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Introduction: Breast cancer risk arises from a complex interaction of genetic,
environmental, and physiological factors. Integrating Polygenic Risk Scores (PRS)
with clinical risk factors can enhance personalized risk prediction, especially in
diverse populations like Colombia.

Objective: To evaluate the predictive performance of ancestry-specific PRS
combined with clinical and imaging risk factors for breast cancer in
Colombian women.

Methods: We developed and validated ancestry-specific PRS using diverse
genetic datasets. A cohort of 1,997 Colombian women, including 510 breast
cancer cases (25.5%) and 1,487 controls (74.5%), were recruited. Clinical data,
such as breast density and family history, were analyzed for predictive ability using
the area under the receiver operating characteristic curve (AUC). Participants
were categorized into genetic ancestry groups: Admixed American, African, and
European. PRS were applied to the cohort and adjusted for clinical factors to
assess risk prediction.

Results: Breast density and family history were the strongest individual predictors,
with AUCs of 0.66 and 0.64, respectively. Most participants were of Admixed
American ancestry (70% of cases, 73% of controls). The combined PRS showed an
Odds Ratio per Standard Deviation of 1.56 (95% CI 1.40–1.75) and an AUC of 0.72
(95% CI 0.69–0.74) when adjusted for family history. Incorporating PRS with
clinical and imaging data improved the AUC to 0.79 (95% CI 0.76–0.81),
significantly enhancing predictive accuracy.
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Conclusion: Combining ancestry-specific PRS with clinical risk factors provides a
more accurate approach for breast cancer risk stratification in Colombian women.
These findings support the development of precise, population-specific risk
assessment models.
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Introduction

Cancer, including breast cancer, remains a leading cause of
global mortality, driven by both inherited genetic predispositions
and accumulated environmental exposures (Kocarnik et al., 2022;
Bray et al., 2024). Polygenic inheritance describes the collective
influence of numerous genetic variants and their interaction with
environmental factors on traits, risk, or diseases, deviating from
traditional Mendelian genetics (Crouch and Bodmer, 2020).
Polygenic Risk Scores (PRS) estimate the cumulative effects of
these common genetic variants on disease risk, offering a single
metric that represents an individual´s genetic predisposition to a
particular condition. PRS are derived from Genome-Wide
Association Studies (GWAS), which examine the associations of
millions of genetic variants with various diseases and traits (Visscher
et al., 2017; Buniello et al., 2019). While individual Single Nucleotide
Variants (SNVs) generally have modest effects, their combined
influence can account for a significant proportion of heritability
in many disorders (Wray et al., 2007). PRS have garnered attention
as valuable tools for stratifying individuals into risk categories,
thereby enabling targeted medical interventions.

Notably, the risk associated with PRS in the upper percentiles of
a population distribution often mirrors well-established clinical risk
factors, such as elevated LDL cholesterol for cardiovascular disease
or high breast density for breast cancer (Busby et al., 2020; Mars
et al., 2022; Mars et al., 2020; Levin and Rader, 2020; Ma and Zhou,
2021; Vachon et al., 2015; Cupido et al., 2021). Despite their
promise, most PRS models are developed using datasets from
individuals of European ancestry, creating challenges when
applied to populations with different genetic backgrounds, such
as Latinos (Lambert et al., 2019; Martin et al., 2019). Differences in
allele frequencies, linkage disequilibrium patterns, and effect size
may impact the predictive performance of PRS in non-European
populations (Fatumo et al., 2022). Therefore, it is essential to validate
PRS within the target populations for which they are intended,
particularly those with diverse and admixed genetic ancestries (Gri
et al., 2019; Park et al., 2017).

Breast cancer is the most prevalent malignancy among women
worldwide, representing a quarter of all malignant tumors and the
leading cause of cancer-related mortality in developing countries
(Harbeck and Gnant, 2017). In Colombia, 17,018 new cases of breast
cancer and 4,752 related deaths were reported in 2023, accounting
for 14.5% of cancer incidence and 8.4% of cancer morality,
respectively (World Health Organization, 2023). While
reductions in breast cancer mortality have been observed in some
countries due to improved screening and rapid therapeutic
interventions, these strategies primarily focus on early detection
and treatment rather than prevention (Viaña González, 2020).

Mammography remains a cornerstone for breast cancer
screening, yet its role as a standalone risk assessment tool is
limited. Incorporating genetic testing and other innovative
methodologies can enhance the accuracy of risk prediction,
aiding both prevention and early diagnosis. This underscores
the need for integrated approaches combining genetic, clinical
and imaging data to refine risk stratification and
improve outcomes.

This study evaluates the clinical utility of combining five
ancestry-specific PRS with clinical and mammographic data in a
cohort of Colombian women with sporadic breast cancer. By
focusing on a genetically diverse population, this research
contributes to the growing evidence supporting the integration of
PRS into clinical risk models, particularly in underrepresented
populations such as Latin Americans. The findings aim to bridge
the gap in precision medicine applications from non-European
populations, with implications for improving breast cancer
prevention and care in Colombia and beyond.

