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Background: Lipopolysaccharides are involved in malignant progression and
epithelial-mesenchymal transition of cancer. The mechanism of LPS in
malignant progression of lung adenocarcinoma and possible therapeutic
strategies need to be explored.

Methods: After obtaining LPS-induced characteristics, 850 samples were
characterized. Differences in features were evaluated in different risk
subgroups. Cell lines with high scoring performance were selected for
in vitro experimental validation and possible potential therapeutic options
were identified.

Results: By using bioinformatics analysis to obtain LPS signature genes from the
LPS induction cohort, the five intersecting genes were utilized to construct a
risk model associated with LPS induction. The high-risk score subgroup had a
poorer prognosis and lower immunotherapy response, and this subgroup
showed distinct EMT features such as hypoxia pathway, high enrichment of
WNT pathway and high TP53 mutation. After verifying that the risk model has a
close correlation with EMT progression, we obtained cell lines with high
EMT-associated features, confirming the possibility of LPS-induced EMT,
i.e., demonstrating that LPS acts in inducing EMT progression. The malignant
progression of tumors could be inhibited using rosiglitazone and liraglutide
combined with lipid-forming trans-differentiation therapy.

Conclusion: In the field of bioinformatics, our study acquired genes
characteristic of lipopolysaccharide-induced lung adenocarcinomas and
elucidated for the first time that LPS-induced associated scoring patterns
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correlate with EMT progression. In addition, we propose the possibility of
treatment with trans-differentiation therapies that utilize the high plasticity
that EMT progressing cancer cells have.
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Introduction

Lung cancer is a disease that has a wide range of
clinicopathological features and is one of the highest
morbidity and mortality rates. Non-small cell lung cancer
(NSCLC) is the most prevalent form of lung cancer globally,
making up around 55%–60% of all lung cancer fatalities. Lung
adenocarcinoma (LUAD) is a type of NSCLC that has unique
morphological features, metastatic patterns and clinical
outcomes, and its survival rate remains low (Denisenko et al.,
2018). When lung adenocarcinoma is identified, it is common for
patients to be in the metastatic phase, with metastases to the
brain, bones, and respiratory system that are distant (Riihimäki
et al., 2014), at which point cancer can no longer be treated by
surgically removing the malignant tumor (Osmani et al., 2018; Li
et al., 2022). Consequently, there is a need for further
investigation into molecular markers and strategies for lung
adenocarcinoma.

Tumor metastasis occurs due to dynamic changes, which are
achieved through a combination of cancer cell signaling cascade
responses and the tumor microenvironment. Epithelial-
mesenchymal transition (EMT) is a dynamic process in which
cells gradually lose their epithelial characteristics and exhibit
mesenchymal properties. This process plays an important role in
promoting cancer cell plasticity and, under certain conditions,
can promote distant metastasis and escape chemotherapy by
inducing the process of de-differentiation and signaling
adaptation in cancer cells (Puram et al., 2017; Ishay-Ronen
et al., 2019). Furthermore, studies have demonstrated that the
tumor microenvironment associated with inflammation fosters
aggressiveness in various forms of cancer. Non-small cell lung
cancer patients frequently acquire bacterial pneumonia, leading
to a decline in treatment effectiveness and prognosis. Research
has demonstrated that individuals with NSCLC who have not
been infected with bacterial pneumonia have a survival rate of
more than 30% after 28 months of treatment. Still, those infected
with pneumonia have a survival rate of only 10% (Chen et al.,
2021). As a major bacterial pathogen, lipopolysaccharide (LPS) is
a component of the cell membrane of Gram-negative bacteria
that drives nuclear factor (NF)-κB and induces the production
and release of a variety of pro-inflammatory mediators, e.g.,
tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1
(Pchejetski et al., 2011; Vlachostergios et al., 2013). Research
has shown that the presence of inflammation in the tumor
microenvironment caused by LPS can lead to the development
of various epithelial cancer types and increase the invasiveness of
cancer cells, including pancreatic and gastric cancers (Pchejetski
et al., 2011; Liu et al., 2017; Li et al., 2019). Meanwhile, LPS has
been shown to increase tumor invasiveness by inducing the EMT

transition in many cancers (Chen et al., 2012; Jing et al., 2012;
Chen et al., 2021; Peng et al., 2023), but its role in lung
adenocarcinoma and the underlying mechanisms have not yet
been clearly depicted. Recently, Nemanja Despot Marjanovic
et al. found that during lung cancer development, a subset of
cancer cells with EMT progression had a highly mixed state and
high plasticity of production (Marjanovic et al., 2020). Overall,
the phenotypic transformation of EMT-progressing lung
adenocarcinoma cells is a critical step in their invasiveness
and drug resistance (Shaurova et al., 2020; Xiao et al., 2023),
and the phenotypic transformation of cancer cells is usually
accompanied by the generation of high plasticity. It remains
to be explored whether LPS leads to phenotypic transformation
of lung adenocarcinoma, as well as the underlying molecular
mechanisms and the outcome of high plasticity.

Differentiation therapy means that hormones or cytokines may
promote differentiation in vitro, thereby irreversibly altering the
phenotype of the cancer cells, e.g., the combination of retinoic acid
and arsenic, which can be highly curative of acute promyelocytic
leukaemia, is a hallmark success of differentiation therapy (de Thé,
2018). The use of high plasticity in the EMT state to transform highly
invasive cancer cells into less invasive ones has become a novel
approach to cancer treatment, given that tumors frequently
experience EMT during malignant progression. Considering that
LPS induces highly invasive cancer cells and its association with
EMT in lung adenocarcinoma has not yet been clarified, a
comprehensive description of the TME environmental adaptations,
molecular dynamics of crossover, and exploration of potential
therapeutic options in the context of LPS-induced malignant
transformation of lung adenocarcinomas would be helpful in
exploring therapeutic strategies for lung adenocarcinomas.

