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Background: Identifying uncommon neutrophilic leukemias presents a
challenging task, owing to the analogous morphological characteristics and
the dearth of molecular markers. The transcriptomic profile of bone marrow
cells in this disease subset has been rarely explored.

Material and Methods: The OHSU-CNL dataset, encompassing clinical
parameters and parallel transcriptomic matrix, was downloaded from the
Genomic Data Commons (GDC) database. Distinctive co-expressed gene
modules and pivotal genes for chronic neutrophilic leukemia (CNL) were
identified using R software. Subsequently, a diagnostic model for CNL
denoted as CNL-5 was formulated employing least absolute shrinkage and
selection operator (LASSO) regression analysis. The diagnostic power of the
CNL-5 model was compared with conventional clinical/genetic markers via
multi-ROC analysis. The divergence in overall survival between CNL-5 risk
groups was delineated by Kaplan–Meier analysis, and the predictive power
(AUC and Harrison’s C index) was determined by time-dependent ROC. Cell
signaling pathways associated with CNL-5 risk were identified by genomic set
enrichment analysis (GSEA).

Results: Neither clinical indicators nor genetic markers were sufficient to classify
neutrophilic leukemias. Through weighted gene co-expression network analysis
(WGCNA), the brown module was discerned to be CNL-specific (p = 8e−16, R2 =
0.5). Using LASSO analysis, the CNL-5 model, with risk scores based on the
weighted expression value of five genes (PDCD7/CR2/ZSCAN20/TRIM68/
LILRA6) dichotomized patients into CNL-like and Atypical-CNL groups.
Compared to the Atypical-CNL group, the CNL-like group demonstrated a
clinical phenotype more consistent with CNL and had a significantly higher
prevalence of CSF3R mutations (p < 0.05). Additionally, the AUC of the CNL-5
risk model surpassed that of conventional clinical/genetic markers, as validated
by the GSE42731 dataset. Poorer survival was revealed in the high-risk group than
in the low-risk group defined by the CNL-5 model. GSEA identified CNL-5-
associated pathways, such as the inhibition of oxidative phosphorylation and the
activation of IL6-JAK-STAT3 signaling.

Conclusion: A novel expression signature-based diagnostic assessment for CNL
was developed, which showed better diagnostic utility than conventional
indicators.
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Background

A group of rare myeloid neoplasms, such as chronic
neutrophilic leukemia (CNL), atypical chronic myeloid
leukemia (aCML), chronic myelomonocytic leukemia
(CMML), myelodysplastic/myeloproliferative neoplasms,
unclassified (MDS/MPN-U), and myeloproliferative
neoplasms, unclassified (MPN-U), is characterized by
neutrophilia, with or without dysplasia, and exhibits
overlapping morphological and genetic features (Zhang et al.,
2019; Maxson and Tyner, 2017; Deininger et al., 2017; Arber
et al., 2016). CNL is an uncommon myeloid neoplasm,
hallmarked by an overabundance of mature neutrophils in
both peripheral blood and bone marrow, with approximately

150 cases meeting the current criteria by 2015 (Bain and Ahmad,
2015). Meanwhile, aCML is identified by an elevation in
dysplastic neutrophils and their precursors, an appearance
mirroring classic BCR-ABL-positive CML, albeit with a
significantly lower prevalence (Orazi and Germing, 2008).
CMML, another member of the MDS/MPNs, is notable for an
increase in blasts and promonocytes. However, in clinical
scenarios, some patients with neutrophilia exhibit both
myelodysplastic and myeloproliferative features, making
diagnosis difficult (Maxson and Tyner, 2017). The molecular
markers of CNL, such as the CSF3R T618I mutation, lack
specificity and can also be observed in other myeloid
neoplasms, such as aCML (Dao et al., 2020) and CMML
(Bezerra et al., 2021).

Alongside diagnosis, the treatment and prognosis of these
neutrophilic leukemias pose additional challenges. To date, there
is no established treatment for CNL. Traditional treatments, for
instance, hydroxyurea and interferon-α (IFNα), provide
unsatisfactory response durations (Elliott et al., 2005; Bohm
and Schaefer, 2002). The novel targeted drug, ruxolitinib, has
only been employed in limited cases, with varied responses
(Szuber et al., 2020). Moreover, prognostic biomarkers for
advanced CNL patients and targeted therapy are markedly
lacking. Consequently, the survival heterogeneity continues to
perplex clinicians.

