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Introduction: Childhood asthma (CA) is a common chronic respiratory condition
that significantly impacts the respiratory function and quality of life of affected
children. With a rising global incidence, CA poses substantial physical,
psychological, and economic burdens. This study aimed to elucidate the role
of pyroptosis-related differentially expressed genes (PRDEGs) in CA by
conducting a comprehensive bioinformatics analysis using an integrated
dataset from the Gene Expression Omnibus.

Methods: Differential expression analysis was performed using the R package
limma, identifying 2,069 differentially expressed genes (DEGs), with
1,158 upregulated and 911 downregulated genes in CA compared with the
control group. Among these DEGs, 45 PRDEGs were identified, suggesting the
potential involvement of pyroptosis in the pathological processes of CA. Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses
showed that PRDEGs were primarily enriched in biological processes related to
the immune response, cell disassembly, and inflammatory pathways.

Results: Immune cell infiltration analysis using the CIBERSORT algorithm
revealed significant differences between the CA and control groups, with
increased macrophages M0, activated mast cells, and γδ T cells and decreased
resting natural killer cells in the CA group. Among the six hub genes identified,
BAX, BECN1, MAVS, and BCL2 exhibited statistically significant expression
differences between the groups (p < 0.05 in GEO data; p < 0.0001 or p <
0.001 in quantitative real-time polymerase chain reaction validation), while
NOD2 and NFKBIA showed no significant differences. Receiver operating
characteristic analysis of BAX, BECN1, MAVS, and BCL2 supported their
potential as diagnostic biomarkers for CA, with area under the curve values
ranging from 0.602 to 0.621 (95% confidence interval: 0.510–0.712).

Discussion: Our findings provide novel insights into the molecular mechanisms
underlying CA and highlight the diagnostic potential of BAX, BECN1, MAVS, and
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BCL2 as biomarkers. Targeting PRDEGs may offer new therapeutic avenues, and
further research is warranted to validate these findings and explore the clinical
applicability of suggested biomarkers in precision medicine for managing CA.
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1 Introduction

Childhood asthma (CA) is a common chronic respiratory
condition affecting millions of children worldwide, characterized
by recurrent wheezing, shortness of breath, chest tightness, and
coughing. The rising global prevalence, estimated at 10%–14% in
high-income countries and over 20% in urbanized regions of
developing countries, poses significant physical, psychological,
and economic burdens on children, families, and healthcare
systems (Asher et al., 2020; Trikamjee et al., 2022). CA is a
complex, multifactorial disease influenced by genetic,
environmental, and immunological factors; however, current
therapeutic strategies, including pharmacological treatments and
environmental management, frequently fail to adequately control
symptoms or improve the quality of life in pediatric patients
(Mihailidou et al., 2004; Szefler, 2007). Emerging evidence
suggests a role for pyroptosis, an inflammatory form of
programmed cell death, in CA pathogenesis; however, the specific
involvement of pyroptosis-related genes (PRGs) remains
underexplored. This study employed bioinformatics analysis to
investigate the role of PRGs in CA, aiming to uncover molecular
mechanisms that could inform precision medicine strategies for
improved asthma care in children.

2 Materials and methods

2.1 Data download

CA datasets GSE27011 and GSE40888 were downloaded from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) using the R package GEOquery (version 2.70.0).
Both datasets, derived from human blood samples, were selected due
to their relevance to CA and consistency with the study’s focus on
pediatric populations, with all samples from adolescents and
children. The chip platform for both datasets was GPL6244, and
specific information is presented in Table 1. Dataset
GSE27011 comprised 36 CA cases and 18 controls, with cases
stratified based on disease severity (mild to severe asthma), while

GSE40888 included 65 CA and 40 controls, distinguished by allergic
versus non-allergic asthma phenotypes. These datasets were selected
for their sample size (totaling 101 CA cases and 58 controls),
representation of diverse disease states, and compatibility with
batch effect removal, enhancing the statistical power and
reliability of subsequent differential expression analyses. All
children in the CA and control groups were included in the study.

PRGs were acquired from the GeneCards database (https://
www.genecards.org/). The GeneCards database provides
comprehensive information on human genes. Overall, 593 PRGs
were identified using “Pyroptosis” as the search term and filtering for
“protein-coding” PRGs. Additional PRGs were obtained in
published literature from the PubMed website (https://pubmed.
ncbi.nlm.nih.gov/) (Dong et al., 2021), resulting in a total of
52 PRGs. After merging and removing duplicates, 599 PRGs
were obtained (Supplementary Table S1).

In this study, the R package sva (Leek et al., 2012) (version
3.50.0) was employed to eliminate batch effects from the
GSE27011 and GSE40888 datasets, producing integrated GEO
datasets (combined datasets) comprising 101 CA cases and
58 controls. The ComBat function within sva was utilized to
adjust for systematic batch variations, ensuring data consistency
between the two datasets. Principal component analysis (PCA) was
conducted on the expression matrices before and after correction
using the R package FactoMineR (Version 2.4) to verify the
effectiveness of batch effect removal. PCA plots (Figures 2C,D)
illustrated that pre-correction samples were clustered based on
datasets (GSE27011 vs. GSE40888), whereas post-correction
samples were clustered according to biological condition (CA vs.
control), confirming the complete removal of batch effects. The
combined datasets were subsequently standardized using the R
package limma (Ritchie et al., 2015) (Version 3.58.1), including
probe annotation, normalization, and other preprocessing steps to
ensure data consistency.

TABLE 1 Gene Expression Omnibus (GEO) microarray chip information.

Dataset GSE27011 GSE40888

Platform GPL6244 GPL6244

Species Homo sapiens Homo sapiens

Tissue Blood Blood

Samples in the CA group 36 65

Samples in the control group 18 40

Reference PMID: 23222870 PMID: 25226851

GEO, gene expression omnibus; CA, childhood asthma.

