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Whole-genome or genome-wide association studies (GWAS) have become a
fundamental part of modern genetic studies and methods for dissecting the
genetic architecture of common traits based on common polymorphisms in
random populations. It is hoped that there would bemany potential uses of these
identified variants, including a better understanding of the pathogenesis of traits,
disease risk prediction, discovery of biomarkers, and clinical prediction of drug
treatments for populations and global health. Questions have been raised about
whether associations that are largely discovered in European ancestry
populations are replicable in diverse populations, can inform medical
decision-making globally, and how efficiently current GWAS tools perform in
populations of high genetic diversity, multi-wave genetic admixture, and low
linkage disequilibrium, such as African populations. Here, we discuss some of the
challenges in association mapping and leverage genomic data simulation to
mimic structured African, European, and multi-way admixed populations to
evaluate the replicability of association signals from current state-of-the-art
GWAS tools. We use the results to discuss optimized frameworks for the
analysis of GWAS data in diverse populations. Finally, we outline the
implications, challenges, and opportunities these studies present for
populations of non-European descent.
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Highlights

• Variability in the predictive methods and categorization of functionally relevant
genetic variants pose specific challenges in GWAS of diverse populations.

• Current GWASmixedmodels may not fully control for sub-variant structure between
affected and unaffected samples, especially if there is an environmental component to
phenotypic associations with ancestry at local variants or locus-specific ancestry due
to admixture and inadequate or closely related reference ancestral populations.

• Methodological development is still needed to directly control for local-specific
ancestry tracts in variant-level GWAS, which may further improve the power and
reduce false positives in mixed-ancestry or multi-ancestry samples.
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Introduction

The frequent occurrence of population differences in phenotypic
outcomes, drug, and treatment responses has important
consequences for biomedical sciences. This has been shown to be
result of variations in host genomes and differing environments
(Tishkoff and Williams, 2002; Goetz et al., 2014; Mao et al., 2007;
Martin et al., 2017; Campbell and Tishkoff, 2008). For more than
two decades, genome-wide association studies (GWAS) have been
common approaches in genetic studies to identify molecular
variants underlying these variations and have been used
successfully for detecting variants in linkage disequilibrium (LD)
within causal genes (direct association) or genes associated to causal
genes (indirect association) (Martin et al., 2017; Campbell and
Tishkoff, 2008; Seldin et al., 2011). These approaches have
become a fundamental part of modern genetic studies, and
methods for dissecting the genetic architecture of common traits
based on common polymorphisms in different populations have
been developed (Seldin et al., 2011). They have enhanced our
knowledge on the genetic architecture of many complex diseases,
such as heritability estimation, the individual’s genetic reliability of
disease (polygenic risk scores, PRSs), the genetic correlation between
diseases, number of loci, and their effect sizes (Brody et al., 2017;
Chimusa et al., 2018; Sirugo and Tishkoff, 2019). So far, many new
genetic associations to diseases have been identified (Chimusa et al.,
2018; Sirugo and Tishkoff, 2019). Currently, approaches developed
to identify the association between genetic variability and human
phenotypes have mostly been designed to capture genomes with a
long range of LD and haplotypes, such as those found in European
descent populations, who have mostly undergone a population
bottleneck (Seldin et al., 2011; Chimusa et al., 2018). For
example, a review by Sirugo and Tishkoff (2019) of GWAS
diversity in the GWAS catalog up to January 2019 revealed that
the reported GWAS were dominated by two populations, with
Europeans accounting for 52% and Asian populations accounting
for 21% (Sirugo and Tishkoff, 2019). Although the contribution by
the Asian population was commendable, further analysis of the
individuals in the GWAS by ethnicity revealed a persistent gap: 78%
were of European ancestry, 10% were of Asian origin, 10% were
from Africa, and 1% were of Hispanic origin, while other ethnicities
accounted for less than 1% of the individuals (Sirugo and Tishkoff,
2019; Mills and Rahal, 2019; Visscher et al., 2017). These have raised
concerns about healthcare disparity when GWAS results are
translated into clinical relevance for global health. Mills and
Rahal (2019) analyzed 3,639 GWAS and found that 86.03% of
discovery, 76.69% of replication, and 83.19% of combined
ancestry diversity in GWAS were mostly from individuals of