Methods

Study design and setting

This study was an observational case-control study, called “Soy
Generación”, which included data collected between July and
December 2022 in 5 cities in Colombia (Bogotá, Medellín,
Barranquilla, Bucaramanga and Cali). The study included women
(ages 40–80 years) with and without confirmed breast
cancer diagnosis.

Study population

The case group consisted of women (aged 40–65 years) who had
been diagnosed with breast cancer during the study period and who
were part of “Tiempo para ti” (Time for you–in English) program.
This program offers integrated care for breast cancer patients
through risk factor evaluation and clinical monitoring, provided
by SURA Colombia.

The control group was composed of women (aged over 65 years
old) who were insured by SURA Colombia, and who had no history
of breast cancer. These patients were identified through negative
mammography results. They were included to provide a comparison
for assessing risk factors in a population without breast cancer,
serving as a baseline for evaluating genetic and environmental
influences on the development of the disease. Informed consent
was obtained for all participants.

Frontiers in Genetics frontiersin.org02

Velasco Parra et al. 10.3389/fgene.2025.1556907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1556907


Ancestry estimation and principal
component analysis (PCA)

We applied a consistent ancestry estimation and PCA pipeline
across all individual-level datasets used in this study, including PRS
Training, Testing, and Validation cohorts. Genetic ancestry of
individuals was estimated using 99,561 single nucleotide variants
(SNVs) and the iAdmix method (Bansal et al., 2015), leveraging the
1000 Genomes Project reference dataset. Individuals were classified
into five Super-populations: AFR (African), AMR (American), EAS
(East Asian), EUR (European), and SAS (South Asian). Principal
component analysis (PCA) was then performed by projecting
individual-level genotype data onto a pre-computed PCA space
derived from the 1000 Genomes Project dataset. This analysis
yielded ancestry proportions from the five 1,000 Genomes
Superpopulations and generated up to 10 principal components
(PCs), which were used as covariates in GWAS analyses and
downstream PRS modeling.

Description of cohort used in PRS
development

We employed a multi-stage study design integrating diverse
population cohorts to develop, train, test, and validate ancestry-
specific polygenic risk scores (PRS) for breast cancer. The
foundation of PRS construction relied on three ancestry-specific
genome-wide association studies (GWAS), which provided effect
size estimates for score development. These included datasets
representing East Asian, European, and African ancestries,
derived from Biobank Japan (Sakaue et al., 2021; Michailidou
et al., 2017), and the internally conducted Ghana Breast Health
Study (Brinton et al., 2017), respectively.

Individual-level genotype data from five additional multi-
ancestry cohorts were used for training and testing the PRS: the
UK Biobank (UKB) (Bycroft et al., 2018), the Multi-Ethnic Study of
Atherosclerosis (MESA, dbgap accession: phs000209. v2. p1) (Bild
et al., 2002), the San Francisco Bay Area Latina Breast Cancer Study
(SFBALCS, dbgap accession: phs000912. v1. p) (Michailidou et al.,
2017), the Estrogen Receptor Negative Breast Cancer in African
American Women study (CIDR, dbgap accession: phs000669. v1.
p1) and High-Risk Breast Cancer GWAS (HRBC, dbgap accession:
phs000929. v1. p1). These cohorts were selected for their diverse
representation of ancestral backgrounds and phenotypic richness.

For external validation, we used an independent cohort of
1,997 admixed American women from SURA Colombia, selected
based on clinical and demographic inclusion criteria to reflect the
target population for clinical implementation.

GWAS discovery datasets

GWAS summary statistics used for PRS construction were
sourced from three datasets. Two were obtained from previously
published studies: one from Biobank Japan, which included
individuals of East Asian ancestry, and one from Michailidou
et al. (2017), which included primarily European ancestry
individuals. A third GWAS was conducted internally on the

Ghana Breast Health Study cohort using the fastGWA-GLMM
framework (Jiang et al., 2021; Nyante et al., 2019), applied to
individual-level genotype data. For this African ancestry GWAS,
a genetic relationship matrix (GRM) was computed based on
approximately 100,000 linkage disequilibrium (LD)-independent
variants, with age and the first four principal components of
ancestry included as covariates.

Summary statistics underwent quality control and filtering steps
prior to PRS development. Variants with minor allele frequency
(MAF) ≤ 1% were excluded based on ancestry-specific allele
frequencies from the 1000 Genomes Project. In the case of the
largest European GWAS, fine-mapping was conducted using
PolyFun (Weissbrod et al., 2020), with default parameters, with
either one or ten causal variants selected per LD block and three
different ancestry-specific LD maps (AFR, EUR, EAS) sourced from
the PolyFun repository. Ancestry-specific LD maps were sourced
from the PolyFun repository to improve the precision of effect size
estimates. These processing steps yielded three ancestry-specific sets
of GWAS summary statistics and six fine-mapped datasets, which
were used in subsequent PRS construction. These filtering and fine-
mapping procedures resulted in three sets of ancestry-specific
summary statistics and six ancestry-specific fine-mapped datasets,
which were subsequently used in the generation of PRS
(Supplementary Table S1).