Abbreviations: CA, childhood asthma; DEGs, differentially expressed genes;
PRGs, pyroptosis-related genes; PRDEGs, pyroptosis-related differentially
expressed genes; GSEA, gene set enrichment analysis; GO, gene ontology;
KEGG, Kyoto Encyclopedia Of Genes And Genomes; PPI, protein–protein
interaction; ROC curve, receiver operating characteristic curve; BH,
Benjamini–Hochberg; BP, biological process; CC, cellular component; MF,
molecular function; GEO, Gene Expression Omnibus; PCA, principal
component analysis; MCC, maximal clique centrality; MNC, maximum
neighborhood component; EPC, edge-percolated component; TF,
transcription factor; AUC, area under the curve; NK cells, natural killer cells.
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2.2 Differentially expressed genes (DEGs)
associated with asthma-related pyroptosis
in children

Based on the stratification of the combined datasets, samples
were categorized into the CA and control groups. Differential
expression analysis was performed using the R package limma
(Version 3.58.1) with a consistent threshold set at |logFC| > 0 and
p < 0.05 using the Benjamini–Hochberg (BH) method for false

discovery rate (FDR) correction. Genes exhibiting |logFC| >
0 and p < 0.05 were classified as upregulated DEGs, whereas
those with |logFC| < 0 and p < 0.05 were designated as
downregulated. This threshold was selected to identify
biologically relevant genes while mitigating multiple testing
effects, thereby ensuring statistical robustness in this exploratory
study. A volcano plot was generated using the R package ggplot2
(Version 3.4.4) to visualize the results, highlighting DEGs with
significant changes.

FIGURE 1
Flow chart for the comprehensive analysis of pyroptosis-related differentially expressed genes CA, childhood asthma; DEGs, differentially expressed
genes; PRGs, pyroptosis-related genes; PRDEGs, pyroptosis-related differentially expressed genes; GSEA, gene set enrichment analysis; GO, gene
ontology; KEGG, Kyoto Encyclopedia Of Genes And Genomes; PPI, protein–protein interaction; ROC curve, receiver operating characteristic curve; TF,
transcription factor.
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To obtain pyroptosis-related DEGs (PRDEGs) associated with
CA, we intersected all DEGs with |logFC| > 0 and p < 0.05 from
the combined datasets with PRGs, and a Venn diagram was
drawn using the R package VennDiagram (Version 1.7.3) to
identify PRDEGs.

2.3 Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis

GO analysis (Mi et al., 2019) is a common method used
in large-scale functional enrichment studies on biological
processes (BP), cellular components (CC), and molecular
functions (MF). KEGG (Kanehisa and Goto, 2000) is a
widely used database that stores information on genomes,
biological pathways, diseases, and drugs. GO and
KEGG enrichment analyses of PRDEGs were performed
using the R package clusterProfiler (Yu et al., 2012) (Version
4.10.0). The entry screening criteria were adjusted to p <
0.05 (FDR or q value) < 0.25, using the BH p-value
correction method.

2.4 Gene set enrichment analysis (GSEA)

GSEA (Subramanian et al., 2005) is employed to evaluate the
distribution patterns of genes within a pre-specified gene set against
a list of genes, which is organized according to its correlation with a
specific phenotype, thereby elucidating its role in that phenotype. In
this study, genes from the combined datasets were ranked by logFC,
and analyses were performed using the R package clusterProfiler
(Version 4.10.0). Parameters included 1,000 permutations, a seed
value of 2,022, and gene set sizes with a range of 10–500 genes per
gene set. TheMolecular Signatures Database (MSigDB) was accessed
for c2 gene sets (Liberzon et al., 2011). All canonical pathways were
assessed with Cp. All. V2022.1. Hs. Symbols, with GMT (3050), used
for GSEA. The screening criteria for GSEA were adjusted to p < 0.05,
FDR value <0.25, and BH p-value correction.

2.5 Protein–protein interaction (PPI)
network and hub gene screening

The PPI network, which represents interactions between
proteins, was analyzed using the STRING database (Szklarczyk

FIGURE 2
Batch effect correction of GSE27011 and GSE40888 (A) Boxplot of the combined GEO dataset before batch effect correction, showing significant
differences in expression values and high sample variability for the CA datasets GSE27011 (orange) and GSE40888 (green). (B) Boxplot of the combined
GEO dataset after batch effect correction, displaying a more uniform expression value distribution and reduced inter-group differences. (C) PCA plot of
the dataset before batch effect correction, highlighting pronounced distributional differences between GSE27011 (orange) and GSE40888 (green)
samples. (D) PCA plot of the combined GEO dataset after batch effect correction, showing increased sample clustering and overlap between GSE27011
(orange) and GSE40888 (green), indicating effective mitigation of batch effects. PCA, principal component analysis; CA, childhood asthma; GEO, Gene
Expression Omnibus.
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et al., 2019) to identify relationships among known and predicted
proteins. PRDEGs associated with pyroptosis were investigated
using STRING, with a minimum interaction score of 0.7 (low
confidence) as the criterion for building the PPI network. To
identify key genes, the following five algorithms from the
CytoHubba plugin (Chin et al., 2014) within the Cytoscape
software (Shannon et al., 2003) were employed: maximal clique
centrality (MCC), degree, maximum neighborhood component
(MNC), edge-percolated component (EPC), and closeness. Based
on the PRDEG scores in the PPI network, the top 10 genes were
selected. A Venn diagram was subsequently constructed to pinpoint
overlapping hub genes across the five algorithms.

2.6 Construction of regulatory network

MicroRNA (miRNA) plays an important regulatory role in
biological development and evolution. They regulate various target
genes, while multiple miRNAs can regulate the same target gene. To
analyze the relationship between pyroptosis-related hub genes and
miRNAs, miRNAs related to pyroptosis-related hub genes were
obtained from the starBase database (Li et al., 2014). Cytoscape
software was used to visualize themRNA-miRNA regulatory network.