European descent. The finding corroborates those of other
studies on Asian descent populations (Kim et al., 2011) (9.92%
discovery, 17.97% replication, and 12.37% combined), African
American or Afro-Caribbean populations (1.96% discovery,
1.96% replication, and 1.96% combined), Hispanic or Latin
American populations (1.30% discovery, 1.33% replication, and
1.30% combined), other or mixed-ancestry individuals (0.48%
discovery, 1.77% replication, and 0.87% combined), and African
ancestry populations (0.31% discovery, 0.28% replication, and 0.30%
combined). These studies suggest the inclusion of diversity in data
and recognize the consequences of the lack of diversity. Kim et al.
(2018) examined the risk posed by genetic disease across global
populations using GWAS and showed that the ancestral risk allele
discovered is 5.1% higher and the derived risk allele discovered is
5.40% lower in African populations. Further investigation using
different populations showed that non-African groups yielded
disease associations that have biased allele frequencies, while the
African populations yielded disease associations that are relatively
free of bias. Caution must, therefore, be taken when using GWAS
results from one population to predict disease risk in another.

Research continues to reveal that current GWAS results from
European cohorts cannot be generalized to diverse populations due
to confounding environmental factors across populations, differing
patterns of LD, differences in allelic architecture, and other
contributing factors (Visscher et al., 2017; Shriner et al., 2011a;
Shriner et al., 2011b; Shriner, 2017). Significant differences in
European and diverse populations have also been observed in the
genetic determinants of both common and rare diseases and their
effect sizes (Visscher et al., 2017; Shriner et al., 2011a; Shriner et al.,
2011b; Shriner, 2017). Nevertheless, GWAS are now slowly being
extended to diverse populations. Non-European populations are
now included in large disease-analysis studies, and new consortia
have been established in countries with diverse populations. The
Human Heredity and Health in Africa (H3Africa) consortium has
spearheaded GWAS on the African continent (Mulder et al., 2018).
The INdian DIabetes COnsortium (INDICO) (INdian DIabetes
COnsortium, 2011) and the GenomeAsia 100K Project (Author
anonymous, 2019) are other examples of consortia in diverse
populations.

On the other hand, it is still being observed that large numbers of
modern drugs approved by the Food and Drug Administration and
similar organizations have been developed with relevance to
European ancestry populations while not addressing the fact that
subtle differences in the genetic make-up of other populations, such
as Asian, South American, and African populations, can affect drug
efficacy or response (Visscher et al., 2017; Hassan et al., 2020). This
has been evidenced by the fact that hundreds of thousands of people
still die each year because of adverse drug reactions, which may
result from multiple factors, including disease determinants,
environmental exposure, human microbiome profiles, and genetic
factors (Visscher et al., 2017; Hassan et al., 2020). The use of genetic
information to inform medical decision-making, however, raises
questions as to whether such use could be equitable. Given
differences in allelic architecture, differing patterns of LD, and
confounding of environmental factors across populations, the
richer mixtures of African genetic variants and differing
environments are likely to contribute to wider phenotypic and
individual microbiome profile variability (Tishkoff and Williams,

Abbreviations: EMMAX, Efficient Mixed-Model Association eXpedited; FAIR,
findability, accessibility, interoperability, and reusability; FPR, false-positive
rate; GEMMA, genome-wide efficient mixed model association; GCTA,
genome-wide complex trait analysis; GWAS, genome-wide association
studies; JasMAP, joint ancestry and SNP association method for a
multi-way admixed population; LAI, local ancestry inference; LD, linkage
disequilibrium; LMM, linear mixed model; LOCO, leave one chromosome
out; PC(s), principal components; PCA, principal component analysis;
PheGenI, Phenotype–Genotype Integrator; PRS, polygenic risk score; SNP,
single-nucleotide polymorphism; TRS, transcriptional risk score.
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2002; Awany et al., 2018). It is, therefore, crucial to advance GWAS
research and assess how well current approaches can capture diverse
global population cohorts (Campbell and Tishkoff, 2008; Chimusa
et al., 2018; Visscher et al., 2017).