In this study, we used the LPS induction cohort to obtain the
characteristic genes for LPS induction in lung adenocarcinoma.
Based on the five cross-cutting LPS-induction associated genes
which are differentially expressed in lung adenocarcinoma and
significantly affect the prognosis of lung adenocarcinoma, we
developed an innovative scoring system to measure the
progression of tumors in five distinct cohorts, while also
identifying distinct expression patterns among subgroups in
clinical characteristics, molecular processes, TME infiltration
landscapes, gene mutations, and immunotherapy predictions to
direct patient treatment plans. At the in vitro experimental level,
we successfully constructed a model of highly invasive cancer cells
in the context of EMT on the basis of the LPS risk model and
suggested the possibility of a novel therapy. In conclusion, they will
enhance our comprehension of the role and probable processes of
LPS in the malignant transformation of lung adenocarcinoma and
offer novel concepts for the formation of more efficient treatment
approaches.
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Materials and methods

Data collection and pre-processing

Lung adenocarcinoma sample sequencing data and clinical
characterisation were collected through publicly available datasets
from the NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/), TCGA
(https://cancergenome.nih.gov/) databases. The TCGA cohort,
GSE50081 cohort (Der et al., 2014), GSE31210 cohort (Okayama
et al., 2012), IMvigor210 cohort (Mariathasan et al., 2018),
GSE78220 cohort (Hugo et al., 2016), and GSE132661 cohort
RNA data were processed as separate samples. Lung
adenocarcinoma RNA sequencing data from the TCGA cohort
were collected through The Genomic Data Commons (https://
portal.gdc.cancer.gov/) in The Cancer Genome Atlas (TCGA),
and subsequent analyses were performed using the TPM format
of the RNA sequencing data. RNA sequencing data for lung
adenocarcinoma samples, LPS-treated lung cancer samples, and
immunotherapy samples were collected from the GEO databases
GSE50081, GSE31210, GSE132661, and GSE78220. Transcripts
Per Million (TPM) values for the transcriptomes of the LUAD
cell lines were obtained from the Cancer Cell Line Encyclopedia
(CCLE) (https://sites.broadinstitute.org/ccle/). Analyses were
performed using the TCGA lung adenocarcinoma cohort as
well as the GEO lung adenocarcinoma cohort, and both the
IMvigor210 cohort and the GSE78220 cohort were used in the
immunotherapy module.

WGCNA and candidate hub genes
identification

Co-expressed gene networks in the GSE132661 cohort
representing the control, lung cancer, control lung cancer and
LPS-treated lung cancer groups were identified using the
WGCNA R package (v1.72-1) (Langfelder and Horvath, 2008).
The top 20,000 genes with mean absolute deviation (MAD) were
screened for network construction and analysis. Genes from the
green module were selected as LPS-induced hub genes. Gene
Ontology (GO) enrichment analysis was performed on the hub
genes in the co-expression module using the clusterProfiler R
package (v4.6.2) (Yu et al., 2012).

Differential expression analysis and
screening of signature genes

To identify Differentially Expressed Genes (DEGs) in lung
adenocarcinoma, the DESeq2 package (v1.36.0) was utilised to
assess differentially expressed genes between subgroups. The
significance screening criteria for related genes were adj.P.Value
less than 0.05 and |logFC|>1.5. The LPS-induced hub genes were
transformed using the homologene R package (v1.4.68). Hub genes
were compared with differential genes and intersections were
obtained. Hub genes associated with overall survival (OS) were
further screened using the Univariate Cox regression analysis in
TCGA cohort and GSE50081 cohort (P < 0.01) and defined as LPS
induction-related signature genes.

Construction and validation of the LPS-
induction model

The Least absolute shrinkage and selection operator (LASSO)
cox regression analyses were performed using the R packages
glmnet (v4.1-8), survival (v3.5-7), and survminer (v0.4.9), which
were used to construct a risk model associated with
lipopolysaccharide induction in lung adenocarcinoma. We
derived the risk score formula through analysis: Risk Score =
Ʃ (βi × Expi), where βi denotes the regression-weighted
coefficient of each prognostic marker, and Expi corresponds to
its expression level. The prognostic value of the score was
validated in the TCGA cohort, GSE50081 cohort,
GSE31210 cohort, IMvigor210 cohort, and GSE78220 cohort.
The division into high and low risk groups is based on the median
value of the risk score.

For genes in the LPS-induction model, Kaplan-Meier
analyses were performed using the survival (v3.5-7) package to
assess the association with overall survival (OS) in terms of
median high and low mRNA expression groups. The
diagnostic value of genes was assessed using the Receiver
Operating Characteristic Curve (ROC) analysis using the
pROC (v1.18.4) R package. In addition, the results of
immunohistochemical analysis of PRC1 protein expression in
normal versus LUAD tissues were downloaded from The Human
Protein Atlas (HPA) database (http://www.proteinatlas.org/).

Differences in subgroup
molecular pathways

Well-defined biosignatures were derived from the Hallmark gene set
(h.all.v2023.1.Hs.symbols). EMT-related gene sets were obtained through
the Molecular Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/), including ANASTASSIOU_
MULTICANCER_ INVASIVENESS_SIGNATURE (Anastassiou et al.,
2011), FOROUTAN_INTEGRATED_TGFB_EMT_UP (Foroutan
et al., 2017), FOROUTAN_PRODRANK_TGFB_EMT_UP (Foroutan
et al., 2017), FOROUTAN_TGFB_EMT_UP (Foroutan et al., 2017),
LEF1_UP.V1_UP, SARRIO_ EPITHELIAL_MESENCHYMAL_
TRANSITION_UP (Sarrió et al., 2008). The GSVA (v1.44.5) R
package was utilised to investigate changes in biological processes
between different groups. PROGENy enrichment was performed
using the progeny (v1.18.0) package to quantify signalling pathway
target gene enrichment to further clarify pathway alterations between
subgroups (Schubert et al., 2018). The Gene set enrichment analysis
(GSEA)was performedusing limma (v3.54.0), and clusterProfiler (v4.6.2)
R packages to further explore the potential association of LPS-induced
models with EMT. Correlation analyses of risk scores, model gene and
pathway enrichment scores were performed using the ggplot2 (v3.4.3),
and ggpubr (v0.6.0) R packages.