Transcription factors (TFs) control gene expression by
interacting with target genes (mRNAs) at the posttranscriptional
stage. TFs retrieved from the hTFtarget (Zhang et al., 2020) database
were merged to analyze their regulatory effects on pyroptosis-related
hub genes, and the mRNA-TF regulatory network was visualized
using Cytoscape software.

2.7 Differential expression and receiver
operating characteristic (ROC) analysis of
hub genes

To further explore the differences in the expression of
pyroptosis-related hub genes in the CA and control groups of the
combined datasets, a group comparison map was drawn based on
the expression levels of pyroptosis-related hub genes. The R package
pROC was applied to plot the ROC curve and calculate the area
under the curve (AUC) of the pyroptosis-related hub genes. The
diagnostic value of pyroptosis-related hub gene expression in CA
was evaluated. The AUCs of the ROC curves were generally between
0.5 and 1. AUC >0.5 indicated that the expression of the molecule
tends to promote the occurrence of the event. The closer the AUC
was to 1, the better the diagnostic effect. AUC values of 0.5–0.7,

TABLE 2 Results of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for pyroptosis-related differentially
expressed genes (PRDEGs).

Ontology ID Description Gene ratio Bg ratio p-value p-adjust q-value

BP GO: 0031331 Positive regulation of cellular catabolic process 11/45 449/18,800 6.23 e-09 1.37 e-05 8.26 e-06

BP GO: 0032495 Response to muramyl dipeptide 4/45 20/18,800 1.35 e-07 1.04 e-04 6.27 e-05

BP GO: 1901653 Cellular response to peptide 9/45 361/18,800 1.55 e-07 1.04 e-04 6.27 e-05

BP GO: 1901652 Response to peptide 10/45 491/18,800 1.89 e-07 1.04 e-04 6.27 e-05

BP GO: 0009615 Response to virus 9/45 392/18,800 3.10 e-07 1.37 e-04 8.22 e-05

CC GO: 0030139 Endocytic vesicle 6/45 342/19,594 1.24 e-04 2.13 e-02 1.61 e-02

CC GO: 0045335 Phagocytic vesicle 4/45 138/19,594 2.81 e-04 2.13 e-02 1.61 e-02

CC GO: 0044194 Cytolytic granule 2/45 13/19,594 3.96 e-04 2.13 e-02 1.61 e-02

CC GO: 0005844 Polysome 3/45 65/19,594 4.48 e-04 2.13 e-02 1.61 e-02

CC GO: 0036020 Endolysosome membrane 2/45 19/19,594 8.60 e-04 3.27 e-02 2.48 e-02

MF GO: 0050700 CARD domain binding 3/45 16/18,410 7.47 e-06 1.67 e-03 1.15 e-03

MF GO: 0031625 Ubiquitin protein ligase binding 6/45 298/18,410 8.19 e-05 7.02 e-03 4.81 e-03

MF GO: 0044389 Ubiquitin-like protein ligase binding 6/45 317/18,410 1.15 e-04 7.02 e-03 4.81 e-03

MF GO: 0042277 Peptide binding 6/45 322/18,410 1.25 e-04 7.02 e-03 4.81 e-03

MF GO: 0005048 Signal sequence binding 3/45 50/18,410 2.47 e-04 9.40 e-03 6.45 e-03

KEGG hsa05131 Shigellosis 9/35 247/8,164 6.52 e-07 6.88 e-05 4.25 e-05

KEGG hsa04621 NOD-like receptor signaling pathway 8/35 184/8,164 8.00 e-07 6.88 e-05 4.25 e-05

KEGG hsa04722 Neurotrophin signaling pathway 6/35 119/8,164 9.71 e-06 5.57 e-04 3.44 e-04

KEGG hsa04210 Apoptosis 6/35 136/8,164 2.09 e-05 8.98 e-04 5.55 e-04

KEGG hsa05417 Lipid and atherosclerosis 7/35 215/8,164 2.86 e-05 9.84 e-04 6.08 e-04

GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes; PRDEGs, pyroptosis-related differentially

expressed genes.
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0.7–0.9, and >0.9 indicated low, moderate, and high accuracy,
respectively.

2.8 Immune infiltration analysis

The CIBERSORT algorithm (Newman et al., 2015), based on
linear support vector regression, was applied to the transcriptome
expression matrix for deconvolution, enabling the estimation of
immune cell composition in mixed-cell populations. Using the
LM22 feature gene matrix, CIBERSORT filtered data with
immune cell enrichment scores above 0 to generate an immune
cell infiltration matrix for the combined datasets. Differences in
immune cell infiltration between the CA and control groups were
visualized using grouped comparison plots. Correlation heatmaps,

created using the R package pheatmap, displayed the relationships
among immune cell types and between hub genes and immune cells.
Correlation coefficients (r values) were interpreted as follows: values
below 0.3 indicated weak or no correlation, 0.3–0.5 represented
weak correlation, 0.5–0.8 denoted moderate correlation, and above
0.8 signified strong correlation.