We hypothesize that understanding and then appropriately
modeling different aspects of genetic architecture in the African
population has the potential to achieve unbiased and powerful
estimates of genetic risk in them, as well as in multi-ethnic and
admixed populations such as African Americans. Here, we leverage
genomic data simulation that mimics African, European, and multi-
way admixed populations to evaluate the replicability of association
signals from current state-of-the-art GWAS tools. We dissect
reasons from the biological and methodological perspectives that
account for the replicability of GWAS and identify the challenges
ahead. In contrast to the exemplary success of disease gene
discovery, currently, GWAS findings are not fully useful for
predicting phenotypes. Finally, we provide an overview of the
prospects for individual prediction of disease risk and its
foreseeable impact on clinical practice in populations of non-
European descent.

Genome disease mapping

The delineation of health and complex diseases from
polymorphism-based association mapping holds promise to
bridge the gap between clinical translation and statistical
association, thereby improving diagnostics, screening, genetic
testing, and counseling in global clinical populations (Sirugo and
Tishkoff, 2019; Mills and Rahal, 2019; Martin et al., 2019). It has
been shown that variants associated with diseases found in
populations of European ancestry do not always replicate in
diverse populations such as African populations (Chimusa et al.,
2018; Kim et al., 2018; Martin et al., 2019) for several reasons,
including confounding of environmental factors across populations,
differing patterns of LD, and differences in the allelic architecture.

Although efforts such as the China Kadoorie Biobank (Chen
et al., 2011), Global Screening Array (GSA) (Nelson et al., 2017;
Kalra et al., 2018), Multi-Ethnic Global Array (MEGA) (Nelson
et al., 2017), and H3Africa array (Mulder et al., 2018) have recently
enabled effective genome-wide DNA microarrays in diverse
populations, there are still many issues in GWAS, such as (1)
GWAS small sample size in diverse populations, including in
African populations (Swart et al., 2022); (2) stratification due to
the correlation of environmental exposures and genetic correlation
background due to common ancestry or multi-wave admixture and
pre-/post-admixture selection pressure (Chimusa et al., 2018); (3)
translation of associated loci into suitable biological hypotheses
(Chimusa et al., 2018); (4) the understanding of how multiple
modestly associated loci within genes interact to influence a
phenotype (Chimusa et al., 2018). Control of population
stratification in GWAS has been one of the biggest concerns to
ensure that observed associations reflect the genetic effects of each
genomic locus rather than correlations with ancestry (Author
anonymous, 2019; Korte and Farlow, 2013).

For decades, mixed-model approaches have been attractive in
GWAS as they allow the inclusion of all samples irrespective of
ancestry. Mixed-model approaches control for population

stratification by modeling distant relatedness between samples
due to ancestry (Korte et al., 2012). Several implementations
exist, and we list some of them chronologically up to the latest in
2020 in Figure 1. Mixed models may yield greater statistical power,
both through increased sample size and by controlling for the
variance explained by the genetic relatedness between individuals
(i.e., a random-effect component) (Zhou and Stephens, 2012;
Chimusa et al., 2014). However, there is evidence that variants
with low frequency (1%–5%) or at the boundary may not often
attain genome-wide significance in mixed models due to their
imperfect asymptotic distribution (Chimusa et al., 2014). In
addition, they may not fully control for sub-variant structure
between affected and unaffected samples, especially if there is an
environmental component to phenotypic associations with ancestry
at local variants or locus-specific ancestry due to admixture (Seldin
et al., 2011; Winkler et al., 2010; Brody et al., 2017; Shriner
et al., 2011b).