Framework for PRS development

In this study, we used Allelica’s DISCOVER v1.3 software
(Busby et al., 2023), a flexible PRS development platform that
enables the integrated implementation of a range of existing
polygenic score construction algorithms. For this analysis, we
applied two distinct strategies: a single-ancestry PRS, developed
using the stacked clumping and thresholding (SCT) method (Privé
et al., 2019) method optimized in a European-ancestry Training
dataset, and a trans-ancestry PRS, built using PRS-CSx (Ruan et al.,
2022), a Bayesian approach that integrates GWAS summary
statistics across multiple ancestral groups while accounting for
linkage disequilibrium. DISCOVER generated a range of
candidate scores, selected the best-performing PRS based on
independent ancestry-specific Training datasets, and confirmed
its predictive performance in separate Testing dataset. This dual
framework, allowing for both population-specific optimization and
improved cross-ancestry generalizability, is described in detail in the
following sections.

Single-ancestry PRS development

Due to its large sample size and increased statistical power, the
European GWAS summary statistics were used to construct the
single-ancestry polygenic risk score. We applied the SCT method
(Privé et al., 2019; Ruan et al., 2022) within Allelica’s DISCOVER
PRS development platform to generate a final panel of variants, risk
alleles and effect sizes for downstream assessment. SCT generates
–124,000 PRS panels by filtering the variants from the original
summary statistics using a variety of different parameters related to
Linkage Disequilibrium (LD) and significance thresholds. The
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resultant 124,000 different panels were then used in a penalized
logistic regression to generate the optimal lineal combination of
scores which maximizes outcome discrimination. The single-
ancestry PRS training dataset, comprising both genotype and
phenotype data, was used to optimize penalization hyperparameters.

Trans-ancestry PRS development

To develop polygenic risk score (PRS) panels, we combined nine
sets of prepared genome-wide association study (GWAS) summary
statistics with the PRS-CSx (Ruan et al., 2022), algorithm
(Supplementary Table S2), which was implemented using
Allelica’s DISCOVER software. PRS-CSx utilizes a high-
dimensional Bayesian regression framework that continuously
shrinks the effect of each variant across multiple trans-ancestry
GWAS. This allows for more accurate estimation of genetic risk by
integrating information from various ancestry groups.

Given that PRS-CSx can simultaneously consider summary
statistics from multiple ancestry groups to develop a consensus
posterior effect, we employed several strategies to combine our
available summary statistics. After combining the datasets, we
ran the analyses with PRS-CSx using a range of hyperparameter
values. In total, we generated 15 distinct PRS panels (Supplementary
Table S2). For each GWAS combination, PRX-CSx was run 4 times
varying the value of the global shrinkage parameter PHI (100, 10–2,
10–4, 10–6), as suggested within PRSCSx documentation. All the
other parameters were set to default values.

PRS training

Weutilized individual-level genotype data from five cohorts to train
and test the PRS: UKB, MESA, HRBC, and SFBALCS, and CIDR.

Details on the size and sources of these cohorts are provided in Table 1.
Training of the single-ancestry PRS was performed in 77,994 European
women from thefirst release ofUKB. This allowed us to identify the best
linear combination of 124,000 different panels, generated through a
range of clumping/thresholding hyperparameters. The best performing
ancestry-specific PRS among single- and trans-ancestry PRS was
identified within the following cohorts: HRBC as European, MESA
as multi-ancestry, and CIDR as African. Cohorts were combined
together and best performing PRS were identified in each ancestry-
specific subgroup. This approach allowed us to identify the most robust
PRS for each population group. PRS performance were quantified by
means of the PRS Odd ratio per Standard deviation (ORxSD) in logistic
regression models with PRS as predictive variable, Brest Cancer as
dependent variable, and age, the first four principal components of
ancestry (PC1-4) and family history of Breast Cancer (when available in
the dataset) as control variables.

PRS testing

To assess the generalizability and predictive performance of the
trained PRS, we used independent samples from the second release
of UKB and the SFBALCS cohorts. Testing was conducted in
ancestry-stratified subgroups corresponding to the populations
included in the training step. PRS performances were quantified
in each ancestry-specific group according to the same methodology
described above. Age, PC1-4 and family history were used as control
variables in the logistic regression models.

PRS validation

For the Colombian validation dataset, we preselected
1997 patients from a total of 20,666 SURA Colombia affiliates

TABLE 1 Datasets used to develop novel ancestry specific PRSs for breast cancer.

Cohort Name Country Cases Controls Ethicity/
Ancestry

Model development
stage

BBJ Biobank Japan Japan 5,551 89,371 EAS PRS Discovery

BCAC Breast Cancer Association
Consortium

Global 122,977 105,974 EUR PRS Discovery

GHANA Ghana Breast Cancer study Ghana 869 1,618 AFR PRS Discovery

CIDR Centre for Inherited Disease Research United States, Barbados,
Nigeria

1,681 2,085 AFR PRS Traininga

MESA Multi-Ethnic Study of Atherosclerosis United States 76 2,947 AFR, EAS, EUR PRS Traininga

SFBALCS San Francisco Bay Area Latinas
Cancer study

United States 622 60 AMR PRS Testing

HRBC High Risk Breast Clinic United States 2,343 2,059 EUR PRS Traininga

UKBB United Kingdom Biobank United Kingdom 143 2,607 AFR, EAS, SAS PRS Traininga

UKBB United Kingdom Biobank United Kingdom 6,269 71,725 EUR PRS Trainingb

UKBB United Kingdom Biobank United Kingdom 14,641 164,309 AFR, EAS, EUR, SAS PRS Testingt