The largest cohort for transcriptomic exploration of rare
neutrophilic leukemias was executed by Prof. Tyner and his
collaborators (Zhang et al., 2019), incorporating CNL, aCML,
CMML, etc. Emerging methodologies have identified key genes
and pathways based on RNA data, where the weighted gene co-
expression network analysis (WGCNA) based on scale-free network
theory has examined the interplay of co-expressing gene clusters.
The entire genome was partitioned into a selected number of
modules, each containing genes co-expressed in individual
samples. Subsequently, a correlation analysis was performed
between clinical/genetic traits (e.g., diagnosis and symptoms) and
module eigengenes (MEs, defined as the primary principal
component of gene co-expression modules) (Langfelder and
Horvath, 2008; Zhang and Horvath, 2005). This analysis resulted
in a co-expression module most pertinent to CNL. Ultimately, a
groundbreaking transcriptomic diagnostic model was developed
employing the least absolute shrinkage and selection operator
(LASSO). The flowchart illustrating the study is shown in Figure 1.

Materials and methods

Data download

The OHSU-CNL datasets were procured from the Genomic
Data Commons (GDC) database via the TCGAbiolinks package and
R software (version 4.2.1). The OHSU-CNL dataset encompassed a
total of 180 samples, with 41 CNL, 28 aCML, 30 CMML, 14 MDS/
MPN-U, 13 MPN-U, 50 nebulous neutrophilic disorder, and four
healthy donors. The distinct attributes of the clinical/genetic
variables of the different diseases are cataloged in Table 1.

To validate the diagnostic power, the MDS/MPN part of the
GSE42731 dataset was also downloaded from the Gene Expression

FIGURE 1
Research design flowchart of this study.

Frontiers in Genetics frontiersin.org02

Guo and Li 10.3389/fgene.2025.1556519

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1556519


Omnibus (GEO) database, and it included seven CMML, four MPN,
two CML, two PMF, two CNL, one JMML, and one ET.

Clustering analysis based on conventional
clinical/genetic variables

A total of 120 samples had parallel clinical/genetic information
(diagnosis, hemoglobin, white blood cell count, blast percentage,

immature neutrophil percentage, monocyte percentage peripheral
neutrophil percentage, bone marrow cellularity, dysplasia,
dysgranulocytosis, leukemic transformation, thrombosis, major
bleeding, red blood cell transfusion, transfusion need,
splenomegaly, CSF3R, and other gene mutations). Subsequently,
employing the k-means method, these 120 samples underwent
unsupervised clustering analysis, thereby partitioning them into
closely related groups based on clinical/genetic variables to
validate whether neutrophilic leukemias could be differentiated.

TABLE 1 Summary of clinical and genetic variables in the OHSU-CNL datasets. RBC, red blood cell; WBC, white blood cell.

Clinical/genetic variables CNL aCML CMML MDS/MPN-U MPN-U

Age 68.4 ± 12.5 69.3 ± 12.1 68.4 ± 11.6 68.1 ± 11.0 64.3 ± 18.9

Gender (female/male) 17/24 6/22 11/19 4/10 8/5

Splenomegaly 28/34 20/27 10/24 12/13 3/8

Leukemic transformation 6/31 4/23 6/29 4/12 2/10

Major bleeding 5/38 2/24 0/29 2/13 3/11

Thrombosis 2/38 2/26 2/29 1/13 0/11

Hemoglobin (g/dL) 11.6 ± 2.09 10.0 ± 2.16 11.0 ± 2.64 10.7 ± 1.76 10.7 ± 2.63

RBC transfusion 19/37 18/25 14/30 12/13 7/11

Transfusion need 10/38 11/23 12/30 4/13 4/10

WBC (×109/L) 62.1 ± 59.4 77.3 ± 66.3 37.0 ± 41.2 44.5 ± 33.7 81.6 ± 95.2

Blasts (%) 0.621 ± 1.78 1.79 ± 2.65 1.63 ± 2.92 0.889 ± 2.13 1.10 ± 2.02

Immature granulocytes (%) 2.86 ± 7.80 18.92 ± 13.3 5.45 ± 4.77 9.67 ± 8.07 14.3 ± 15.1

Neutrophils (%) 84.9 ± 10.1 67.4 ± 17.5 53.9 ± 16.0 67.5 ± 15.9 65.6 ± 15.9

Monocytes (%) 2.66 ± 3.52 2.76 ± 3.48 19.9 ± 11.4 5.63 ± 6.70 4.00 ± 1.61

BM cellularity 91.7 ± 8.89 91.4 ± 9.76 83.0 ± 16.1 91.5 ± 5.80 84.4 ± 17.2

BM dysplasia 12/35 20/26 17/25 14/14 0/9

BM dysgranulopoiesis 2/32 10/23 2/13 2/9 0/9

CSF3R mutation 25/39 6/27 1/29 1/12 0/9

Survival (days) 879 ± 827 731 ± 920 895 ± 732 745 ± 981 594 ± 374

FIGURE 2
The relationship between gene co-expression clusters and disease subtypes. Each box contains Pearson’s coefficients (by color gradient, red = 1,
blue = −1) and p-values for the correlation between MEs (X-axis) and clinical/genetic variables (Y-axis).
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WGCNA

