study. The frequency
of the T allele varies across populations, with a higher prevalence
observed in Asian populations compared to European and African
populations (Srivastava et al., 2020). This suggests that genetic
susceptibility to SARS-CoV-2 infection may differ among ethnic
groups. Although studies have reported higher SARS-CoV-
2 infection rates in males than females (Do Nascimento et al.,

2020; The COVID-19 Sex-Disaggregated Data Tracker, 2025;
Conti and Younes, 2020; Rostami et al., 2021; Vahidy et al.,
2021), the findings of this study should be interpreted within the
broader context of multiple factors influencing infection
susceptibility.

Regarding the ACE2 rs2106809 (A>G), there was no significant
association with SARS-CoV-2 infection susceptibility in both sexes.
Although this finding does not necessarily negate the importance of
the rs2106809 SNP in SARS-CoV-2 infection, they underscore how
factors such as age, underlying condition, and smoking shape an
individual’s susceptibility. This accentuates the necessity for
comprehensive and multifactorial methods in genetic studies. The
lack of a significant association could be attributed to the unique
genetic makeup of the Ghanaian population, suggesting that
different populations may yield diverse results, underscoring the
need for replicative studies. While other studies have explored how
this SNP is associated with the severity of COVID-19 (Cafiero et al.,
2021; Karakaş Çelik et al., 2021; Mohammadi-Berenjestanaki et al.,
2023; Sabater Molina et al., 2022), this study specifically explored its
predisposition to SARS-CoV-2 infection, with insufficient evidence
available for making direct comparisons.

It is worth noting that several other critical genes have been
implicated in COVID-19 genetic studies, in addition to ACE2,
across different populations. Numerous loci have shown
associations with both susceptibility to infection and disease
severity. Early genome-wide association study (GWAS)
highlighted the significance of genes such as SLC6A20, LZTFL1,
CCR9, FYCO1, CXCR6, and XCR1 as key determinants of SARS-
CoV-2 susceptibility (lead variant rs2271616) (Niemi et al., 2021).
Furthermore, IFNAR2 and IL10RB have been linked to increased
SARS-CoV-2 infection susceptibility (Kasela et al., 2021). Additional
studies have further reported associations with the genes ABO,
DPP9, HLA, OAS1, SLC22A31, SFTPD, AND CXCR6
(Ellinghaus et al., 2020; Pairo-Castineira et al., 2020; Pairo-
Castineira et al., 2023). Integrating polygenic risk scores and fine-
mapping approaches in COVID-19 genetic studies could help clarify
the role of these loci in diverse genetic backgrounds.

This study benefited from a population-representative sample
derived from a household-based cross-sectional survey and utilized
a highly specific ELISA assay for estimating seroprevalence. This
study also finds its strength by the use of a robust genotyping assay
bolstered by the inclusion of already known genotyped samples as
controls, improving its sensitivity and specificity for accurate and
reliable SNP detection. However, the study has several limitations.
While it aimed for a population-representative sample, the specific
eligibility criteria set out for this study reduced its initial
representativeness. The exclusion of vaccinated individuals may
have selectively removed certain groups from the analyses; thus,
findings should be interpreted cautiously. The relatively small
sample size for males may have limited the ability to detect
significant associations in this study. Additionally, the cross-
sectional design of the main study only allows for the assessment
of associations at a single point in time, lacking the ability to account
for the temporal dynamics of the COVID-19 epidemic. Another
limitation is the inability to draw firm conclusions about the
functional consequences of the investigated ACE2 SNPs on
ACE2 expression, which precludes the direct assessment of the
mechanistic link between SARS-CoV-2 infection susceptibility.
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Furthermore, antibody waning may have led to the misclassification
of some previously infected individuals as seronegative.

The extended time frame of sample collection may have
introduced heterogeneity due to the emergence of SARS-CoV-
2 variants which may have affected antibody detection. However,
this variability was more pronounced in the SARS-CoV-2 Spike (S)
protein. In our study, serological detection was based on antibodies
to the NCP, which is more conserved across variants, thereby
minimizing potential bias related to antigenic variation. The study
also did not quantify SARS-CoV-2 IgG antibody levels in
participant plasma. Additionally, using seropositivity as a proxy
for infection may exclude individuals who succumbed to COVID-
19 prior to serological sampling, potentially introducing bias
toward non-severe cases. However, the primary aim of this
study was to assess genetic associations with susceptibility to
SARS-CoV-2 infection, rather than disease severity. Future
research that includes hospitalized patients with severe disease
could provide further insights into the role of
ACE2 polymorphisms in COVID-19 severity, thereby
enhancing our understanding of the genetic basis of the disease
in Africa.

Recent advancements integrating COVID-19 GWAS with
single-cell RNA sequencing (scRNA-seq) data have provided
deeper insights into the immune cell types and critical genes
associated with SARS-CoV-2 infection. Tools such as scPagwas
(Ma et al., 2023) and scDRS (Zhang et al., 2022) have proven
powerful in identifying immune pathways involved in the disease
pathogenesis. These methodologies offer significant potential for
investigating COVID-19 in populations like the Ghanaian
cohort studied in this research. Future studies applying this
approach could help further elucidate the complex immune
interactions and gene-environment factors that influence
COVID-19 susceptibility and disease outcomes in African
populations.

Conclusion

The study concludes that ACE2 rs228566 but not rs2106809 is
associated with an individual’s susceptibility to SARS-CoV-
2 infection among the Ghanaian female population. The
observed sex-specific association for the ACE2 rs2285666 T
allele highlights the importance of considering host genetics
and immunological differences in understanding SARS-CoV-
2 vulnerability. While further research is needed to clarify the
underlying mechanisms and to validate these findings across
diverse populations, the results underscore the potential for
incorporating genetic markers into clinical risk stratification
models and public health planning. In resource-limited settings
like Ghana, integrating host genetic data into national pandemic
preparedness plans could enhance resource management by
prioritizing vaccination deployments to vulnerable populations.
This in turn could facilitate tailored public health responses
through enhanced preventive measures, specialized care
pathways, or design of sentinel surveillance systems for
susceptible individuals. These findings support the expansion of
population-based genomic surveillance to enable precision public
health responses in low resource settings and beyond.
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