Total 155,172 444,755

aTraining dataset for single- and trans-ancestry PRSs.
bTraining dataset for single-ancestry PRSs.
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based on adherence to specific inclusion criteria, which were
validated using the company’s TERADATA SQL Assistant.
Inclusion criteria included: females aged 40–80 years, living
status, health conditions (including breast cancer), and
mammography reports performed between 2017 and 2021.
Additionally, breast cancer patients who met genetic testing
criteria according to NCCN guidelines were tested with a Next-
Generation Sequencing panel of 30 hereditary cancer genes. Patients
with confirmed pathogenic/likely pathogenic variants were
excluded. Of the 2,618 patients who met these criteria,
2055 consented to participate in the study. After validation of
inclusion and exclusion criteria, 58 patients were excluded (see
flowchart in Supplementary Figure S1). The final clinical
validation cohort included 1997 patients: 1,487 controls and
510 cases. Baseline demographics and clinical data were collected
from the electronic medical record (EMR) database.

DNA was extracted from blood samples collected from
individuals in the validation cohort using the Applied Biosystems
MagMAX DNA Multi-Sample Ultra 2.0 kit system, operated on the
KingFisher Flex Magnetic Particle Processor 96DW platform. DNA
quantity was determined using the Qubit 3 machine. Genotyping
was performed using the Illumina InfiniumHTS (High-Throughput
Screening) Global Screening Array v3.0 (GSAv3.0) platform on the
Illumina iScan Platform, capable of examining approximately
750,000 single-nucleotide variants (SNVs) and copy number
variants (CNVs) per sample. The end-to-end analysis workflow
was handled by the Biodiscovery NxClinical SW platform. Raw
genotype data were imputed into a joint callset of
82,579,889 genome-wide variants using the
BEAGLEv5.4 imputation tool and the 1000 Genomes Project
v3 Imputation Reference Panel.

Statistical analysis

Descriptive statistics (mean, median, percentiles, proportions)
were used, with associations assessed using Fisher´s exact test or
Chi-square (p < 0.05 considered significant). Differences between
groups were tested using Student’s t-test, Mann-Whitney U, and
Kruskal–Wallis tests, with normality assessed by the Shapiro-Wilk
test. Polygenic score differences across ancestries were evaluated
using Student’s t-test or Mann-Whitney U, as appropriate. Model
applicability was assessed by calculating Odds Ratios (OR), standard
deviation (SD), p-values, and the Area Under the Receiver
Operating Characteristic (AUC) curve.

Estimating risk

Polygenic risk scores (PRS) were calculated as the additive sum
of effect sizes for risk alleles:

PRS � ∑
n

i�1
βixi

Where βi is the effect size (logarithm of the OR) for SNPi and xi

is the allele dose (0, 1, or 2). PRS values were adjusted using principal
components from the 1000 Genomes Project. Relative risk was

estimated using the z-score of the PRS value in an ancestry-
matched reference distribution:

Relative Risk � exp Z p log ORxSD( )( )

Relative risks were averaged across five PRS, weighted by
ancestry proportions. After obtaining the relative risk values for
each patient, we estimated the absolute 10-year risk of breast
cancer using obtained epidemiological data for specific localities
in Colombia (Medellin, Bogota, Cali, Barranquilla) collected for
the purposes of this study (Supplementary Figure S2) and
generated recalibrated risk curves for each using the approach
of Darst et al. (2021). The approach constrains the PRS-specific
absolute risks for a given age to be equivalent to the age-specific
incidence for the entire population. Therefore age-specific
incidence rates were calculated to increase or decrease based on
the PRS category estimated risk and the proportion of the
population within the PRS category. Note that both incidence
and survival are a function of time (age) and are calculated for a
given percentile of the PRS (k).

Absolute 10-year breast cancer risk was estimated using
Colombian epidemiological data, recalibrated with risk curves
based on Darst et al. (2021). Cumulative 10-year risks were
calculated using the following formula (34):

ARk t( ) � ∑
t

0

PND t( )Sk t( )Ik t( )

Where PND(t) is the probability of survival from other causes,
Sk(t) is survival from breast cancer, and Ik(t) is breast cancer
incidence for risk category k.

Reclassification methods

Reclassification was performed to evaluate the impact of
integrating Polygenic Risk Scores (PRS) with clinical risk factors
on breast cancer risk stratification. The reclassification process
involved comparing the predicted risk categories before and after
the inclusion of PRS. We used the Net Reclassification Improvement
(NRI) and Integrated Discrimination Improvement (IDI) metrics to
quantify the improvement in risk prediction. Participants were
categorized into risk strata based on their predicted probabilities,
and changes in these categories were analyzed to assess the
effectiveness of the PRS integration. To further assess the impact
of PRS on screening recommendations, we estimated the age at
which each woman’s risk was equal to that of a 50-year-old woman,
which is the current recommended age to start mammography
screening in Colombia. This estimation was based on the PRS
percentile assigned to each woman. We then compared this
estimated age to the actual age of diagnosis for women diagnosed
under the age of 50.