Seventy-five out of 120 patients in the OHSU-CNL cohort, with
sufficient clinical/genetic and transcriptomic data, were inputted in

the subsequent WGCNA analysis. The WGCNA package of the R
software (version 4.0.2) was employed for co-expression analysis
(Langfelder and Horvath, 2008). Inter-individual heterogeneity was
calculated via the hierarchical clustering method using average

FIGURE 3
The results of enrichment and PPI analysis for the CNL-specific gene module. (A) The dot plot of enriched pathways. (B) The PPI network of hub
genes within the CNL-specific module, in which the color gradient of the dots correlates with the connectivity degrees of individual genes (red for high
degrees, blue for low degrees).
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linkage to identify and exclude outliers. The minimum beta value
yielding a scale-free R2 greater than 0.85 was determined to be the
soft-threshold power. Pearson’s coefficients between individual
genes were calculated, forming the basis for establishing the gene
adjacency matrix and the topological overlap matrix. Guided by
hierarchical clustering using average linkage, the entire genome was
segmented into gene co-expressed modules with over 25% inter-
module dissimilarity. Pearson’s coefficients between module
eigengenes (MEs) and expression values of individual intra-

module genes were denoted as module membership (MM).
Pearson’s coefficients between trait and expression values of
individual intra-module genes were designated as gene
significance (GS). The module with the highest Pearson’s
coefficient with CNL and statistically irrelevant or negatively
correlated with other neutrophilic leukemias was identified as the
CNL-specific module. Intra-module genes with a GS ≥ 0.2, MM ≥
0.8, and weighted q value <0.01 were classified as hub genes.

Sample 3079R showed significant heterogeneity compared to the
other patients and was consequently excluded from subsequent
analyses (Supplementary Figure 1). A total of 74 patients were
incorporated into the WGCNA: 15 with CNL, 18 with aCML,
three with CMML, seven with MDS/MPN-U, five with MPN-U,
and 26 with ambiguous neutrophilic disorders. By considering the
scale-free R2 distribution (Supplementary Figure 2), a soft-threshold
power of 9 was chosen. The entire gene set was partitioned into
39 gene modules with less than 25% dissimilarity (Supplementary
Figure 3). To discern the correlations between these modules, a
heatmap was created to visualize topological overlap and module
eigengene adjacency based on 400 randomly selected genes from
different modules (Supplementary Figure 4).

Pathway enrichment and protein–protein
interaction (PPI) network analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was employed to delineate the spectrum of pathways
enriched by the CNL-specific module (Huang da et al., 2009).
Pathways bearing a local false discovery rate (FDR) adjusted
p-value of less than 0.05 were deemed significant.

Bolstered by extant evidence, the hub genes of the CNL-specific
module were integrated into the STRING database (https://string-
db.org/) (Szklarczyk et al., 2019) to construct a protein–protein
interaction (PPI) network. Protein–protein pairs with an interaction
score exceeding 0.4 were harvested as edges of the PPI network.
Utilizing Cytoscape software (version 3.7.2) along with the
CytoHubba plugin, the connectivity of nodes was calculated and
ranked, thereby facilitating the selection of central nodes.

Establishment of novel diagnostic models

The brown gene module expression data from 53 patients with
non-missing diagnoses were inputted into LASSO analysis after
normalization of the raw count data using the
varianceStabilizingTransformation () function and removal of
missing values using the na.omit () function. Then, we
implemented LASSO regression using the glmnet package
(version 4.1–8) in the R software. The optimal lambda value was
selected through 10-fold cross-validation (using the cv.glmnet ()
function with “unfolds = 10”), and lambda.min was used as the final
regularization parameter for the model. Model performance was
evaluated using mean squared error (MSE) and R2. After iterating
LASSO 10,000 times to curtail overfitting, variables with non-zero
coefficients were identified. Subsequently, the bootstrap aggregation
method gave rise to a model consisting of an expression signature of
five genes (PDCD7, CR2, ZSCAN70, TRIM68, and LILRA6),

TABLE 2 Inclusion of gene symbols and corresponding coefficients for CNL
risk models.