Tumor microenvironment (TME) infiltrations
exploration

The ESTIMATE (v1.0.13), IOBR (v0.99.9) R package was used
to perform ESTIMATE algorithms and Immuno-Oncology
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Biological Research (IOBR) analyses in order to investigate tumor
microenvironmental characteristics of each LUAD sample. The
IOBR package (Zeng et al., 2021) integrates eight published
algorithms for quantifying the tumor Microenvironment (TME)
algorithms: CIBERSORT, TIMER, xCell, MCPcounter, ESTIMATE,
EPIC, IPS, quanTIseq for a more comprehensive analysis of cellular
infiltration levels in TME.

Somatic mutation analysis

Somatic mutation and CNV data of the TCGA cohort were
downloaded from GDC TCGA (https://cancergenome.nih.gov/),
and the data were acquired to explore the variability of
mutations between subgroups using the maftools (v2.12.0) R
package. The cancer-immunity cycle was obtained from Xu et al.,
and scores were obtained by expression profiling for inter-subgroup
comparisons.

Cell culture and induction programme

In vitro culture experiments were performed using A549 cells
cultured in DMEM medium and RPMI 1640 medium (Gibco,
ThermoFisher Scientific, United States) supplemented with 10%
foetal bovine serum, 1% penicillin and streptomycin (Gibco).
Logarithmic growth phase A549 cells were collected and
inoculated in 6-well cell culture plates and placed in an incubator.

When the cell density was appropriate, the old medium was
discarded, and medium containing 10 μg/mL and 20 μg/mL LPS was
added sequentially. And medium without LPS was used as a control
and placed in an incubator for 48 h and 72 h, respectively; cancer
cells inducing the epithelial-mesenchymal model were obtained, and
the medium containing 10 μmol/mL and 20 μmol/mL rosiglitazone
and liraglutide were added, and the DMEM medium was used as a
control, and placed in an incubator for 48 h, 72 h and 96 h,
respectively.

Western blot and RT-qPCR

RNA was extracted from the lung adenocarcinoma cell line
(A549) as a control. The cDNA was synthesised for real-time PCR
using SYBR Green qPCR mix (Vazyme, China). cDNA was primed
as follows: UCP1-Forward: AGGTCCAAGGTGAATGCCC; UCP1-
Reverse: TTACCACAGCGGTGATTGTTC; C/EBPα- Forward:
AAACAACGCAACGTGGAGA; C/EBPα-Reverse: GCGGTCATT
GTCACTGGTC; FABP4-Forward: ACTGGGCCAGGAATTTGA
CG; FABP4-Reverse. CTCGTGGAAGTGACGCCTT; GAPDH-
Forward: GACCACAGTCCATGCCATCA; GAPDH-Reverse:
GTCAAAGGTGGAGGAGTGGG. Protein blotting analyses were
performed on RIPA cleavage buffer (Servicebio, China) containing
PMSF (Servicebio) buffer (Servicebio, China) was used to collect
proteins from A549 cells. 10% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) was used to
separate the protein samples, and polyvinylidene difluoride
membrane (PVDF) membranes (Immobilon-P, Carlsbad, Ireland)
were used to transfer the separated proteins. The membranes were

blocked for 15 min using a rapid blocking solution and then
incubated with primary antibodies: E-Cadherin (1:1,000),
N-Cadherin (1:1,000), Vimentin (1:1,000) overnight at 4°C,
followed by 2 h of incubation with secondary antibodies.

Transwell migration invasion and wound
healing assay

Transwell migration and wound healing assays A549 cells were
performed after 72 h of LPS induction, 72 h of Rosi versus Lira
induction, and cultured in 24-well culture plates with 8 mm pore
membrane inserts to measure cell migration and invasive capacity.
4 x 10̂4 cells were inoculated in the upper chamber of a transwell
with 200 ul of serum-free medium, and 800 μL of medium
containing 10% FBS was added to the lower chamber. After 48 h
of incubation, cells migrating across the membrane were fixed with
paraformaldehyde, stained with 1% crystal violet and counted under
a light microscope (200×). In addition, A549 cells were cultured in
24-well plates and scraped with a 200 ul pipette tip. Cells were
cultured in DMEM and RPMI 1640 medium without FBS. Wound
images were captured at 0 and 24 h, and the wound area was
quantified by ImageJ software (40×).

CCK-8 experiment

The induced A549 cells were planted in 96-well plates at 4 × 103/
well, six replicate wells were designed, and four groups were
repeated, and 10 μL of CCK-8 reagent was added to each well of
the four groups after 4 h, 24 h, 48 h, and 72 h, respectively, and
placed in the incubator for 2 h, and at the end of the incubation, the
absorbance value was measured by using an enzyme labeller set to
450 nm, and the results of the experiments were recorded.

Statistical analyses

Statistical analyses and academic graphing were performed in R
software (v3.6.3) and GraphPad Prism 8.0. Two-way comparisons
between the two groups were performed using the Wilcoxon test,
and t. test, and survival analyses were performed using Kaplan-
Meier method and log-rank test. Statistical significance of cell line
experiments was assessed by GraphPad Prism version 9 software.
Differences were considered statistically significant at *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

WGCNA identifies signature genes

Prior to the commencement of the entire study, we summarised
the design ideas of the study as well as the overall workflow in order
to provide an overview to explore the potential impact of LPS-
induced features on lung adenocarcinoma as well as the potential
therapeutic potential (Figure 1). We obtained and analyzed data
from the GSE132661 cohort, which consists of a mouse model of
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LPS-induced lung cancer that was induced with 4-
(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK) (the PBS-
treated group served as a control group), and using LPS to induce the
development of chronic inflammation. Subsequently, WGCNA was

employed to ascertain genes that could be identified as LPS-
inducible within the GSE132661 cohort. Firstly, the optimal soft
threshold power β was set to 11 to ensure the scale-free network
constructions (Figures 2A,B; Supplementary Figure S1A). The