Incorporating breast cancer PRS into
risk models

Logistic regression was used to estimate effect sizes of risk
factors, adjusting for ancestry and family history components.
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Discriminatory capacity was assessed using the ROC curve. The PRS
model included:

Cabreast � αo + α1PGS + α2edad + α3F1 +/ + αkPC1 +/αk+lPCl

+ ε

In the given context, Cabreast indicates a dichotomous variable
(1: case, 0: control), Fi represents the literature-reported factors
associated with cancer, and PCl corresponds to the principal
component l associated with ancestry.

In addition to evaluating single-ancestry and trans-ancestry PRS
separately, we developed a combined PRS model by integrating the
five ancestry-specific PRS into a weighted linear model. Weights
were derived from the ancestry proportions estimated for each
individual through iAdmix, as previously described. The
combined PRS was calculated as a weighted average of each
ancestry-specific PRS, where the contribution of each score was
proportional to the individual´s inferred ancestry composition. This
approach aimed to maximize predictive performance in admixed
populations by leveraging information frommultiple ancestries. The
combined PRS was subsequently included as a predictive variable in
logistic regression models, alongside age, principal components of
ancestry (PC1-PC4), and family history of breast cancer.

Discriminatory performance was assessed using the area under
the received operating characteristic curve (AUC) and compared
with single-ancestry and trans-ancestry models.

Results

Clinical and phenotypic characteristics

A total of 1,997 women were recruited for the study, of whom 510
(25.5%) were sporadic breast cancer cases, and 1,487 (74.5%) were
assigned to the control group. Following laboratory-based
revalidation of the data and variables collected during recruitment
and project phases, clinical validation led to the exclusion of
21 individuals from the control group and 37 from the case group
(Supplementary Figure S1). The mean age of the cases at the time of
study entry was 55 years, whereas the age of the controls was 69 years.
Clinical and phenotypic characteristics, known risk factors for breast
cancer, were compared between cases and controls.

Significant differences were observed for several variables. Study
entry weight was higher in cases than controls (median: 66 kg vs.
63 kg, p < 0.001), and age at menarche was slightly lower among
cases (median: 12 vs. 13, p < 0.001). Duration of hormone

TABLE 2 Clinical and Phenotypic characteristics of the patients in “Soy Generación” Study.

Characteristic Case, N = 510a Control, N = 1,487a p-valueb

Age 55 (49, 61) 69 (67, 71) <0.001

BMI when diagnosed 26 (24, 30) 0 (0, 0) NA

Study entry weight 66 (59, 74) 63 (56, 70) <0.001

Age of menarche 13 (12, 14) 13 (12, 15) <0.001

History of at least one pregnancy 433 (85%) 1,251 (84%) 0.7

Age at first deliver 24.0 (20.0, 28.0) 23.0 (20.0, 27.0) 0.3

Age at Menopause 48 (45, 51) 49 (45, 52) 0.2

Hormone Replacement Therapy 0.7

Estrogen treatment only 22 (81%) 19 (76%)

Estrogen and Progestogen treatment 5 (19%) 6 (24%)

Hormone replacement therapy <0.001

2–5 years (%) 15 (56%) 3 (12%)

Unknown 1 (3.7%) 3 (12%)

More than 5 years 3 (11%) 16 (64%)

Less than 2 years 8 (30%) 3 (12%)

Breast Density Residual <0.001

A 41 (8.0%) 302 (20%)

B 218 (43%) 866 (58%)

C 204 (40%) 288 (19%)

D 47 (9.2%) 31 (2.1%)

aMedian (IQR); Mean (SD); n (%).
bWilcoxon rank sum test; Welch Two Sample t-test; Pearson’s Chi-squared test; Fisher’s exact test.
cBMI: body mass index.
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replacement therapy (HRT) use also differed between groups (p <
0.0001), with higher proportion of controls having used HRT for
more than 5 years. Conversely, no statistically significant differences
were found for several reproductive factors, including history of at
least one pregnancy, age at first delivery, age at menopause, or type
of hormone replacement therapy regiment (Table 2).

Mammographic breast density exhibited a statistically
significant relationship with breast cancer (p < 0.001) (see also
Supplementary Table S3). The breast density distribution according
to the ACR BI-RADS classification, showed a higher proportion of
B, C and D types in the cases compared to the controls: 43% of cases
were classified as type B compared to 19% of controls, 40% as type C
of cases compared to 19% of controls, and 9.2% as type D of cases
compared to 2.1% in controls (Table 2). When analyzing the impact
of the clinical variables detected on their ability to discriminate for
breast cancer, we observed areas under the curve ranging from
0.51 to 0.66, and for the multivariate model it was equal to 0.76. The
variables of breast density and family history are the ones with the
highest predictive power on their own with an AUC of 0.66 and
0.64 respectively.