Gene symbol Coefficient

PDCD7 −0.0813

CR2 0.00945

ZSCAN20 −0.00612

TRIM68 −0.0319

LILRA6 0.0196

FIGURE 4
The bar plot comparing CNL-5 risk scores in CNL with other
neutrophilic leukemias (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 5
The ROC curve of the CNL-5 risk score in comparison with neutrophil percentage and CSF3R mutation status based on the OHSU-CNL cohort (A).
The ROC curve of the CNL-5 risk score is based on GSE42731 (B).

TABLE 3 Comparison of clinical/genetic parameters between CNL risk groups.

CNL-like Atypical-CNL p-value

Median age 74 70 0.1426

Gender (female/male) 11/20 14/30 0.8061

Splenomegaly 16/18 20/28 0.2736

Leukemic transformation 4/17 5/28 0.6447

Major bleeding 2/20 3/30 >0.9999

Thrombosis 2/20 2/30 0.6704

Median hemoglobin (g/dL) 10.4 10.6 0.9077

RBC transfusion 7/19 23/30 0.0053

Platelet transfusion need 3/19 13/29 0.0369

Median WBC (×109/L) 54 47.7 0.857

Median blasts (%) 0 1 0.0123

Median Immature granulocytes (%) 0.5 13 0.0009

Median neutrophils (%) 86.5 63.5 <0.001

Median monocytes (%) 3.25 3.25 0.2423

Median BM cellularity 95 95 0.532

BM dysplasia 9/20 18/28 0.1842

BM dysgranulopoiesis 6/17 2/20 0.0625

Mutant CSF3R 12/26 1/34 <0.0001

Frontiers in Genetics frontiersin.org06

Guo and Li 10.3389/fgene.2025.1556519

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1556519


referred to as the CNL-5 model. The CNL-5 risk scores for
individual patients were calculated by summing the expression
values of selected genes, each weighted by their corresponding
coefficients.

Clinical relevance of the CNL-5 model

Patients (n = 74) possessing expression information were
divided into CNL-like and atypical-CNL groups, dichotomized by
the ROC-defined cut-off value. Subsequently, the clinical/genetic
parameters of the different groups were compared, which included
age, gender, splenomegaly, major bleeding, thrombosis, hemoglobin,
RBC transfusion, platelet transfusion need, WBC, blast percentage,
immature granulocyte percentage, neutrophil percentage, monocyte
percentage, bone marrow cellularity, dysplasia, dysgranulopoiesis,
and mutant CSF3R.

Comparison of the novel CNL-5 risk scores
with conventional clinical/genetic markers

Established diagnostic indicators for CNL include an elevated
percentage of neutrophils and a CSF3R mutation. Thus, the clinical
utility of our novel models was elucidated through their comparison
with these conventional markers, employing multiple ROC analyses
and AUC estimation via the GraphPad Prism (version 9.0) software.
Validation of the CNL-5 model was performed on the
GSE42731 dataset using ROC analysis on the diagnostic utility.

Survival analysis for the CNL-5 model

A selection of 46 patients (with 12 CNL, 17 aCML, three CMML,
seven MDS/MPN-U, three MPN-U, and four ambiguous
neutrophilic disorder cases) with both expression data and
overall survival was included to substantiate the prognostic value
of the CNL-5 model. The surv_cutpoint function from the
survminer package was employed to compute the cut-off value,
effectively segmenting these patients into CNL-5 high- or low-risk
cohorts. The survival and survivalROC packages were utilized to
conduct the Kaplan–Meier analysis and time-dependent ROC. A
Mayo Clinic risk model for CNL (Szuber et al., 2018) was used as the
control to compare the predictive power of the Kaplan–Meier plots.

Gene set enrichment analysis

Pearson’s coefficients were computed to assess the correlation
between CNL-5 risk scores and individual gene expression values.
We utilized gene set enrichment analysis (GSEA) to decipher the
results of the genome-wide correlation analysis for CNL-5 risk
scores, based on the coefficients of genes in the specific sets
(pathways) of the Molecular Signatures Database (MSigDB)
(http://software.broadinstitute.org/gsea/msigdb) (Subramanian
et al., 2005). Given a priori-defined gene sets (such as oxidative
phosphorylation, etc.), genes within a specific set were ranked by
their Pearson’s coefficient with CNL-5 risk scores. Concurrently, theT
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q value was employed to correct for multiple hypothesis testing.
GSEA, which is based on the transcript level of all genes within a
specific pathway rather than a few regulators, offered a more
comprehensive depiction of the activation/suppression profile of

signaling pathways associated with CNL-5 risk scores. Signaling
pathways with an absolute normalized enrichment score (|NES|)
greater than 1 and a q value less than 0.05 were deemed significantly
associated with CNL-5 risk scores.