2.9 Statistical analysis

Data processing and analysis were conducted using R software
(Version 4.2.2). Continuous variables were expressed as mean ±
standard deviation, and comparisons between the two groups were
performed using the Wilcoxon rank-sum test. In the absence of
specific conditions, correlation coefficients were calculated using

FIGURE 3
Differential gene expression analysis (A) Volcano plot of DEGs between the control and CA groups in the combined GEO datasets (combined
datasets). Red dots represent upregulated genes (p-value <0.05 and logFC >0), blue dots indicate downregulated genes (p-value <0.05 and logFC <0),
and gray dots denote genes with no significant difference; the Y-axis represents -log10 (p-value), indicating the significance of gene expression. (B) Venn
diagram of DEGs and PRGs in the combined GEO datasets (combined datasets), illustrating the intersection between DEGs and PRGs, with 45 genes
meeting both criteria. (C)Heatmap of the top 10 upregulated and top 10 downregulated DEGs sorted by logFC in the combined GEO datasets (combined
datasets). The color in the heatmap represents gene expression levels, with red indicating high expression and blue indicating low expression; the color
bar above the sample columns identifies the group, with green representing the control group and yellow representing the CA group. DEGs, differentially
expressed genes; PRGs, pyroptosis-related genes; CA, childhood asthma; GEO, Gene Expression Omnibus.
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TABLE 3 Results of gene set enrichment analysis (GSEA) for combined datasets.

ID Set size Enrichment score NES p-value p-adjust q-value

REACTOME_ERBB2_ACTIVATES_PTK6_SIGNALING 13 0.81 2.08 1.06 e-04 3.69 e-03 3.05 e-03

REACTOME_ERBB2_REGULATES_CELL_MOTILITY 14 0.78 2.05 3.43 e-04 8.86 e-03 7.30 e-03

REACTOME_INTERLEUKIN_2_SIGNALING 12 0.80 2.03 1.97 e-04 6.08 e-03 5.02 e-03

REACTOME_CLASS_C_3_METABOTROPIC_GLUTAMATE_PHEROMONE_RECEPTORS 36 0.62 2.02 1.00 e-04 3.53 e-03 2.91 e-03

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL 112 0.49 2.00 7.57 e-06 4.85 e-04 4.00 e-04

KEGG_TASTE_TRANSDUCTION 48 0.58 1.98 5.46 e-05 2.25 e-03 1.86 e-03

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 107 0.49 1.97 1.59 e-05 8.53 e-04 7.03 e-04

WP_EICOSANOID_SYNTHESIS 19 0.69 1.95 1.23 e-03 2.07 e-02 1.70 e-02

REACTOME_PI3K_EVENTS_IN_ERBB4_SIGNALING 10 0.80 1.94 1.14 e-03 2.00 e-02 1.65 e-02

WP_CHOLESTEROL_SYNTHESIS_DISORDERS 18 0.68 1.91 2.23 e-03 3.09 e-02 2.55 e-02

PID_ERBB_NETWORK_PATHWAY 15 0.70 1.86 2.41 e-03 3.28 e-02 2.71 e-02

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 55 0.52 1.85 3.49 e-04 8.86 e-03 7.30 e-03

REACTOME_SYNTHESIS_OF_PROSTAGLANDINS_PG_AND_THROMBOXANES_TX 13 0.71 1.84 3.44 e-03 4.24 e-02 3.49 e-02

KEGG_AUTOIMMUNE_THYROID_DISEASE 33 0.57 1.82 2.05 e-03 3.00 e-02 2.47 e-02

REACTOME_DAP12_INTERACTIONS 34 0.56 1.81 2.13 e-03 3.06 e-02 2.52 e-02

REACTOME_NUCLEAR_SIGNALING_BY_ERBB4 30 0.57 1.80 2.40 e-03 3.28 e-02 2.70 e-02

KEGG_ALLOGRAFT_REJECTION 25 0.59 1.74 4.24 e-03 4.68 e-02 3.86 e-02

REACTOME_SENSORY_PERCEPTION_OF_TASTE 44 0.51 1.72 3.22 e-03 4.02 e-02 3.32 e-02

REACTOME_FCERI_MEDIATED_NF_KB_ACTIVATION 77 0.47 1.74 2.05 e-03 3.00 e-02 2.47 e-02

PID_WNT_CANONICAL_PATHWAY 20 0.65 1.83 3.59 e-03 4.38 e-02 3.61 e-02

GSEA, gene set enrichment analysis; NES, normalized enrichment score.
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FIGURE 4
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for pyroptosis-related differentially expressed
genes (PRDEGs) (A) Bubble chart displaying the GO and KEGG enrichment analysis results for PRDEGs, including BP, CC, MF, and biological pathways
(KEGG). The x-axis represents GO terms and KEGG terms, bubble size indicates the number of genes, and bubble color reflects the adjusted p-value
(adj.p-value), with darker red colors indicating smaller adj.p-values and darker blue colors indicating larger adj.p-values; the screening criteria were
adj.p < 0.05 and FDR (q-value) < 0.25, with the p-value correction method being Benjamini–Hochberg (BH). (B) Network diagram of the GO enrichment
analysis results for PRDEGs, illustrating associated terms and related molecules within the BP category, with lines indicating relationships between terms
and molecules. (C) Network diagram of the CC enrichment analysis results for PRDEGs. (D) Network diagram of the MF enrichment analysis results for
PRDEGs. (E)Network diagram of the KEGG enrichment analysis results for PRDEGs, where pink nodes represent terms, blue nodes represent molecules,

(Continued )

Frontiers in Genetics frontiersin.org08

Lian et al. 10.3389/fgene.2025.1557709

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1557709


Spearman correlation analyses and complete result values. Statistical
significance was set at P < 0.05.

2.10 Validation of Hub Gene Expression by
quantitative real-time polymerase chain
reaction (qPCR)

qPCR was performed to validate the differential expression of
hub genes in peripheral blood samples from six patients with CA

and six healthy controls, collected at Fujian Children’s Hospital
with ethical approval (approval no: 2024 ETKLR09007). Total
RNA was extracted using the TRIzol reagent (Invitrogen) and
assessed for quality and concentration using a NanoDrop
spectrophotometer. Complementary DNA (cDNA) was
synthesized from 100 ng of total RNA using the PrimeScript
RT Reagent Kit with gDNA Eraser (Takara). qPCR was
conducted using the SYBR® Green reagent on an Archimed
R6 system with primers specific to NOD2, NFKBIA, BAX,
BCL2, BECN1, and MAVS (synthesized by Sangon Biotech;

FIGURE 4 (Continued)

lines indicate relationships between terms and molecules, and larger nodes signify a greater number of associated molecules. PRDEGs, pyroptosis-
related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular
Component; MF, Molecular Function.