FIGURE 1
Work flow of this study. Overall workflow diagram of the study for better understanding of the process. Portions of the figure utilized images from
Servier Medical Art, licensed under CC BY 4.0.
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FIGURE 2
Modeling the risk associated with LPS induction. (A) Scale independence and mean connectivity of multiple soft-thresholding powers (β) from 1 to
30. (B) The cluster dendrogram developed by the weighted correlation coefficients, genes with similar expression patterns were clustered into co-
expressionmodules, and each color represents amodule. (C)Heatmap of the correlation betweenmodule eigengenes (MEs) and Experimental group. (D)
Scatter plot displaying relationship of module membership (MM) in green module with gene significance. (E) Venn diagram of DEGs of LUAD with
greenmodule genes. (F) Results of Univariate Cox regression analysis of characterised genes. (G,H) LASSO algorithm to derive 3model genes. (I) Kaplan-
Meier curves for the high and low-risk score groups in the TCGA cohort. (J) the Receiver Operating Characteristic Curve analysis for TCGA cohorts. (K)
Kaplan-Meier curves for the high and low-risk score groups in the GSE50081 cohort. (L) the Receiver Operating Characteristic Curve Analysis for
GSE50081 cohorts.
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FIGURE 3
Analysis of model stability, clinical, and molecular alterations. (A) Nomogram of Riskscore versus clinical features demonstrating and predicting
probability of survival. (B) Expression and prognostic analysis of model genes. (C)Heatmap of the risk score distribution, patient survival. and model gene
expression for the TCGA cohorts. (D) The Univariate Cox regression analysis of subtype clinical characteristics and subtyping with respect to overall
survival. (E) The multivariate Cox regression analysis of subtype clinical characteristics and subtyping with respect to overall survival. (F) Distribution
of clinical features in high and low-risk subgroups. (G) Heatmap depicting the distribution of risk subgroups in Hallmark signalling sets. (H) PROGENy
probing altered tumor signalling pathways in risk subgroups (Wilcox. test). (I) Expression of EMT-associated transcripts between risk subgroups. *. p <
0.05. **, p < 0.01. ****, p < 0.001.
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clustering dendrogram shows that genes with similar expression
patterns were clustered into 15 modules. Among the 15 modules, the
green module had the strongest correlation with the LPS-induced
lung cancer group (NKK_LPS) in absolute value (ME = −0.85, p =
4e-04) (Figure 2C), while the green module had the strongest
correlation with gene signatures (cor = 0.72, p = 3.1e-115)
(Figure 2D). Consequently, the green module is chosen as the
central module and is further examined.

To explore the biological processes of the green module hub
genes, we performed GO pathway enrichment analysis. Biological
processes (BP) major enrichment results showed that hub genes
were mainly associated with cell growth and motility
(Supplementary Figure S1B), including negative regulation of
growth, negative regulation of developmental growth, regulation
of ion transmembrane transporter activity, etc. The results indicate
that green module hub genes are associated with cell growth and
motility, which is consistent with our goal to screen for genes
associated with LPS-induced cancer cell progression from a
mouse model of LPS-induced lung cancer.

We further analysed the Differentially Expressed Genes (DEGs)
of LUAD samples versus normal samples in the TCGA cohort
(threshold |logFC| > 1.5, adj.P.value <0.05), and obtained a total of
7,544 DEGs. DEGs were compared with hub genes, and
intersections were obtained (Figure 2E; Supplementary Table
S1A–C) to further screen the hub genes associated with lung
adenocarcinoma. Meanwhile, we further screened the genes
associated with overall survival (OS) using univariate Cox
regression analysis. The intersections of LPS induction-related
genes, lung adenocarcinoma differential genes, and univariate cox
genes were obtained, and five genes (TNS4, PRC1, MKI67, CDKN3,
BIRC5) were obtained, which were defined as the characteristic
genes associated with LPS induction (Figure 2F). Based on the LPS-
induced signature genes to enable subsequent risk modeling.

Construction and validation of the LPS-
induction model

We employed the Least absolute shrinkage and selection
operator (LASSO) Cox regression analysis for the TCGA cohort
to construct the LPS-induction model using the five signature genes
as input genes. The optimal lambda value was determined
automatically with minimum bias by 10-fold cross-validation,
and 2 genes with weak survival signals were excluded. The final
output model was: Riskscore=(1.031)*exp (PRC1)+(0.01)*exp
(CDKN3)+(0.005)*exp (TNS4) (Figures 2G,H). The median score
was used to calculate the score of each lung adenocarcinoma patient,
which was then divided into high-risk and low-risk subgroups
(Supplementary Table S2A–C). Kaplan-Meier analyses were
conducted to investigate the prognostic variability of the high-
and low-risk subgroups, and the Receiver Operating
Characteristic Curve (ROC) was used to evaluate the model’s
predictive capability. The results showed that the prognosis of
the high-risk subgroup in the TCGA cohort (Figure 2I) was
significantly worse than that of the low-risk subgroup (log-rank
test, P < 0.0001). We validated the OS prediction ability of the LPS-
induction model in other cohorts, and the OS time of patients in the
high-scoring subgroups in the GSE50081 cohort (Figure 2K) (log-

rank test, P = 6e-4) and the GSE31210 cohort (Supplementary
Figure S1C) (log-rank test, P = 0.0019) was significantly lower
than that in the low-risk subgroup. Meanwhile, the model had
good 1-year, 3-year, and 5-year in TCGA cohort (Figure 2J) (ACU =
0.7, 0.68, 0.64), GSE50081 cohort (Figure 2L) (AUC = 0.81, 0.72,
0.71), and GSE31210 cohort (Supplementary Figure S1D) (AUC =
0.70,0.68,0.75) predictive value.

In addition, the Nomogram showed good predictive value of T
Stage, N Stage and Risk Score for TCGA cohort samples (Figure 3A),
Calibration curve showed good predictive value of the model at 1,
3 and 5 years (Supplementary Figure S1E), Decision Curve Analysis
The results show that Riskscore has good application value
(Supplementary Figure S1F). According to these results, we
hypothesized that Riskscore is a reliable predictor and is
associated with poor prognosis.

Furthermore, we analysed 3 model genes as well. PRC1, TNS4,
and CDKN3, which were used to construct the model, had
significantly higher mRNA expression in lung adenocarcinoma
samples than normal samples in the TCGA cohort (Figure 3B).
Protein expression levels in tissues were analysed using the HPA
data frame, and protein expression levels of PRC1 were higher in
LUAD tissues than in normal tissues (Supplementary Figure S2A).
In addition, three genes showed a significant relationship with
prognosis in LUAD samples in survival analysis (Figure 3B) and
had a better diagnostic effect in the results of the Receiver Operating
Characteristic Curve analysis (Supplementary Figure S2B).