FIGURE 6
The Kaplan–Meier plots for overall survival of the CNL-5 high- and low-risk groups in the overall neutrophilic leukemia cohort (A) and the CNL
subset (B); and the Kaplan–Meier plots for overall survival of theMayo Clinic high- and low-risk groups in the overall neutrophilic leukemia cohort (C) and
the CNL subset (D).

Frontiers in Genetics frontiersin.org08

Guo and Li 10.3389/fgene.2025.1556519

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1556519


Statistical analysis

If the continuous variables of the subgroups conformed to a
normal distribution, the unpaired t-test was used to compare
different groups. Otherwise, the non-parametric Mann–Whitney
test was implemented. An ordinary one-way ANOVA test was
applied to compare three or more subgroups of variables. The
two-sided Fisher’s exact test was used for categorical variables.
All statistical tests were carried out assuming a significance level
of p < 0.05 unless otherwise specified.

Data sharing statement

The data supporting the findings of this study are available from the
GDC database (https://portal.gdc.cancer.gov/) and the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), all of which are publicly available.

Results

Clustering analysis using clinical/
genetic markers

Using the available clinical and geneticmarkers, the participantswere
stratified intofive distinct groups utilizing the k-means clusteringmethod
(Supplementary Figure 5). Remarkably, each group encompassed a
minimum of four different disease types, underscoring the inherent
complexity and potential for misclassification in the diagnosis of
neutrophilic leukemias when relying solely on current parameters.

Results of the WGCNA

The correlation between the modules and clinical/genetic traits,
such as neutrophil percentage, monocyte percentage, dysplasia,

dysgranulopoiesis, blast percentage, immature neutrophil
percentage, leukemic transformation, disease types, and
CSF3R mutation, is depicted in Figure 2. The brown module
emerged as the CNL-specific module (R2 = 0.38, p = 9e−4; the
detailed list of included genes can be found in Supplementary
Table 1). Notably, the brown module displayed a significant
correlation with the neutrophil percentage (R2 = 0.70, p =
4e−12) and CSF3R mutation (R2 = 0.49, p = 1e−5), both of
which are primary clinical/genetic features of CNL. The brown
module was not related to aCML (p > 0.05) and exhibited a
negative correlation with the percentage of immature
neutrophils and blasts (Figure 2). For the brown module,
Supplementary Figure 6 shows the correlation of module
membership (MM) and gene significance (GS) for the
152 intra-module genes, which suggests a significant
association between the module eigengene and CNL.

Pathway enrichment and PPI analysis

The hub genes in the CNL-specific module were found to be
primarily enriched in pathways such as NOD-like receptor
signaling, Toll-like receptor (TLR) signaling, and JAK-STAT
signaling (Figure 3A). The topological structure of the PPI
network, containing 116 nodes and 78 edges, is illustrated
in Figure 3B. The top five genes with the highest degree
of connectivity were TLR1, TLR5, TLR6, FCGR2A,
and FCGR2B.

The CNL-5 diagnostic model based on
transcriptomic features

The variables with non-zero coefficients are displayed in Table 2.
The CNL-5 risk scores of the samples were significantly higher in
CNL than in other neutrophilic leukemias (Figure 4, p = 1.7e−5). A

FIGURE 7
The time-dependent ROC analysis deciphering the AUC and Harrison’s C index of the CNL5model in the CNL subset (A) and the overall neutrophilic
leukemia cohort (B).
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FIGURE 8
GSEA results showing the activation/suppression profile of cell signaling pathways (A). Running enrichment score curve for pathways significantly
correlating with CNL-5 risk scores (B). The x-axis represents the genes in thewhole genome, and the bars correspond to specific genes in the pre-defined
sets. Themost positively correlated genes are listed to the left of thewhole genome axis, while themost negatively correlated genes are listed to the right.
The enrichment score (red line) represents a running-sum statistic that increased when we encountered a gene in the specific set and decreased
when we encountered genes not in the specific gene set. The magnitude of the increment depends on the correlation of the gene with the CNL5 risk
scores: the location of the maximum enrichment score is on the left part of the x-axis, and the normalized enrichment scores (NES) are positive.
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total of 74 patients were divided into CNL-like (n = 31) and
Atypical-CNL groups (n = 43) based on the ROC-defined cut-off
value (0.2044, Figure 5). Clinical and genetic variables were
compared between the two groups, respectively (Table 3). The
CNL-like group showed significantly superior erythroid/
megakaryocytic hematopoiesis, receiving fewer RBC transfusions
and less platelet transfusion need (p = 0.0053 and 0.0369,
respectively) than the Atypical-CNL group. Furthermore, the
patients in the CNL-like group displayed more typical clinical
and genetic features (significantly lower blast and immature
neutrophils percentage; higher peripheral neutrophil percentage
and CSF3R mutation rate). Consequently, patients with
neutrophilic leukemia and higher CNL-5 risk scores
demonstrated clinical/genetic phenotypes more closely resembling
those of classic CNL.