Non-genetic factors such as environmental exposures may be
correlated with genetic ancestry due to the shared local environment
(familiar or community effects) or the relationship between ancestry
and sociocultural factors such as ethnicity and religious background
(McGrath et al., 2013). Effective methodological development is still
needed to directly control local-specific ancestry tracts in variant-
level GWAS, which may further improve power and reduce false
positives in mixed-ancestry or multi-ancestry samples (Visscher
et al., 2017; McGrath et al., 2013; Marigorta et al., 2018). However, it
is worth noting that several efforts and advances have been made in
leveraging the complementarity of single-nucleotide polymorphism
(SNP) association signals captured through GWAS and admixture
signals to calibrate and improve GWAS power in admixed
populations (Shriner et al., 2011a; Shriner et al., 2011b; Shriner,
2017; Chimusa et al., 2014). In doing so, numerous studies have
leveraged local-specific ancestry tracts in variant-level association
analyses to African Americans (Peprah et al., 2015), Latinos
(Gonzalez et al., 2016), South African Coloureds (Chimusa et al.,
2014), and Hispanic cohorts (Chen et al., 2015), demonstrating
added value beyond standard association testing (Geza et al., 2019;
Chimusa et al., 2016). Admixture association is critically reliant on
accurate locus ancestry inference (LAI), which requires well-
specified founding population reference samples (Chakraborty
and Weiss, 1988). Power can be optimized by combining
admixture mapping and association testing (Kim et al., 2018),
but this approach is rarely adopted because of the multi-stage
process required and the challenge in application to complex
multi-way admixed samples (Thornton and Bermejo, 2014).

For example, currently available joint ancestry and SNP
association methods (Mugo et al., 2023; Atkinson et al., 2020;
Atkinson et al., 2021) have primarily been tailored to African
American populations (two-way admixed populations), despite
the authors’ suggestion that, in theory, these methods could be
extended to more than three-way admixed populations. This has
either been left for future research or not optimized for multi-way
admixed populations in most of these tools. In addition, the
accuracy of these approaches relies on the use of accurate
knowledge of ancestry inference, particularly when applying to
complex multi-way admixed populations (Mugo et al., 2023).
Although recently introduced locus-specific ancestry methods for
multi-way admixed populations achieved equivalent accuracy (Geza
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et al., 2019; Honorato-Mauer et al., 2025; Sun et al., 2025), they still
suffer from spurious deviations in average local ancestry at some
chromosomal locations of cases and controls, where the modeled
ancestral population is unusually different from the true ancestral
population due to historical actions such as natural selection and
also inaccurate or closely related reference ancestral populations
(Chimusa et al., 2014; Geza et al., 2019; Sun et al., 2025).
Furthermore, application of these methodologies to multi-way
admixed populations, like most African populations known to
have high diversity within differing environments, remains
mostly less explored (Author anonymous, 2019). There remains a
critical need to (1) improve LAI accuracy (Chimusa et al., 2014; Geza
et al., 2019; Thornton and Bermejo, 2014; Mugo et al., 2023;
Atkinson et al., 2020); (2) develop methods for optimizing the
power of association testing (Chimusa et al., 2014; Geza et al.,
2019; Mugo et al., 2023; Atkinson et al., 2020; Atkinson et al.,
2021) and PRSs in admixed data (Sirugo and Tishkoff, 2019; Coram
et al., 2017; Marnetto et al., 2020); (3) build integrative software for
running amulti-stage admixture analysis pipeline (Geza et al., 2019).

Replication in genetic
association studies

In general, the replication of reported results is the most reliable
validation of scientific discoveries (National Academies of Sciences
et al., 2019; Kraft et al., 2009). In complex trait genetics, replication
occurs when the same genetic marker is consistently associated with
the same phenotype in independent cohorts. In addition, a positive
association at variants in strong LD with the original marker SNP is
often used as evidence of replication, even if formal exact replication
is not achieved. Cross-ancestry replicability has the power to shed
light on the genetic architecture of complex traits, informing the
reliability of effect estimations and their variability across human
ancestries.