FIGURE 5
Gene set enrichment analysis (GSEA) for combined datasets (A) Results of the GSEA for the combined datasets, presented as ridge plots illustrating
four biological functions, each including a NES, adjusted p-value (Padj), and FDR value, with results indicating the effect and statistical significance of each
pathway. (B) The plot for “ERBB2 Activates PTK6 Signaling,” showing the relationship between gene rankings in the ordered dataset and the enrichment
score. (C) The plot for “Pi3K Events in ERBB4 Signaling,” displaying the performance of genes within the ordered dataset. (D) The plot for “Fceri-
Mediated Nf-κB Activation,” illustrating the variation in enrichment scorewith dataset ranking. (E) The plot for “WntCanonical Pathway,” showing the gene
enrichment status of this pathway and its statistical analysis results. CA, Childhood Asthma; GSEA, Gene Set Enrichment Analysis; NES, normalized
enrichment score. The screening criteria for GSEA were adj.p < 0.05 and FDR (q-value) < 0.25, with the p-value correction method being Benjamini-
Hochberg (BH).
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sequences shown in Supplementary Table S6), as well as GAPDH,
serving as the internal reference gene. The reaction included an
initial denaturation at 95°C for 30 s, followed by 40 cycles of 95°C
for 10 s, 60°C for 30 s with fluorescence acquisition, and an
extension step at 95°C for 15 s and 60°C for 60 s, with a final
95°C step for 1 s to generate melting curves. Relative gene

expression was calculated using the 2̂-ΔΔCt method, and fold
changes were analyzed in triplicate for each sample. Results were
expressed as mean ± standard deviation (SD). Statistical
significance was determined using the t-test on relative
expression fold changes, with p < 0.05 (*), p < 0.01 (**), p <
0.001 (***), and p < 0.0001 (****) considered significant.

FIGURE 6
Protein–protein interaction (PPI) network and hub genes analysis (A) PPI network of PRDEGs constructed using the STRING database, displaying
only protein nodes with interaction relationships. (B–F) PPI networks of the top 10 PRDEGs calculated using the cytoHubba plugin in Cytoscape software
based on the following five algorithms: (B) Maximal Clique Centrality (MCC), (C) Maximum Neighborhood Component (MNC), (D) Degree, (E) edge-
percolated component (EPC), and (F) Closeness. In each plot, circle colors range from red to yellow, indicating scores from high to low. (G) Venn
diagram of the top 10 PRDEGs identified by the five algorithms, showing the intersection of hub genes; based on the intersection results, the identified CA
hub genes include NOD2, NFKBIA, BAX, BECN1, MAVS, and BCL2. CA, Childhood Asthma; PPI, protein-protein interaction; PRDEGs, pyroptosis-related
differentially expressed genes.
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3 Results

3.1 Technology roadmap

The analytical workflow implemented in this study is depicted
in Figure 1.

3.2 Merging of CA datasets

The R package sva (version 3.50.0) was utilized to eliminate batch
effects from the CA datasets GSE27011 and GSE40888, generating
integrated datasets. The ComBat function was used to adjust for
systematic batch variations, ensuring data consistency across
datasets. A distribution boxplot (Figures 2A,B) was generated to
compare expression values before and after batch effect correction,
revealing normalized distributions post-correction. Similarly, a PCA
plot (Figures 2C,D), generated using the R package FactoMineR
(Version 2.4), evaluated the distribution of low-dimensional features
pre- and post-correction. These plots confirmed the effective
elimination of batch effects, as pre-correction samples were
clustered based on datasets (GSE27011 vs. GSE40888), whereas
post-correction samples were clustered according to biological
condition (CA vs. control), validating the normalization process.

3.3 Analysis of DEGs related to pediatric
asthma-associated pyroptosis

Differential expression analysis using the R package limma was
conducted to compare gene expression between the CA and control
groups. Overall, 2,069 DEGs satisfied the criteria of |logFC| > 0 and

p < 0.05, including 1,158 upregulated genes (logFC >0, p < 0.05) and
911 downregulated genes (logFC <0, p < 0.05). The results were
visualized using a volcano plot (Figure 3A). PRDEGs were identified
by intersecting DEGs (|logFC| > 0, p < 0.05) with cell PRGs, as
shown in a Venn diagram (Figure 3B). This analysis revealed
45 PRDEGs (Supplementary Table S2). A heatmap generated
using the R package pheatmap presented the top 10 upregulated
and downregulated DEGs ranked by logFC (Figure 3C).

3.4 GO and KEGG pathway enrichment
analysis of PRDEGs

GO and KEGG pathway enrichment analyses were conducted to
explore the relationships among BP, CC, MF, and biological
pathways of the 45 PRDEGs associated with CA. The enrichment
results are presented in Table 2. The results showed that the
PRDEGs were primarily enriched in positive regulation of
cellular catabolic processes, responses to muramyl dipeptides,
cellular responses to peptides, and responses to viral infection
(BP). Enriched CC pathways included endocytic vesicles,
phagocytic vesicles, cytolytic granules, polysomes, and
endolysosome membranes. MFs were enriched for Caspase
Activation and Recruitment Domain, ubiquitin-protein ligase,
ubiquitin-like protein ligase, peptide, and signal sequence
bindings. KEGG pathway analysis further identified associations
between pathways, including shigellosis, NOD-like receptor
signaling, neurotrophin signaling, apoptosis, and lipid and
atherosclerosis pathways. Results were visualized using bubble
plots (Figure 4A). Additionally, network diagrams were
constructed for each category (BP, CC, MF, and KEGG) based
on enrichment analyses (Figures 4B–E).