By evaluating the model as a whole and evaluating the genes of
the model separately, the results of the analyses show that the model
has good predictive efficacy. Therefore, we will analyze the
differences in clinical characteristics and molecular processes
between the high- and low-risk groups.

Unique clinical features and molecular
processes in subgroups

We first summarised the risk scores, survival, and model gene
expression in the two subgroups (Figure 3C). We found that patients
in the low-risk subgroup survived significantly better than those in
the high-risk subgroup, while model gene expression was
significantly lower than that in the high-risk subgroup. We also
performed Univariate Cox regression analysis (Figure 3D) and
Multivariate Cox regression analysis (Figure 3E) for clinical
characteristics, and risk scores. The results showed that Riskscore
was associated with survival outcomes in lung adenocarcinoma
patients both as an independent factor as well as in the case of
adjustment for clinical factors, and was present as a risk factor. The
high and low-risk subgroups were statistically significant in the
distribution of clinical characteristics (Figure 3F). Notably, we found
that Riskscore was statistically significantly associated with Stage
distribution, M Stage, and T Stage distribution of LUAD samples,
i.e., increased Riskscore was often accompanied by worse stage
occurrence as well as tumor metastasis in LUAD samples
(Supplementary Figure S1G).

To further explain the differences in clinical characteristics
between high- and low-risk subgroups, we attempted to explore
molecular pathway alterations between subgroups. We performed
gene set variation analysis (GSVA) using the Hallmark gene set. The
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results showed that the pathways associated with cancer cell
proliferation and metastasis were significantly enriched as the
score increased (Figure 3G), such as GLYCOLYSIS, DNA_

REPAIR, MYC_TARGETS_V2, UNFOLDED_PROTEIN_
RESPONSE, MTORC1_SIGNALING, G2M_CHECKPOINT,
E2F_TARGETS, MITOTIC_SPINDLE, PI3K_AKT_MTOR_

FIGURE 4
Correlation of risk modeling with EMT progression. (A–F) GSEA discriminating pathway enrichment in high and low-risk subgroups. (G,H)
Correlation of Riskscore with the EMT pathway (Hypoxia, WNT pathway). (I–O)Correlation analysis ofmodel genes with the EMT pathway. (P)Correlation
of Riskscore with EMT-related transcripts. (Q) Correlation of model genes with EMT-related transcripts.
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SIGNALING, HYPOXIA. In particular, LPS can lead to an increase
in ROS (Beutler, 2004; Pchejetski et al., 2011), which can mediate
MMP-3-induced EMT and genomic instability (Radisky et al.,

2005); Unfolded Protein Response (UPR), as one of the most
important adaptive systems of tumor cells, can adapt to external
stimuli by integrating multiple signaling pathways to promote

FIGURE 5
Depiction of unique TME infiltration patterns between subgroups. (A) ESTIMATE scores of risk subgroups (Wilcox. test) (B) Heatmap demonstrating
the variability of cellular infiltration levels between risk subgroups (C)Heatmap demonstrating the expression of immune-related transcripts between risk
subgroups. *, p < 0.05. **, p < 0.01. ***, p < 0.001.
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tumor cell survival, and has been shown to be associated with EMT
(Shen et al., 2015). PROGENy enrichment analysis further validated
the molecular pathway differences between the two subgroups, and
showed that the high-scoring subgroup received significant
enrichment in pathways related to tumor progression and
metastasis, including EGFR, Hypoxia, JAK-STAT, MAPK, NFkB,
PI3K, TNFa, Trail, VEGF and WNT pathways (Figure 3H). On the
basis of these results, we speculate that Riskscore has some
relationship with EMT, and that this progression of epithelial-
mesenchymal transition may occur through a signalling cascade
of pathways such as hypoxia, MAPK, PI3K, VEGF, and WNT. In
addition, we also collected transcripts associated with the
progression of EMT. We found that the expression was
significantly higher in the high-risk subgroup than in the low-
risk subgroup (Figure 3I).

GSEA is used to study sets of marker genes that are differentially
enriched between high and low-risk subgroups. To further validate
that the high-risk subgroup has high EMT status, we collected six
EMT-related gene sets (Up.c1_Up, Epithelial_Mesenchymal_
Transition_Up, Prodrank_Tgfb_Emt_Up, Integrated Tgfb_Emt_
uP, Multicancer_Invasiveness_Signature, Tgfb_Emt_Up) and
performed GSEA, which showed that highly expressed genes in
the high-risk subgroups were all significantly enriched in the EMT
gene set (Figures 4A–F). This result likewise confirms our conjecture
that risk score has a relationship with EMT progression.

Correlation between Riskscore and EMT

To further confirm the potential dependence of Riskscore on
EMT progression, we analysed multiple indications. Firstly, we
found that Riskscore had a good dependence with Hypoxia
pathway (R = 0.49, p < 2.2e-16) and WNT pathway (R = 0.34,
p = 4.7e-15) (Figures 4G,H). The analysis of model genes PRC1,
CDKN3 and TNS4 showed that PRC1 had good correlation with
WNT pathway and Hypoxia pathway (Figures 4I,J), CDKN3 had
good correlation withWNT pathway and Hypoxia pathway (Figures
4K,L), TNS4 had good correlation with WNT pathway, Hypoxia
pathway, TGFb pathway existed better correlation (Figures 4M–O).
In addition, we found that the expression of Riskscore, model genes
and EMT-related transcripts were all well correlated (Figures 4P,Q).

Based on the above analysis of molecular alterations, we found
that the risk model was closely associated with the progression of
EMT and correlated with pathways such asMAKP, PI3K, andWNT.