GWAS meta-analysis has increasingly that leverages association
summary statistics to facilitate and encourage silico replication to
maintain reliability in genetic association findings has increasingly
been adopted. A meta-analysis framework combines results from
different GWAS cohorts into a single analysis framework to recover
signals that a single GWAS cohort study might miss and to address
the between-study and between-population heterogeneity (Chimusa
et al., 2016). Recently, meta-analysis has shown remarkable
discovery results and helped us better understand and validate
association results from different studies. Meta-analysis is
considered a post-genome-wide association study method;
however, heterogeneity among GWAS meta-analyses remains an
issue, particularly with increasing number of studies (Kraft et al.,
2009). Variation in the cohort size across independent studies is
challenging, especially when these studies are conducted from
distinct populations of different ancestry and patterns of LD
(Kraft et al., 2009). Similarly, the list of new post-GWAS tools,
such as multi-marker analyses, which go beyond single-SNP tests, or
the inclusion of functional evidence to reweight GWAS results, is
growing by the day (Han and Eskin, 2011). The heterogeneity in
these methodologies will necessarily complicate the evaluation of
replicability.

Another caveat is that GWAS conducted in non-European
ancestry populations usually include fewer samples (Mieth et al.,
2016), making the current picture of genetic association to disease
across diverse populations incomplete (Manolio, 2017). This creates
a challenge for the power of GWAS meta-analysis across diverse
population cohorts of differing genetic ancestry. Moreover, caution
is required as incomplete replication can also be informative; several
studies have reported a lack of interpopulation replicability,
indicating that some risk variants are population-specific (Martin
et al., 2017; Nakagome et al., 2012). For example, comparing Asian
and European associations with major depression, the failure to
replicate is largely due to differences in patterns of LD, which
reduced power in one population since the proportion of

FIGURE 1
Examples illustrating the chronological order of a partial list of GWAS tools.
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attributable risk decreases with population-specific minor allele
frequency (Wang et al., 2007).

GWAS application for disease risk
prediction

The exceptional polygenicity of human traits makes
unraveling mechanisms from whole-genome or GWAS
daunting (Mills and Rahal, 2019). PRSs, which estimate an
individual’s genetic liability to disease or traits compared to
others with a different genetic constitution (Wray et al., 2021;
Choi et al., 2020), are still mostly derived from European ancestry
GWAS data, making their predictive power substantially lower
when computed in non-European samples, particularly those of
African ancestry (Sirugo and Tishkoff, 2019). Furthermore, the
development of disease association studies and PRS methods
(Choi et al., 2020; Euesden et al., 2015; Choi and O’Reilly, 2019;
Vilhjálmsson et al., 2015), their applications to understand
disease etiology, and their evaluation for clinical utility have
been explored almost entirely in European ancestry populations
(Sirugo and Tishkoff, 2019).

PRS portability and generalizability have been widely reported
in recent years (Martin et al., 2017), yet PRSs in non-European
ancestry samples are still routinely calculated using the same
European GWAS data and PRS methods as applied to
Europeans. This takes no account of known population genetic
factors affecting the data, such as marked LD differences, genetic
drift, natural selection, daily nutrition, family history, and
gene–environment interactions. Consequently, the clinical utility
and etiological insights provided by PRS may have little relevance
to Africans and African Americans. In addition, PRS calculations
are inherently dependent on the quality of the underlying GWAS
data. If the GWAS used to derive the PRS model is underpowered
or has biases, the PRS may not be accurate or reliable and makes its
application to a multi-way admixed population even worse.
Furthermore, current PRS methods are limited in their ability
to integrate epigenetic factors and interactions between different
genetic regions. Although PRS can summarize the effects of
individual genetic variants, they do not yet account for how
gene expression may be regulated by epigenetic modifications
or how different genetic variants may interact to influence
disease risk. While it is worth noting the advances currently
being made in more sophisticated PRS models (Wray et al.,
2021; Klau et al., 2023), there is an increasing risk of
overfitting, particularly when the models incorporate many
genetic variants. Overfitting occurs when a model is too closely
aligned with the training data, resulting in a model that does not
generalize well to new data sets (Wray et al., 2021; Klau et al.,
2023). There is still a need to ensure that PRS models maintain
robustness and a similar magnitude of accuracy in different
populations through careful validation and cross-validation
strategies, as well as by integrating an explainable predictive
model within PRS (Klau et al., 2023).