FIGURE 7
Regulatory network of pyroptosis-related differential genes (PRDEGs) (A) The mRNA-TF regulatory network of PRDEGs, illustrating the interaction
relationships between 4 PRDEGs and 19 TFs; in the network, green nodes represent mRNAs, and yellow nodes represent TFs. (B) mRNA-miRNA
regulatory network of PRDEGs, showing the interaction relationships between three PRDEGs and 18 miRNAs; in the network, green nodes represent
mRNAs, and blue nodes represent miRNAs. PRDEGs, pyroptosis-related differentially expressed genes; TF, transcription factor.
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3.5 GSEA

GSEA was performed to determine the conformity of the GEO
dataset (combined datasets) of all gene expression levels in CA. This
analysis evaluated the involvement of all expressed genes in BPs,
CCs, and MFs (Figure 5A). Detailed results are presented in Table 3.
The results showed that all genes in the combined datasets were
significantly enriched in ERBB2, PTK6 signaling (Figure 5B), and
Pi3K events in ERBB4 signaling (Figure 5C), biologically relevant
functions, signaling pathways such as Fceri-mediated Nf-κB
activation (Figure 5D), and the PID Wnt canonical
pathway (Figure 5E).

3.6 Construction of PPI networks and
screening of hub genes

PPI analysis of 45 PRDEGs was performed using the STRING
database to construct a PPI network (Figure 6A). Among these,
28 PRDEGs exhibited significant interactions (Supplementary Table
S3). The following five algorithms from the cytoHubba plugin in
Cytoscape were subsequently applied to evaluate the network
properties of the 28 PRDEGs: MCC, degree, MNC, EPC, and

closeness. The top 10 PRDEGs identified by each algorithm were
visualized in their respective PPI networks as follows: MCC
(Figure 6B), MNC (Figure 6C), degree (Figure 6D), EPC
(Figure 6E), and closeness (Figure 6F). The nodes in these
networks were color-coded from red to yellow to represent scores
from high to low. Finally, intersecting top genes from all algorithms
were displayed in a Venn diagram (Figure 6G), identifying the
following six hub genes associated with CA: NOD2, NFKBIA, BAX,
BECN1, MAVS, and BCL2.

3.7 Construction of regulatory network

First, TFs associated with PRDEGs were obtained from
the hTF target database. These data were employed to
construct and visualize the mRNA-TF regulatory network
using Cytoscape software (Figure 7A). This network included
four PRDEGs and 19 TFs (Supplementary Table S4). Similarly,
miRNAs targeting PRDEGa were retrieved from the StarBase
database to construct an mRNA-miRNA regulatory
network visualized using Cytoscape software (Figure 7B). This
network comprised three PRDEGs and 18 miRNAs
(Supplementary Table S5).

FIGURE 8
Differential expression validation and receiver operating characteristic (ROC) curve analysis (A) Group comparison plot of hub genes in the
combined GEO datasets between the CA group and the control group, where green boxplots represent the control group and yellow boxplots represent
the CA group; statistical analysis indicates significant expression differences for four hub genes (BAX, BECN1,MAVS, and BCL2) between the two groups
(*p-value <0.05; ns: p-value ≥0.05, no statistical significance). (B–D) ROC curve analysis of hub genes, demonstrating the classification ability of
genes BAX (B), BECN1 (C), and MAVS and BCL2 (D) in the combined GEO datasets (ns: no statistical significance; * p-value <0.05); when AUC >0.5, it
indicates a trend toward promoting the event, with higher AUC values closer to 1 reflecting better diagnostic performance, while AUC values above
0.5 indicate low accuracy. Green represents the control group, and yellow represents the CA group. CA, childhood asthma; ROC, receiver operating
characteristic; AUC, area under the curve; TPR, true positive rate; FPR, false positive rate.
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FIGURE 9
Combined datasets immune infiltration analysis using ssGSEA algorithm. Bar graph (A) and group comparison graph (B) show the proportion of
immune cells in the childhood asthma (CA) and control groups. (C) Heatmap depicting the correlation between infiltrating abundance of immune cells
with significant differences across the combined GEO datasets in group comparison plots. (D) Heatmap illustrating the correlation between pyroptosis-
related hub genes (hub genes) and the infiltration abundance of seven immune cell types in the integrated GEO datasets (combined datasets).
ssGSEA, single-sample gene-set enrichment analysis. * represents p value <0.05, statistically significant; ** represents p < 0.01 and highly statistically
significant. Correlation coefficients (r-value) with absolute values below 0.3 were considered weak or irrelevant, while those between 0.3 and
0.5 indicated a weak correlation. Medium green grouping comparison chart for the control (control) group and yellow for the childhood asthma
group (CA).
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3.8 Differential expression and ROC analysis
of hub genes

To evaluate the expression of hub genes, a group comparison
plot (Figure 8A) showed the expression levels of six hub genes
between the CA and control groups within the combined GEO
datasets. Differential expression analysis indicated that the
expression of four hub genes—BAX, BECN1, MAVS, and
BCL2—was significantly different between the CA and control
groups (p < 0.05). ROC curves generated using the R package
pROC assessed the diagnostic accuracy of the hub gene
expression levels in distinguishing patients with CA from

controls (Figures 8B–D). The ROC analysis indicated that BAX,
BECN1, MAVS, and BCL2 had moderate diagnostic accuracy
(AUC >0.5) for distinguishing between CA and control samples.