Comparison of diagnostic utility of CNL risk
models with conventional markers

For the differential diagnosis of CNL from all other
neutrophilic leukemias (aCML, MDS/MPN-U, MPN-U, and
ambiguous neutrophilic disorder), the CNL-5 risk model
demonstrated a superior AUC (0.9071, p < 0.0001) compared
to CSF3R mutation status (AUC = 0.7711, p = 0.0152) and
peripheral neutrophil% (AUC = 0. 8803, p = 0.0004)
(Figure 5A). The confusion matrices are listed in Table 4.
Moreover, when differentiating CNL from other types of
neutrophilic leukemias, the CNL-5-risk model demonstrated
a robust advantage over conventional markers (Supplementary
Figure 7). This improvement has the potential to significantly
enhance the precision of differential diagnosis in clinical
practice. The predictive power AUC (0.7353, p = 0.05 in
Figure 5B, confusion matrices in Table 4) was validated by
the GSE42731 cohort under the stratification of the CNL-
5 model.

Prognostic value of the CNL-5 model

Data from 47 neutrophilic leukemia patients in the OHSU-
CNL cohort with sufficient overall survival data were inputted
into the survival analysis. The cut-off value based on the CNL-5
model was 0.1, which divided the 47 patients with neutrophilic
leukemias into high and low-risk groups (n = 9 and n = 38,
respectively). The overall survival of the high-risk group was
significantly worse than that of the low-risk group (Figure 6A,
log-rank p = 0.0094). A similar result was seen in the CNL subset,
where all low-risk patients attained long-term survival
(Figure 6B, log-rank p = 0.038). A Mayo Clinic-approved risk
model for CNL (Szuber et al., 2018) was tested in the OHSU-CNL
cohort by Kaplan–Meier analysis, while no significant survival
discrimination was revealed in both the whole neutrophilic
leukemia cohort and the subset of CNL patients (Figures 6C,
D). Time-dependent ROC analysis demonstrated that the CNL-5
model provided prognostic value, AUC, and Harrison’s C index
for both the CNL subset and the whole neutrophilic leukemia
cohort (Figures 7A, B).

Whole-transcriptome correlation analysis of
CNL-5 risk scores

CNL-5 risk scores were correlated with suppression of oxidative
phosphorylation and activation of IL6-JAK-STAT3 signaling,
P53 signaling, and upregulation of Kras (Figure 8), etc. To
investigate the JAK-STATs signaling, the association of CNL-5
risk scores with the expression level of individual JAKs (JAK1-
3 and TYK2) and STATs (STAT1-4, STAT5A/B, and STAT6) was
investigated. The results indicated that there was a positive
correlation between CNL-5 risk scores and JAK2, JAK3, TYK2,
STAT4, STAT5B, and STAT6 (Supplementary Figure 8) and a
negative correlation with STAT2.

Discussion

Conventional clinical/genetic markers have been insufficient
to classify neutrophilic leukemias accurately thus far
(Supplementary Figure 5). Moreover, previous investigations
on mutation profiles have not fully elucidated the
heterogeneity within neutrophilic leukemias. No specific
mutation pattern was found.

A recent preliminary study revealed that CNL and aCML
differed in gene expression profiles based on 172-gene target
sequencing (Sun et al., 2024). To further explore the
transcriptome for this group of rare myeloid diseases, we aim
to extend the gene expression spectrum to the whole genome and
the disease spectrum to ambiguous neutrophilic leukemias. In the
original study on the OHSU-CNL cohort (Zhang et al., 2019),
WGCNA was also implemented to divide the whole genome into
nine gene mods and analyze the relationship between gene mods
with clinical variables (age, WBC, survival, etc.). Based on the
previous analysis, we used WGCNA to detect the gene co-
expression module corresponding to CNL specifically
(Figure 2, brown module). Constitutive JAK-STAT signaling
resulted from activating mutations of CSF3R in the
extracellular (T618I) or transcellular (T615A) domains, which
occur more frequently in CNL than in aCML (Maxson et al.,
2014; Maxson et al., 2013; Pardanani et al., 2013). Consistently,
brown module genes were enriched in JAK-STAT signaling
pathways (Figure 3), which validated the accuracy of our
WGCNA analysis.