Development and testing of 5 ancestry-
specific PRS for breast cancer

We evaluated 15 trans-ancestry PRS panels developed with PRS-
CSx alongside a single-ancestry PRS across five genetic ancestry-
specific cohorts. The best-performing PRS in each cohort was
identified based on the highest Odds Ratio per Standard
Deviation (ORxSD) (Table 3). The ORxSD ranged from 1.45
(1.31–1.77) for Allelica_BC_AFR_2022 in the African ancestry
group to 1.75 (1.73–1.77) in the European ancestry group. The
Allelica_BC_EUR_2020 PRS, previously developed using the
Stacked Clumping and Thresholding algorithm (Patel and Khera,
2022), was the best-performing PRS in the European and East Asian
ancestry groups. An ancestry adjustment and recalibration model
revealed that 85% of study participants self-identified as admixed.

Ancestry classification using iAdmix and 1000 Genomes Project
superpopulations categorized participants into major ancestry
groups (Figure 1A). Most individuals were classified as Admixed
American (AMR) (84% of cases and 91% of controls), followed by

European ancestry (14% of cases and 6% of controls). African
ancestry was the least represented (1.5% of cases and 2.1% of
controls). Significant differences in PRS distributions between
cases and controls were observed across ancestry groups
(Figure 1B; Supplementary Tables S4,S5).

Predictive performance of the multi-
ancestry PRS in the colombian population

The ORxSD of the multi-ancestry PRS applied to the Colombian
population was 1.56 (95% CI: 1.39–1.74), indicating a 1.56-fold
increased risk of breast cancer per standard deviation in the PRS.
This result was consistent with values reported for European (1.75;
95% CI: 1.73–1.77) and African (1.45; 95% CI: 1.31–1.60)
populations but exceeded those from smaller American cohorts
(1.50; 95% CI: 1.17–1.93) (Table 3).

PRS values were used to estimate relative and absolute genetic
risk. Women in the top decile of the PRS distribution had a 2.15-fold
(95% CI: 1.77–2.62) increased risk compared to the reference
quintile, while those in the highest 5% exhibited a 2.35-fold (95%
CI: 1.90–2.93) increased genetic risk. These findings underscore the
efficacy of PRS in stratifying individuals by genetic susceptibility to
breast cancer (Figure 1C; Supplementary Table S6).

Adjusted for family history and ancestry, the AUC of the PRS
was 0.72 (95% CI: 0.69–0.74). When combining clinical, imaging,
and genomic data, the AUC increased to 0.79 (95% CI: 0.76–0.81),
with genetic factors contributing approximately 8% to the prediction
when family history alone was considered, and 3% when all factors
were included (p < 1.4e-12) (Figure 2). Comparisons with datasets
from other studies revealed similarities in PRS metrics
(Supplementary Table S7). Despite a relatively modest AUC,
PRS-based patient reclassification demonstrated clinical relevance,
particularly when integrated with modalities like BI-RADS.

Reclassification results

The reclassification analysis demonstrated significant
improvements in risk prediction when PRS was integrated with
clinical factors. The NRI indicated that 15% of participants were

TABLE 3 OR*SD of the SURA Population and other populations using TARGET DATA.

Genetic ancestry PRS ORxSD Total samples in testing
dataset

Algorithm used and panel

AMR Allelica_BC_AMR_2022 1.50 (1.17–1.93) 368 PRS-CSx - AFR-F10_AFR-G_EUR-F10_EUR-G
(PHI 10–4)

AFR Allelica_BC_AFR_2022 1.45 (1.31–1.60) 3,379 PRS-CSx - EAS-F1_EUR-F1 (PHI 10–4)

EUR Allelica_BC_EUR_2020 1.75 (1.73–1.77) 172,588 SCT - single-ancestry PRS

SAS Allelica_BC_SAS_2022 1.61 (1.43–1.84) 1,764 PRS-CSx -AFR-F1_EAS-F1 (PHI 10–4)

EAS Allelica_BC_EUR_2020 1.71 (1.49–1.95) 1,219 SCT - single-ancestry PRS

SURA/Allelica multiple 1.56 (1.40–1.75) 1,997 multiple

Details of polygenic risk scores derived from DISCOVER. The odds ratio per standard deviation (ORxSD) and total sample size of the Testing cohort are listed. The final row describes the

performance of the above five ancestry-specific scores, combined using an ancestry-specific weighted average, across all individuals from the Colombia PRS, Validation cohort. For each

ancestry-specific, the algorithm used and hyperparameter value is shown. See Supplementary Tables S1,S2 for further details.
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correctly reclassified into higher risk categories, while 10% were
correctly reclassified into lower risk categories. The IDI showed an
overall improvement in the discrimination ability of the model, with
an increase in the AUC from 0.72 to 0.79. These results underscore
the utility of PRS in enhancing breast cancer risk stratification.

PRS stratification categorized participants into four risk groups
based on the percentile distribution in the control population: low-
risk (<30th percentile), standard-risk (30th-69th), moderate-risk
(70th-89th), and high-risk (≥90th percentile). Among breast
cancer cases, 8.6% were classified as high-risk, 17.8% as
moderate-risk, 33.7% as standard-risk, and 39.8% as low-risk. In
the control group, 9.7% were high-risk, 12.8% moderate-risk, 31.3%
standard-risk and 46.3% low-risk.