3.9 Immune infiltration analysis of
CA (CIBERSORT)

The CIBERSORT algorithm was used to calculate the abundance
of 22 immune cell types in the combined GEO datasets. Immune
infiltration analysis produced a bar chart showing the proportions of
immune cells (Figure 9A), while group comparison plots (Figure 9B)

FIGURE 10
qPCR Validation of Hub Gene Expression. Relative mRNA expression levels of hub genes (A)NOD2, (B)NFKBIA, (C) BAX, (D) BCL2, (E) BECN1, and (F)
MAVS in peripheral blood samples from 6 patients with childhood asthma (CA) and 6 healthy controls, measured by qPCR. Data are presented as mean ±
standard deviation (SD). Statistical significance was determined by the two-sided unpaired Welch’s t-test, with significance levels indicated as follows:
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Blue bars represent the control group, and red bars represent the CA group.
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highlighted differences in immune cell infiltration between the CA
and control groups. Cell abundance (p < 0.05) differed significantly
for macrophages M0, activated mast cells, and γδ T cells. Moreover,
resting natural killer (NK) cells showed a highly significant
difference (p < 0.01) between the two groups.

The correlation heatmap (Figure 9C) illustrated relationships
among immune cell types. Macrophages M0 showed the strongest
positive correlation with activated mast cells (r = 0.24) and the
strongest negative correlation with resting NK cells (r = −0.33).
Correlation bubble plots (Figure 9D) were used to visualize the
association between hub genes and immune cell infiltration in the
combined GEO datasets. A significant positive correlation was
found between NOD2 and macrophages M0 (r > 0.0, p < 0.05),
and a significant negative correlation was observed between BAX
and macrophages M0 (r < 0.0, p < 0.05).

3.10 Validation of Hub Gene Expression
by qPCR

To validate the differential expression of hub genes identified
through bioinformatics analysis, qPCR was performed on peripheral
blood samples from six patients with CA and six healthy controls,
revealing distinct mRNA expression patterns for the six hub genes
(Figure 10). Specifically, BAX, MAVS, and BCL2 exhibited
significantly increased expression in the CA group (p <
0.0001 for BAX and MAVS, p < 0.001 for BCL2), while BECN1
showed significantly decreased expression (p < 0.0001). In contrast,
NOD2 and NFKBIA showed no significant changes in expression.

4 Discussion

The pathogenesis of CA is multifaceted, involving intricate
interactions among genetic, environmental, and immune-
mediated mechanisms, which underscores the need to identify
molecular pathways driving disease-associated inflammation.
Through integrative analysis of GEO datasets, this study
identified 2,069 DEGs, comprising 1,158 upregulated and
911 downregulated genes in CA samples compared with controls,
highlighting the complex genetic landscape of asthma. Among these,
45 PRDEGs significantly enriched in immune response pathways
such as the NOD-like receptor signaling pathway and apoptosis
were identified (Table 2). These results emphasize the critical role of
pyroptosis in CA inflammation, aligning with prior studies that link
pyroptosis to airway hyperreactivity and inflammatory responses
(Mihailidou et al., 2004; Szefler, 2007; Zhuang et al., 2020). Notably,
hub genes such as BECN1 and BCL2, associated with cell death and
inflammatory pathways in our analyses, are primarily linked to
autophagy in existing literature, with their direct roles in canonical
pyroptosis pathways remaining unclear. Recent studies suggest
complex interactions between autophagy and programmed cell
death, including pyroptosis and apoptosis, potentially mediated
by inflammasome modulation or stress responses (Lin et al.,
2024; Mao et al., 2024). These interactions require further
experimental validation. Thus, we interpret these genes as
potential bridges across multiple cell death and inflammatory
processes, rather than core pyroptosis factors. Future studies

should elucidate their dynamic regulation between autophagy and
pyroptosis to clarify their impact on asthma
pathogenesis.Dysregulation of these pathways likely contributes
to chronic inflammation in CA, offering potential therapeutic
targets for modulating inflammatory cell death pathways (Xu
et al., 2023). Future research should explore the interactions
between PRDEGs and classical asthma-related signaling pathways
to enable the development of targeted therapies (Zar and Levin,
2012; Castagnoli et al., 2023).

Immune cell infiltration analysis using the CIBERSORT
algorithm revealed significant differences between the CA and
control groups, with increased abundance of macrophages M0,
activated mast cells, and γδ T cells, and decreased resting NK
cells in the CA group (Figure 9B). These findings suggest that
specific immune mediators contribute to CA pathogenesis, with
activated mast cells potentially driving allergic responses and
macrophages M0 playing a dual role in promoting and resolving
inflammation (Goretzki et al., 2021; Melgaard et al., 2024). Notably,
macrophages M0 were correlated positively with NOD2 expression
(r > 0.0, p < 0.05) and negatively with BAX (r < 0.0, p < 0.05)
(Figure 9D), indicating that pyroptosis-related hub genes may
modulate immune cell dynamics in CA. Understanding these
interactions could inform targeted therapies aimed at rebalancing
immune responses in pediatric asthma patients. Importantly, Li
et al. employed single-cell RNA-seq technology to thoroughly
investigate the dynamic changes in immune cells during bone
marrow immune infiltration and inflammaging, offering valuable
insights into the regulation of the immune microenvironment (Li
et al., 2023). Although the backgrounds of the two studies are
different, with Li et al. primarily focusing on bone marrow
immunity and inflammaging and ours emphasizing the immune
regulatory mechanisms in CA, their findings on how changes in the
immune system affect chronic inflammatory diseases still hold
certain reference value for our understanding of immune
imbalance in asthma.