All these raise the question as to how the clinical utility of these
methods can be made equitable across multi-ethnic populations
and, specifically, how to accurately predict health and disease risk in
multiway admixed and African populations.

Leveraging the data simulation
framework to dissect GWAS in diverse
populations

Simulation of homogeneous and mixed-ancestry case/control
populations with well-known structures that mimic real populations
may help better understand the genetic variation of these
populations and evaluate different existing GWAS tools of
genetic variations undermining complex diseases.

The genetic structure of populations, as well as other
controllable factors, including allele frequency and LD patterns of
genetic markers, is important for the simulation of genotyping data
for GWAS (Mugo et al., 2017). It is important to note that the power
of a statistical test to detect a risk locus relies heavily on the allelic
spectrum (numbers and frequencies of alleles) and the LD structure
around the locus (Mugo et al., 2017). Therefore, it has been
suggested that simulated data should possess both local and long-
range LD (LRLD) patterns and maintain allelic frequencies like real
data (Turgut and Koca, 2024). The resampling approach starts with
real data and avoids the use of an evolutionary process. It has been
shown that this method has its advantages, compared to other
approaches, in retaining real data properties, such as allele
frequency and LD of the initial pool data (Mugo et al., 2017).

Simulation of multiple disease loci

To facilitate benchmarking common GWAS tools, we simulated
homogeneous and heterogeneous GWAS datasets based on
haplotypes from the 1000 Genomes Project spanning the genome
and realistic enough to mimic African, European, and admixed
populations to challenge the statistical methods for association
testing under real-world conditions.

We used resampling and population growth models with
recombination breakpoints while mimicking mutation rates as
described in our previous simulation tool FractalSIM (Mugo
et al., 2017). African and European populations were simulated
under a homogeneous simulation model. We merged five European
and two West African populations to form the reference population
for the simulation. Merged populations, the corresponding sample
sizes, and the abbreviations for the populations used are listed in
Supplementary Table S1.

We selected 9,139,969 common biallelic SNPs in both European
and African populations. Two sets of case/control datasets with an
equal number of cases and controls (500 cases, 500 controls and
2,500 cases, 2,500 controls) were simulated for each merged
population, while maintaining population substructure (Mugo
et al., 2017), in generating simulated genome datasets and
mimicking each reference panel. Although it is well known that
GWAS power is correlated with increasing samples, these sample
sizes were modestly chosen to (1) reflect current African GWAS
sample size affordability (Fatumo and Inouye, 2023; Olono et al.,
2024) and (2) allow a realistic evaluation of the association power on
the most popular and commonly used GWAS tools through
comparing GWAS summary statistics in European versus African
populations. Our decision here relies on the fact that most GWAS in
non-European populations still suffer from small sample sizes, and
we, therefore, base our evaluation on the minimum and maximum
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sample sizes that African studies can currently afford, as indicated in
the current literature (Mills and Rahal, 2019; Zhou and Stephens,
2012; Turgut and Koca, 2024; Fatumo and Inouye, 2023; Olono
et al., 2024).