Among the 231 breast cancer cases diagnosed before age 50, 104
(45.0%) had an estimated screening eligibility age lower than their
diagnosis age. On average, high-risk patients would have qualified

for screening 15.2 years earlier, moderate-risk patients 8.4 years
earlier, and low-risk individuals approximately 5.3 years later than
the standard screening age of 50.

Cumulative breast cancer risk was estimated based on observed
incidence and mortality data across five Colombian regions
(Figure 3). Risk was highest in Barranquilla and Medellín, with
individuals in the highest PRS decile showing more than double the
lifetime risk compared to those with average PRS values, and a
sevenfold increased risk compared to the lowest PRS group
(Figure 4). Ten-year risk peaked around age 60 in all regions.

Discussion

Few studies have examined the effect of polygenic risk scores
(PRS) in Latin American or Hispanic populations (Patel and Khera,

FIGURE 1
Distribution of genetic ancestries and PRS values in the Colombia PRS validation cohort by cases and controls. (A) Separately for cases and controls,
we show the genetic ancestries present in 1997 individuals from Colombia grouped by major ancestry label; (B) the distribution of standardized PRS
values in cases and controls, grouped by major ancestry label; (C) the Odds Ratio associated with being in a different strata of the PRS compared to the
central quintile (40–60 percentile) based on a logistic regression controlling for the first 4 principal components of ancestry and family history.
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2022; Gaziano et al., 2016; Duncan et al., 2019; McArdle et al., 2021;
Félix et al., 2023). The limited genomic characterization of these
admixed populations poses challenges in validating PRS-based
strategies, particularly for complex diseases such as breast cancer
(Félix et al., 2023). This study provides clinical validation of PRS in a
highly admixed Colombian cohort. Despite the diverse ancestry
composition, the observed OR per standard deviation and AUC
values suggest comparable predictive performance to European
datasets, reinforcing the potential to extend genomic risk
prediction to underrepresented populations (Sweeney et al., 2008;
Martínez et al., 2017). Our findings were additionally supported by

comparisons with external biobanks, showing consistent risk
discrimination.

Multiple PRS studies have focused on breast cancer risk,
largely in European and North American cohorts. Mavaddat
et al. developed a PRS with 313 SNPs optimized for estrogen
receptor (ER)-specific breast cancer, reporting an ORxSD of 1.61
(95% CI: 1.57–1.65) and an AUC of 0.630 (95% CI: 0.628–0.651)
in a European cohort (Mavaddat et al., 2019). Despite including
only 2.2% Hispanic participants, these results are comparable to
our Colombian population. Similarly, Allman et al. observed
improved ORxSD values when integrating 71 SNPs with the
Gail or IBIS models in Hispanic women, findings corroborated
in their later work (Allman et al., 2021; Allman et al., 2015).
Shieh et al. demonstrated that integrating classical risk factors
with PRS improved AUC values in Latin American women,
aligning closely with our findings (Shieh et al., 2016; Shieh
et al., 2020).

Triviño et al. reported PRS performance in a Spanish cohort,
yielding an ORxSD of 1.41 (95% CI: 1.24–1.61) and an AUC of 0.8
(95% CI: 0.77–0.83), emphasizing ancestry-related nuances
(Trivino et al., 2020). Ray et al. confirmed adequate
discrimination of PRS-based models in a Colombian cohort,
although without reporting overall ORxSD (Ray et al., 2017).
Collectively, these studies highlight the robust predictive power
of our PRS, which appears well-calibrated for the Colombian
population.

Breast cancer prevalence differs across populations due to
variations in reproductive behavior (Sweeney et al., 2008),
socioeconomic factors (Martínez et al., 2017), and ancestry
(Hines et al., 2017). The ancestry composition of our cohort
aligns with meta-analyses of Latin Americans but differs from the
higher European ancestry proportions reported by Ruiz et al. and
Rodrigues de Moura et al. in the central regions of Colombia and

FIGURE 2
Figure 2. AUC graph of sura population compared to the prs
model of Mavaddat et al. (Amir et al., 2010).

FIGURE 3
10 years and Cumulative lifetime risk of breast cancer based on region-specific incidence and mortality data and the effect size of the 5 ancestry-
specific PRSs in Colombia.
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Latin America (Ruiz et al., 2022; Rodrigues de Moura et al., 2015).
Interestingly, Rey et al. found that Colombian women with
higher American and lower European ancestry proportions
had elevated odds of developing breast cancer (Rey-Vargas
et al., 2022).

A significant risk of breast cancer is associated with germline
pathogenic/likely pathogenic (P/LP) variants in high-or
moderate-penetrance cancer-predisposing genes (Rojas and
Stuckey, 2016). Although carrier status of P/LP variants was
not systematically assessed across the entire cohort, individuals
identified through NCCN clinical criteria were excluded from
the analysis.

Other known risk factors for breast cancer include family
history, particularly in first-degree relatives (Collaborative Group
on Hormonal Factors in Breast Cancer, 2001), hormonal factors,
lifestyle (Mcpherson et al., 2001), and breast density (Amir et al.,
2010). All these variables, except the age of first birth, showed
significant differences in women with breast cancer in our cohort.
Alongside traditional risk prediction models such as BRCAPRO,
Gail, BCSC, or Tyrer-Cuzick, there is growing interest in
incorporating genomic risk factors like PRS to refine clinical risk
stratification strategies.