Then, brown module genes were inputted into LASSO to
establish a diagnostic model with the optimal AUC through
sufficient cycles of iterations. Intriguingly, it was noted that
not all patients in the CNL-like group carried mutant CSF3R
(12 out of 26 with wild-type CSF3R, Table 3), which may change
future disease subtyping and/or treatment strategy for
neutrophilic leukemia patients with a CNL-like expression
signature instead of CSF3R mutations. Meanwhile, in the
aCNL group, one aCML patient had CSF3R gene mutations
(missense + truncation), suggesting the transcriptomic
heterogeneity in CSF3R-mutant patients. The CNL-5 model
was associated with a CNL-like phenotype (Table 3) and had a
significantly better predictive power (AUC) than that of
conventional parameters in discriminating CNL from other
neutrophilic leukemias (Figure 5; Supplementary Figure 6).
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The robustness of the predictive power was validated by an
external cohort (GSE42731) with a lower AUC. The difference
in AUC between the OHSU-CNL and the GSE42731 cohorts may
have resulted from the respective methodologies (RNAseq vs.
microarray) and unbalanced disease distribution with only two
CNL patients of the 19 in GSE42731.

This model will help clinicians to diagnose CNL based on the
transcriptomic signature in combination with clinical/genetic
parameters. Moreover, the CNL-5 risk model also predicted the
survival of patients with neutrophilic leukemias, not only in the CNL
subset but neutrophilic leukemias in general (Figures 6, 7). The
Mayo Clinic model, which incorporated clinical parameters and
ASXL1 status, failed to stratify survival in either situation. This result
will help physicians to identify patients with dismal outcomes and
provide more radical therapies (such as all-HSCT, etc.).

The five genes (Table 2) of the CNL-5-risk model have been
rarely investigated in myeloid neoplasms, including PDCD7
(programmed cell death protein 7), CR2 (complement receptor
type 2), ZSCAN20 (zinc finger and SCAN domain-containing
protein 20), TRIM68 (E3 ubiquitin-protein ligase TRIM68), and
LILRA6 (leukocyte immunoglobulin-like receptor subfamily A
member 6). Functional experiments are still needed to validate
the pathological role of the five genes.

Little was known about the cell signaling profile in chronic
neutrophilic leukemia cells, and this study provided some insights.
Based on GSEA, the CNL-5 risk scores were associated with
activation of the cytokine-JAK-STAT pathway, such as IL6-JAK-
STAT3 and IL2-STAT5 signaling (Figures A, B). JAK inhibitors,
such as ruxolitinib, have been demonstrated to have varied efficacy
against CNL in vivo and in vitro (Dao et al., 2020). The detailed
mechanisms of JAK-STAT activation in CNL are still unclear
because few samples are available from patients, and animal
models for CNL are not established. The following correlation
analysis revealed that CNL-5 risk scores were positively
correlated with JAK2, JAK3, TYK2, STAT4, and STAT5B while
negatively and significantly correlated with STAT2 (Supplementary
Figure 8), suggesting a specific expression pattern of JAK-STAT
signaling and the potential of combined JAK/TYK inhibition.

Inflammation-related pathways were also correlated with CNL-
5 risk and enriched in the CNL-specific gene module (Figures 3, 8),
such as NOD-like receptor signaling, Toll-like receptor signaling,
inflammatory response, and the cytokine-JAK-STAT pathway.
Because the inflammatory gene expression signature is associated
with treatment response and clinical outcome (Gower et al., 2025;
Stratmann et al., 2022; Mukherjee et al., 2022), the association of
CNL-5 risk and leukemia-related inflammatory genes was also
analyzed. IRF5 regulon genes, which have been reported to be
associated with poor outcomes in T-ALL were significantly
correlated with CNL-5 risk (Supplementary Figure 9). The
IRF5 regulon signature indicated reduced sensitivity to
dexamethasone and high sensitivity to venetoclax (Gower et al.,
2025), which may provide insight into novel treatment choices for
CNL, especially in patients with hyperleukocytosis. Another
inflammatory gene signature, mainly involving IRF7/9 and STAT5B,
which are associatedwith chemoresistance in refractory ETP-ALL (Jason
et al., 2024-11), was also significantly relevant to CNL-5 risk scores
(Supplementary Figure 8). Moreover, other than ALL, an inflammatory
gene expression signature was reported to be related to AML disease

progression (Stratmann et al., 2022) and could discriminate between de
novo/secondary AML (Davis et al., 2024). Significant overexpression of
IL1R1/INSR and underexpression of CR1 were correlated with CNL-5
risk, which was reported to be associated with AML progression
(Stratmann et al., 2022) (Supplementary Figure 9).