Among the six hub genes identified, BAX, BECN1, MAVS, and
BCL2 exhibited statistically significant differences in expression
between the CA and control groups based on GEO data (p <
0.05, Figure 8A), with AUC values ranging from 0.602 to 0.621
(95% CI: 0.510–0.712, Figures 8B–D), suggesting their potential as
diagnostic biomarkers. These findings align with previous studies
linking these genes to inflammatory and cell death pathways in CA
and other immune-related conditions. For instance, BAX and BCL2,
key regulators of apoptosis, are implicated in airway remodeling and
immune activation in CA: BAX promotes cell death, contributing to
tissue damage and inflammation, while BCL2 enhances cell survival,
potentially supporting the persistence of immune cells in inflamed
tissues (Vervliet et al., 2023). MAVS, crucial for antiviral responses,
is associated with CA exacerbation, reflecting the role of viral
infections in symptom severity (Rich et al., 2020). BECN1,
involved in autophagy, may interact with pyroptosis to modulate
immune responses, though its specific role in CA remains unclear
(Chiok and Bose, 2022). qPCR validation in our small cohort
confirmed significantly increased expression of BAX, MAVS, and
BCL2 in the CA group (p < 0.0001 for BAX andMAVS, p < 0.001 for
BCL2), while BECN1 showed significantly decreased expression (p <
0.0001; Figure 10). The decreased expression of BECN1, consistent
with GEO data, suggests a potential impairment in autophagy,
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which may exacerbate inflammation by reducing its regulatory
interaction with pyroptosis (Chiok and Bose, 2022). This finding
warrants further investigation into the balance between autophagy
and pyroptosis in CA pathogenesis. In contrast, NOD2 and NFKBIA
showed no significant differences in expression in either GEO data
(Figure 8A) or qPCR validation (Figure 10). However, the positive
correlation of NOD2 with macrophages M0 (r > 0.0, p < 0.05;
Figure 9D) suggests a potential role in modulating immune
responses, warranting further exploration (Platnich and Muruve,
2019). Conversely, the expression pattern of NFKBIA, an inhibitor
of NF-κB signaling, could contribute to unchecked inflammatory
responses, aligning with the heightened immune activation observed
in CA (Xu et al., 2023). Targeting hub genes with significant
expression changes, such as BAX, BECN1, MAVS, and BCL2,
could modulate inflammatory and cell death pathways, offering a
personalized treatment approach for CA. Additionally, the role of
NOD2 in immune regulation makes it a potential therapeutic target
despite showing no significant difference in expression.

Emerging research indicates that targeting pyroptosis-related genes
can influence inflammatory responses and immune regulation,
providing new directions for asthma treatment. For example, the
NLRP3 inflammasome, a member of the NOD-like receptor family,
is associated with CA, and its excessive activation exacerbates airway
inflammation (Huang et al., 2023). Given the role of NOD2 in the
NOD-like receptor signaling pathway and its correlation with immune
cell infiltration, targeting NOD2-NLRP3 interactions with inhibitors
like MCC950, which has shown anti-inflammatory effects in animal
models, could mitigate CA inflammation. Similarly, inhibiting
Gasdermin D, the terminal execution protein of pyroptosis, may
reduce airway epithelial damage in patients with asthma (Wu et al.,
2024). Additionally, PI3K/Akt/mTOR inhibitors have been explored in
pulmonary inflammation and may modulate pyroptosis-related
pathways, potentially alleviating the inflammatory state in CA (Pan
et al., 2023). Elucidating the interplay between pyroptosis and classical
inflammatory pathwaysmay provide new insights into themultifaceted
pathogenesis of CA, facilitating the development of more effective,
personalized treatment modalities (Chen et al., 2024). Future studies
should validate the diagnostic potential of hub genes with significant
expression differences, such as BAX, BECN1, MAVS, and BCL2, using
larger CA cohorts with diverse clinical phenotypes (e.g., allergic vs.
non-allergic asthma) and explore their therapeutic implications
through in vitro and in vivo models, such as CRISPR-based gene
editing or animal models of CA, to pave the way for personalized
treatment strategies. Additionally, the immune-regulatory role of
NOD2 warrants further investigation in the context of CA.

Despite comprehensive bioinformatics analysis and qPCR
validation, this study has several limitations. First, the GEO dataset
(101 CA cases, 58 controls) may not fully capture CA heterogeneity,
and the small qPCR cohort (6 CA patients, 6 controls) limits statistical
power, necessitating larger studies. Second, the absence of
comprehensive clinical metadata (e.g., disease severity, FEV1, IgE
levels) in GEO datasets (GSE27011, GSE40888) and incomplete
pyroptosis pathway annotations in mainstream databases (e.g.,
KEGG, GO) restricted analyses of PRDEGs’ clinical associations,
multi-factor machine learning modeling, and direct detection of
pyroptosis-specific pathways. While NOD-like receptor signaling
and apoptosis pathways are linked to pyroptosis, and CIBERSORT
analyses suggest immune cell associations (e.g., NOD2 with

M0 macrophages), experimental validation of pyroptosis
mechanisms and causal relationships is lacking. Future research
will utilize larger independent cohorts with rich clinical metadata,
leverage pyroptosis-specific databases, and apply machine learning to
develop multi-factor models. Additionally, single-cell RNA
sequencing and OVA-induced asthma models will validate
pyroptosis-immune interactions and construct a “pyroptosis-
immune-inflammation” regulatory network to clarify hub gene roles.

In summary, this study provides novel insights into the role of
PRGs in CA. By integrating and analyzing data from multiple
GEO datasets, we identified 45 PRDEGs and constructed a
comprehensive regulatory network involving miRNAs and TFs.
The hub genes, particularly BAX, BECN1, MAVS, and BCL2,
demonstrated significant differential expression and moderate
diagnostic potential. Immune infiltration analysis revealed
increased macrophages M0, activated mast cells, and γδ T cells in
CA, with a positive correlation between NOD2 and macrophages M0
(Figure 9D), highlighting potential interactions between PRGs and the
immune system. These findings offer promising avenues for future
research into the diagnostic and therapeutic applications of
pyroptosis-related pathways in CA management.
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