Unique TME infiltration patterns
in subgroups

Further analyses are still needed for changes in EMT progression
in risk models. The tumor microenvironment (TME) occupies an
important role in promoting lung carcinogenesis (Jin and Jin, 2020),
and we analysed cellular infiltration in two molecular subgroups.
Firstly, we quantified the overall immune infiltration level of the two
risk subgroups using the ESTIMATE algorithm (Figure 5A) and
found that ImmuneScore and StromalScore had a higher level in the
low-risk subgroups, which suggests that there is a higher infiltration
of immune cells in the tumor microenvironment of our low-risk

subgroups. On this basis, we used the IOBR algorithm to explore the
variability of cellular infiltration patterns in the subgroups and
found that most cell categories were significantly different in the
two subgroups (Figure 5B). Overall, the high-risk subgroup was
characterised by infiltration of smooth muscle cells and epithelial
cells; the low-risk subgroup was characterised by infiltration of CD8+

T cells and B cells.
Additionally, we acquired transcripts associated with Antigen

presentation, Cell adhesion, Co-inhibitor, Bo-stimulator, Ligand,
Receptor, and other types (Figure 5C) and explored them in two risk
subgroups. The results showed differences in transcript expression
between the two subgroups, and in particular, we found that Antigen
presentation-associated transcripts were significantly higher in the
low-scoring subgroup than in the high-scoring subgroup. This result
suggests that the low-scoring subgroup may respond to the immune
response through antigen presentation, resulting in a significantly
better prognosis in the low-scoring subgroup than in the high-
scoring subgroup.

Mutational characterisation of subgroups
and value in the prediction of response to
immunotherapy

Single nucleotide polymorphism (SNP) profiles differed in the
top 10 genes of the two scoring subgroups (Figures 6A,B). Mutation
rates vary widely, even in genes shared between them. For example,
TP53, a well-recognised oncogene, was found to be mutated in 61%
of the high-scoring subgroup and only 37% of the low-scoring
subgroup. Previous studies have shown that TP53 mutations are
the most enriched mutations in the invasive phase of lung
adenocarcinoma and that TP53 is a key mediator of lung cancer
invasion (Chen et al., 2019). This result suggests that there may be a
stronger invasiveness in the high-scoring subgroup.

Cancer treatment has been revolutionised by the advent of
cancer immunotherapy, the success of which relies heavily on the
development and activation of immune cells in the system (Daud
et al., 2016). Systematic tracking of tumor immune phenotypes is
essential for understanding the mechanisms of tumor immunity and
improving the clinical efficacy of immunotherapy. Tumor tissue is
heterogeneous, with varying tumor mutation burden (TMB)
(Figure 6C), and presents a correlation with durable clinical
response to anti–PD-1/PD-L1 immunotherapy. Before
performing the immunotherapy response prediction analysis, we
first analysed the cancer-immunity cycle between subgroups
(Figure 6D). The results showed that the high-scoring subgroup
had significantly higher levels than the low-risk subgroup in Step 1:
Release of cancer cell antigens, Step 7: Killing of cancer cells; while
the low-risk subgroup had significantly higher levels than the low-
risk subgroup in Step 2: Cancer antigen presentation, Step 3:
Priming and activation, step 4: Trafficking of immune cells to
tumors, step 5: Infiltration of immune cells into tumors, and step
6: Recognition of cancer cells by T cells were expressed at a higher
level of expression. This finding matches the results of the mutation
analysis that high TMB levels in high-risk subgroups lead to more
antigen production, which in turn promotes steps one and seven.
The prognosis of the low-risk subgroup in the IMvigor210 cohort
was better (Figure 6E), and its proportion of Partial response (PR),
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FIGURE 6
Uniquemutational landscapes of subgroups and the value of Riskscore in immunotherapy. (A,B)Unique genemutation landscapes of high and low-
risk subgroups. (C) TMB Score display for high and low-risk subgroups (Wilcox. test). (D) Anti-cancer immune activity of subgroups in the cancer-
immunity cycle. (E) Kaplan-Meier curves for the high and low-risk score groups in the IMvigor210 cohort. (F) Difference in morbidity risk scores between
the PD/SD and CR/PR groups in the IMvigor210 cohort (Wilcox. test). (G)Distribution of anti-PD-1 treatment responses in different risk subgroups. *,
p < 0.05. **, p < 0.01. ***, p < 0.001. ****, p < 0.0001.

Frontiers in Genetics frontiersin.org12

Xu et al. 10.3389/fgene.2025.1556366

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1556366


FIGURE 7
Identification and validation of EMT-related Signature in in vitro experiments. (A) Lung adenocarcinoma cell line EMT-related Signature visualised.
(B)Western blot results of epithelial markers at 48 h of LPS induction. (C)Western blot results of epithelial markers at 72 h of LPS induction. (D) Western
blot results ofmesenchymalmarkers at 72 h of LPS induction. (E)Densitometric images ofmarkers 72 h after LPS induction. (F) Representative images and
statistical analysis of wound healing test after induction (t.test). (G) Oil red O staining assay demonstrating the formation of lipid droplets in cancer
cells after the lipogenic induction regimen. (H) RT-PCR detection of adipocyte marker expression after the lipogenic induction regimen (One-way
ANOVA)*, p < 0.05. **, p < 0.01. ***, p < 0.001.
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FIGURE 8
Effect of lipidogenic induction programme on cellular phenotype. (A) Schematic diagram of the fat-forming transdifferentiation induction protocol.
(B) Representative images of the post-treatment wound healing assay. (C) Representative images of the Transwell assay. (D) Statistical analysis of the
post-treatment wound healing assay (t.test). (E) Statistical analysis of the results of the Transwell assay (t.test). (F) CCK-8 assay for detecting the effects of
fat-forming transdifferentiation induction on the proliferation of cells effects (t.test). *, p < 0.05. **, p < 0.01. ***, p < 0.001. ****, p < 0.0001.
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Complete response (CR) after treatment was higher than that of the
high-risk subgroup (Figures 6F,G). It was also validated in the
GSE78220 cohort (Supplementary Figure S2C–E). The low-risk
subgroup had better tumor immunotherapy benefit, which may
be associated with its active status in multiple steps of
tumor immunity.