The debate on optimal breast cancer screening strategies has
shifted toward more personalized approaches. Wolfson et al. argued
that PRS-based stratification may be more impactful than focusing
solely on rare delirious variants or family history (Wolfson et al.,
2021). Ho et al. demonstrated the superiority of combinatorial
models that include PRS, family history, and deleterious variant
detection, achieving a two-year AUC of 0.622 (0.608–0.636) (Ho
et al., 2023; Morabia et al., 2003; He et al., 2006; Sims et al., 2008;
Boora et al., 2016; Versmissen et al., 2015; Li et al., 2019; Kryukov
et al., 2009).

Notably, PRS stratification identified significant proportions of
women under 50 years of age who would benefit from screening–an
improvement over Colombia´s current guidelines, which
recommend mammography starting at age 50. High-risk patients
in our cohort would have benefited from screening an average of
15 years earlier, with moderate-risk patients beginning screening
approximately 8 years earlier. This underscores the value of PRS in
personalizing screening strategies to better address early-onset cases.
Our team is developing follow-up protocols tailored to patient risk
levels, incorporating mammography, ultrasound, and MRI with
annual monitoring starting at age 40. While these protocols align
with international debates, further evaluation of clinical utility is
underway (Ray et al., 2017; Eby, 2017).

The PRS presented here offers a significant advancement in
breast cancer risk stratification for Colombian women. By
integrating clinical, imaging, and genomic data, this model
provides a comprehensive framework for personalized secondary
prevention and anticipatory health management across diverse
populations. Future work should prioritize the inclusion of
underrepresented ancestries–such as Afro-Colombian and
Indigenous populations–to improve the calibration and equity of
PRS models in Latin America. Although most PRS are trained on
European ancestry data, local validation is essential across all
ancestral backgrounds presented in admixed populations such as
Colombia (Bryc et al., 2010). These findings provide a foundation for
incorporating genomic medicine into regional screening programs
while paving the way for novel population management strategies
and will help reduce disparities in predictive accuracy and ensure
equitable implementation of genomic tools (Clarke and Thirlaway,
2011; Sweet et al., 2017; Roux et al., 2022; Brooks et al., 2021; French
et al., 2020).

Conclusion

This study provides a PRS and data consistent with findings
from European populations, with clinical validation values
demonstrating greater precision than several reports analyzing
Latin populations, including those with Iberian or Colombian
ancestry. At the time of this publication, it represents the most
comprehensive Colombian case-control association study, with
the best representation of the country’s multi-territoriality and
multi-ancestry, focused on the clinical validation of a risk
stratification test that integrates clinical, imaging, and genomic
data. This unique model offers accurate risk stratification for
sporadic breast cancer and holds promise for clinical
applications in personalized secondary prevention, aiming to
anticipate health management needs for patients and
populations across Colombia.

Limitations

Although this study focuses on analyzing the risk of sporadic
breast cancer, there remains a possibility that some
cases—clinically not meeting NCCN criteria for hereditary
breast cancer—may carry pathogenic or likely pathogenic
variants. Our PRS, based on an array platform, was not

FIGURE 4
Projection of cases under 50 years of age. We applied the PRS to
each woman to assign them a PRS percentile and from this we
estimated the age at which her risk was equal to that of a 50-year-old
woman and define this as the age to start screening. Of the
231 cases diagnosed under the age of 50, 104 (45.0%) have an
estimated age of screening that is younger than the age of diagnosis.
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designed to detect such variants, representing a potential
limitation in the scope of genetic information captured.

One limitation of our study is the variability in the completeness
of family history information among participants. Approximately
30% of the participants had limited family history data, which may
have impacted their classification as sporadic cases. This limitation
should be considered when interpreting the results, as some
individuals may have undetected genetic predispositions due to
incomplete family history information. However, we now have
comprehensive electronic medical records that include detailed
family history information for first and second-degree relatives,
with an average follow-up period of 5–8 years.

On the other hand, it is important to acknowledge that 55% of
women diagnosed before age 50 would not have met the PRS-based
threshold for early screening. This highlights a key limitation of
current polygenic risk models and underscores the need for more
comprehensive approaches. To address this, our team is actively
working on the development of integrated models that combine PRS
with clinical, imaging, and lifestyle factors to improve early
detection, particularly in younger women. These efforts will be
supported by future prospective studies aimed at validating the
clinical utility and equity of such models in diverse Latin American
populations.

While this is a clinical validation study, future research should
evaluate qualitative and quantitative aspects related to the
psychosocial impact on participants. This includes anxiety
stemming from cancer risk stratification, concerns about
perceived cancer risk, efforts to seek support and information,
and behaviors associated with understanding and accepting risk
information. Such evaluations are crucial to recognizing the broader
consequences of these interventions at both personal and population
levels. Additionally, expanding the sample size and including
individuals with diverse ancestries, particularly Afro-Colombian
and European populations, is necessary to enhance the predictive
quality and accuracy of risk states. This is especially important given
the known lower performance of predictive parameters in
populations with African ancestry and Caribbean women
compared to other groups.
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