The enrichment of significant overexpression on IL18RAP,
IL18R1, IL1R1, IL2RB, and IL4R indicated that CNL resembled
an inflammatory signature of secondary AML (Supplementary
Figure 9). IL18R1 expression also correlates with inflammation
and high NLR (neutrophil/lymphocyte ratio) in melanoma
(Mallardo et al., 2023), which validated the prognostic role of the
inflammatory gene signature in addition to hematopoietic
malignancies. These results suggested that the dismal outcome in
the CNL-5 high-risk group may be partly related to leukemia-
promoting inflammatory environments.

Another intriguing point was the metabolism-related
pathways associated with CNL-5-risk scores. The majority of
the evidence indicated that the dominant method of obtaining
ATP was glycolysis. In 2017, Riffelmacher et al. reported that the
maturation of neutrophils requires a metabolic transition from
glycolysis to oxidative phosphorylation fed by free fatty acids,
resulting from ATG5/ATG7-dependent autophagy (Riffelmacher
et al., 2017). Intriguingly, the expression of ATG5 and ATG7,
essential autophagy genes, was positively correlated with CNL-5
risk scores (Supplementary Figure 10). CNL risk scores were
associated with suppression of oxidative phosphorylation
(OXPHOS) and fatty acid metabolism (Figures 7, 8). This
paradoxical phenomenon, which enhanced ATG5/7 and attenuated
OXPHOS, suggested heterogeneity of neutrophil function and an
abnormal relationship between autophagy and OXPHOS in CNL.
Further studies are needed to explore the detailed metabolic changes
of neutrophils in neutrophilic leukemias compared to normally
differentiated neutrophils.

Other signaling pathways had no evidence of association with
neutrophils or CNL but may provide clues for investigation of
therapeutic targets, such as Kras signaling, interferon, gamma
response, etc.

One limitation of our study is the insufficient number of samples,
predominantly due to the rarity of neutrophilic leukemias. The CNL-5
model still requires large-scale cohorts to be validated.

Conclusion

In this study, a co-expression signature specific to CNL was
identified among ambiguous neutrophilic leukemias. Based on this
signature, a novel CNL-5 risk model was established that
demonstrated better diagnostic utility than conventional markers.
This study also provided valuable insights into the signaling pathway
profiles and potential therapeutic targets for CNL.
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SUPPLEMENTARY FIGURE 1
The results of clustering the included CNL samples by the average linkage
hierarchical clustering method.

SUPPLEMENTARY FIGURE 2
The value of scale independence (left) and mean connectivity (right) to
identify the soft threshold in the following network analysis.

SUPPLEMENTARY FIGURE 3
The cluster dendrogram (top) and gene co-expressed modules (bottom),
where the height of the branches represents the Euclidean distance.

SUPPLEMENTARY FIGURE 4
The module eigengene adjacency heatmap (A) indicates the relationship
between distinct co-expression modules. The results of module clustering
are shown in the upper part (B).

SUPPLEMENTARY FIGURE 5
The results of sample clustering and heatmap for clinical/genetic parameters
by k-mean clustering method. The X-axis represents the individual patients,
and the Y-axis represents the clinical/genetic factors on the right side. The
color of the dots indicates the status of the variables. For categorical
variables, such as gene mutations or clinical events (thrombosis, major
bleeding, etc.), red dots indicate positive results. Otherwise, the dots are in
blue. For continuous variables, such as neutrophil percentage, etc., the
redder dots represent higher values, and the bluer dots represent lower
values. The gray dots indicate the missing value of the
corresponding samples.

SUPPLEMENTARY FIGURE 6
Correlation of MM and GS in the brown module.

SUPPLEMENTARY FIGURE 7
The diagnostic ROC for AUC of CNL risk scores versus conventional markers
for CNL versus aCML (A); CNL versus CMML (B); CNL versus MDS/MPN-U
(C); CNL versus MPN-U (D).

SUPPLEMENTARY FIGURE 8
The correlation analysis between CNL-5 risk scores and JAKs/STATs.

SUPPLEMENTARY FIGURE 9
The correlation analysis between CNL-5 risk scores and IRF5 regulon genes.

SUPPLEMENTARY FIGURE 10
The correlation analysis between CNL risk scores and AML-related
inflammatory gene expression signature.

SUPPLEMENTARY FIGURE 11
The correlation analysis between CNL risk scores and ATG5/7.

SUPPLEMENTARY TABLE 1
The list of hub genes in the CNL-specific (brown) module.
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