In the above analysis, the process of increased Riskscore scores
was accompanied by enrichment of cancer cell proliferation
metastasis-related pathways, lower levels of immune cell
infiltration, and higher TMB; the high-risk subgroup
demonstrated significant signal generation of epithelial-
mesenchymal transition and mutational signals associated with
invasion (e.g., TP53 mutations), results that may contribute to a
low-benefit effect in tumor immunotherapy. We also found a strong
correlation between Riskscore and EMT-related pathways.
Consequently, we speculated that Riskscore is associated with
EMT and that as the score increases, it tends to lead to tumors
producing an EMT phenotype as well as greater aggressiveness and
low benefit in tumor immunotherapy.

Identification of the application value of
EMT-risk signature

Basing on the above analyses, we defined Riskscore as a score
that correlates with the EMT status of cancer cells, i.e., EMT-risk
signature. In order to identify its application value in vitro LPS
induction experiments, we further collected the expression profiles
of lung adenocarcinoma cell lines from the Cancer Cell Line
Encyclopedia (CCLE) project (Ghandi et al., 2019) and assessed
specific EMT-risk signature based on the expression profiles of each
cell line and presented some of the cell lines’ EMT-risk signatures
were demonstrated (Figure 7A). We selected the human lung
adenocarcinoma cell line A549 for subsequent in vitro
experimental validation.

A549 cells were induced by exposing them to different
concentrations of LPS, and Western blot results at 48 h showed
that the epithelial marker E-cadherin was not significantly down-
regulated (Figure 7B). At 72 h,Western blot showed a decrease in the
expression of epithelial marker E-cadherin and an increase in the
expression of mesenchymal marker Vimentin (Figures 7C–E);
meanwhile, the wound healing assay showed a significant
increase in the migration rate of A549 cells after LPS induction
(Figure 7F). This indicates that the cancer cells undergo EMT
progression and have high invasiveness after LPS induction.

Potential therapeutic possibilities for highly
aggressive EMT cancer cells

Considering that EMT occurs during tumor development, then
the use of plasticity in the EMT state to trans-differentiate highly
invasive cancer cells into less invasive cells becomes a new idea for
cancer treatment. Following the success of LPS in inducing EMT-
like alterations in A549 cells, we identified a possible novel
therapeutic modality, a combined induction regimen of
Rosiglitazone (Rosi) and Liraglutide (Lira). After 96 h of
combined induction using Rosi and Lira, the results of the oil

red O fat staining assay showed increased lipogenesis in cancer
cells (Figure 7G). Meanwhile, RT-qPCR results showed upregulated
and statistically significant expression of UCP1, C/EBPα, and
FABP4 mRNA (Figure 7H). At different stages of induction, the
morphology of cancer cells also changed accordingly (Figure 8A),
e.g., the cells changed from normal paving-stone shape to epithelial-
mesenchymal spindle and polygonal shape at the stage of EMT. At
the same time, obvious lipid droplets were produced in the cancer
cells after the in vitro lipogenic induction protocol. We define this
in vitro combined induction protocol as a “lipogenic trans-
differentiation induction protocol”.

We examined the effect of a lipogenic trans-differentiation
induction protocol on the phenotype of cancer cells. Scratch
assay showed that A549 cells induced by lipid differentiation
in vitro showed a significant decrease in scratch healing ability
compared to the control group not induced by the lipid
differentiation protocol (Figures 8B,D). CCK-8 assay showed that
the OD value of the A549 cells in the lipid differentiation induction
group was significantly lower, and the cellular activity was reduced
compared to the control cells not induced by the lipid differentiation
protocol (Figures 8C,E). Transwell assay showed that the number of
cells penetrating through the chambers and stromal gel was
statistically significantly lower in A549 cells treated with the
induction protocol compared to the control group (Figure 8F).

Discussion

The prognosis of patients is worsened by concomitant lung
infections. The presence of LPS, a constituent of the cell membrane
of Gram-negative bacteria, has been linked to an upsurge in
inflammatory cytokines and ROS production, and has been
linked to tumor metastasis, invasion, and EMT transformation
(Park et al., 2017; Xia et al., 2021). The mechanism of the role of
LPS in malignant progression of lung adenocarcinomas and possible
therapeutic strategies still need to be explored. Therefore, we
explored the LPS-induced signature genes and constructed the
LPS-induced lung adenocarcinoma risk model at the
transcriptome level for the first time, and performed systematic
bioinformatics analysis. By characterizing subgroups with unique
clinical features, pathway changes, cellular infiltration and
mutational features, we found a strong correlation between the
risk model and EMT progression. We selected cell lines with
high risk scores for LPS induction experiments and successfully
constructed a cancer cell model for EMT progression and utilized
high plasticity for transdifferentiation therapy. This may provide
new insights into more effective treatment strategies for patients
with LPS-infected lung adenocarcinoma and metastatic lung
adenocarcinoma.

We obtained LPS-induced signature genes by weighted
correlation network analysis and differential expression analysis.
Based on the signature genes, we designed a novel risk scoring
scheme associated with LPS induction and delineated two distinct
subgroups that showed significant differences. All three model genes
in the scoring scheme are differentially expressed in lung
adenocarcinoma and are associated with poor prognosis in lung
adenocarcinoma. Furthermore, they all act as reliable indicators for
diagnosis. Simultaneously, PRC1 was found to be linked to TGF-β-
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induced epithelial-mesenchymal transition-related lung and
pancreatic cancer cell lines (Wanna-Udom et al., 2021);
CDKN3 has a role in regulating proliferation, invasion, and EMT
transition in nasopharyngeal and lung cancers (Wang et al., 2011;
Xing et al., 2012; Gao et al., 2019); TNS4 was reported to be
associated with regulation of cell adhesion, motility, invasion and
EMT in colorectal cancer (Raposo et al., 2020).

We performed a systematic bioinformatics analysis of the risk
model. First, in terms of clinical characteristics, the high-risk
subgroups had a worse prognosis and were characterized by
worse clinical presentations. Further, we investigated molecular
pathway changes between subgroups to reveal the reasons behind
the significant differences in clinical characteristics between
subgroups. Pathways associated with cancer and tumor
metastasis were significantly enriched in the high-risk subgroup,
including the PI3K pathway, EGFR pathway, hypoxia pathway,
VEGF pathway, and WNT pathway, whereas immune-related
pathways were more pronounced in the low-risk subgroup,
including the IL2-STAT pathway. Considering that the model
genes were derived from LPS, we hypothesized that the high-risk
subgroup with highly tumor invasive and metastasis-related features
was associated with metastatic and highly invasive tumors due to
EMT. The expression profiles of EMT-related transcriptional
markers and the enrichment of EMT-related pathways confirmed
our hypothesis. In addition, we found strong correlations between
Riskscore, model genes, and EMT-related pathways, including
hypoxia and WNT pathways, among others. In addition, at the
level of TME infiltration, we found that the low-risk subgroup had a
higher immune infiltration status, such as CD8+ T cells and B cells;
whereas the high-risk subgroup had more stromal cell aggregates,
such as smooth muscle cells and epithelial cells. The low-risk
subgroup had higher expression levels of antigen presentation-
related transcripts. This implies that the low-risk subgroup
exhibits a corresponding immune response by presenting
antigens, and similar results were observed in the cancer immune
cycle. The two subtypes also differed significantly in their mutational
profiles, with the particular high-scoring subgroup having
significant mutations in the oncogene TP53, aligning with prior
research indicating a correlation between TP53 mutations and
invasive lung adenocarcinomas, and that elevated
TP53 mutations typically signal the development of invasion
(Zhang et al., 2019). With these findings in mind, we conclude
that the LPS-induced risk model is significantly associated with EMT
progression. As the score rises, the EMT phenotype and
aggressiveness of the tumor is made more pronounced and the
efficacy of tumor immunotherapy is diminished. In addition, the
same results were obtained when applying our model to the
IMvigor210 and GSE78220 cohorts, i.e., low-scoring patients
achieved better clinical outcomes after anti-PD-L1 and anti-PD-
1 treatments, affirming the predictive validity of our predictions. We
selected lung adenocarcinoma cell lines with high scores for in vitro
experimental validation to further verify the accuracy of the scores
by inducing EMT progression of cancer cells using LPS.

During metastasis, lung adenocarcinoma cells become more
invasive potential through dedifferentiation (Lawson et al., 2015),
with EMT being the key to tumor cell invasion and metastasis. The
use of high plasticity in the EMT state to trans-differentiate highly
invasive cancer cells into less invasive cells is a new idea for the

treatment of cancer. Ishay-Ronen D and colleagues conducted the
research. The combination of a MEK inhibitor and the antidiabetic
drug rosiglitazone was used to induce the transformation of invasive
breast cancer cells in the EMT state into postmitotic adipocytes, thus
preventing primary tumor invasion and metastasis formation
(Ishay-Ronen et al., 2019). This pioneering research has been
equally enlightening. Peroxisome proliferators-activated receptors
(PPARγ) are nuclear hormone receptors activated by
thiazolidinediones antidiabetic drugs and are implicated in
adipogenesis, lipid metabolism and insulin sensitivity (Tontonoz
and Spiegelman, 2008; Wang et al., 2018; Hernandez-Quiles et al.,
2021). PPARγ seems to function as both a direct controller of
numerous adipose-specific genes and a “master” controller that
initiates the adipogenic program (Martinez Calejman et al.,
2020). Rosiglitazone, a PPARγ agonist, has been demonstrated to
trigger cellular redifferentiation in various malignancies (Prost et al.,
2015), whereas research has shown that liraglutide stimulates
AMKP/PGC1α to facilitate adipocytogenesis (Zhou et al., 2019).
In this study, the combination of rosiglitazone and liraglutide
induced lipogenic trans-differentiation, resulting in increased
lipid droplet production in cancer cells, as well as up-regulation
of the expression of the mature adipose marker FABP4, the
adipocyte-specific markers CEBPα, and UCP1 in RT-qPCR. This
result suggests that such cancer cells may be biased towards a
“cancer-adipocyte”. Following the successful implementation of
the fat-forming trans-differentiation induction protocol, we
investigated the modified characteristics of cancer cells, and the
CCK8 findings indicated that lung adenocarcinoma cells undergoing
the EMT process exhibited a diminished ability to proliferate when
combined with the fat-inducing regimen, thereby implying the
potential for cancer cells to undergo trans-differentiation.
Subsequently, we discovered that the capacity of cancer cells to
migrate and invade was diminished by cell scratch assay and
Transwell assay. Research conducted in vitro experiments has
indicated that LPS-induced EMT cancer cells with a high level of
invasiveness may be able to diminish tumor spread and cancer
growth by using a lipogenic trans-differentiation technique to treat
malignant growths.

Inevitably, this study needs to explain some of its limitations.
Firstly, the study cohorts were drawn from public databases,
which leads to an inherent case selection bias that may affect the
results, and more convincing prospective studies are needed to
confirm our findings. Second, due to the limited sample size,
large-scale cohort studies are essential to assess the value of the
model. Meanwhile, based on the bioinformatics identification of
the EMT-related Signature as well as its model genes, they both
require further experiments to investigate their underlying
biological mechanisms. Lastly, there are still shortcomings in
the study of rosiglitazone and liraglutide lipogenic trans-
differentiation induction protocol in lung adenocarcinoma.
For example, due to the deviation of the concentration of the
drug itself may lead to unsatisfactory trans-differentiation
results, and the potential mechanism of the lipid-forming
trans-differentiation regimen in inhibiting the malignant
invasion process of lung adenocarcinoma cells still needs to be
further explored; meanwhile, the present study has achieved a
certain degree of effect in vitro experiments, and it’s in vivo
experiments still need to be further explored.
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Taken together, we identified a class of hub genes related to LPS-
induced lung cancer at the bioinformatics level. We constructed and
validated an EMT-related Signature based on the hub genes for the
first time. The scoring subgroups showed significant differences in
clinical features, TME patterns, pathway change, mutations atlas,
and immunotherapy response. It was also validated in vitro
experiments and found a potentially possible therapeutic option
that exploits the high plasticity of cancer cells during EMT. And it
was validated in vitro experiments. We hope that the findings will be
beneficial in advancing research into the progression of EMT in LPS-
induced cancers, as well as in offering fresh perspectives on trans-
differentiation therapy for invasive LUAD cells.
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