To assess the associated risk effect, a total of eight fixed SNPs
were simulated with risk effects through all simulation scenarios.
These SNPs were randomly selected across the genome, and as such,
we simulated the risk effect on SNPs on chromosomes 2, 6, 11, 15,
and 20. Figure 2 illustrates our choice of the tag SNPs (representative
SNPs that represent a group of SNPs in a genomic region) and risk
SNPs across different chromosomes. On chromosome 2, we chose
two SNPs, rs113456069 and rs112486568, which were selected, such
that they were in complete LD (r2 = 1) in the simulated European
dataset. SNP rs113456069 was then simulated with a risk effect in the
simulated European population, while rs112486568 was simulated
with a risk effect in the simulated African population and no effect in
the simulated European population. Both SNPs were simulated with
the same signal strength in both simulated datasets. A similar
process was applied in simulating SNPs with risk effects on
chromosome 20. SNPs rs6115358 and rs7343318 were in
complete LD in the European reference dataset, but only
rs6115358 was simulated with a risk effect in the simulated
European dataset, and rs57343318 was simulated with a risk
effect in the African populations. The objective of this design in
simulating the risk-effect SNPs on chromosomes 2 and 20 was to
enable investigating GWAS replicability from simulated European
into simulated African GWAS datasets and evaluate the rate of
misassociation and misreplication. The SNPs with risk effects on
chromosome 11 were simulated such that they were in complete LD

in both simulated datasets, but in the European dataset, they were
simulated to have a strong signal, while in the simulated African
dataset, they were simulated to have a weak signal. This was to
enable examining the power from different tools for capturing weak
association signals in simulated African population and
understanding if increasing samples may have contributions. On
chromosomes 6 and 15, both SNPs were simulated with the same
risk signal strength in both simulated datasets. In addition, we
considered the same homozygosity and heterozygosity relative
risks for these eight risk tag SNPs in all simulation scenarios.
The list of these SNPs and the corresponding relative risks in the
simulated European and African populations are listed in
Supplementary Table S2. The cases and controls were then
simulated using a multiple logistic regression model implemented
in FractalSIM (Mugo et al., 2017).

The heterogeneous (admixed) datasets were generated under a
single-point admixture scenario, where the admixture process
occurs at a single point in history, such that the current
generation is the offspring of the admixed population that has
interbred over subsequent generations. Considering a random
mating model where interbreeding has occurred for
10 generations, the admixture simulation first mimicked the
isolated growth of each parental (reference) population, where a
disease model (risk or null) was simulated in the isolated
homogeneous simulation for each of the parental populations,
like the case–control homogeneous simulation of the European
and African datasets detailed above. At generation 0, the isolated
parental populations were allowed to interbreed. We simulated both
three-way and five-way admixture scenarios. Supplementary Table

FIGURE 2
Illustration of the choice of the risk SNPs selected for the simulation of homogeneous European and African populations. EUR indicates European,
AFR indicates African, and CHR indicates the chromosome. A red star indicates that the SNP was simulated as a risk SNP in that population. In contrast, a
gray star indicates that an SNP is present in the European population, in high LD with the risk SNP simulated on that chromosome but simulated as a risk
SNP in the African population. The black dotted vertical lines indicate the presence of other chromosomes between the two chromosomes. The risk
SNPs on chromosomes 2, 6, 15, and 20 were simulated with the same risk strength in both populations, while on chromosome 11, the risk SNPs of
Europeans were simulated with a strong risk signal, and those of Africans were simulated with a weak risk signal.
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S3 lists the reference parental populations used in these two
scenarios, their corresponding initial sample sizes, and the
proportion of ancestry contribution from each of these parental/
reference populations.

In the three-way simulation, we included 466,142 biallelic SNPs
that were the intersection between the three parental populations.
We simulated eight risk SNPs as described above and generated
2,500 cases and 2,500 controls. In the five-way admixture scenario,
we incorporated 623,330 biallelic SNPs that were present in the
intersection between all five parental populations and simulated
eight risk SNPs on chromosomes 2, 6, 11, 15, and 20 as described
above. In the five-way scenario, however, we simulated two sets of
datasets of different sample sizes: a dataset of 500 cases and
500 controls and another of 2,500 cases and 2,500 controls.

We simulated different ancestry risk scenarios on different
chromosomes by varying the presence and strength of genotype
risk on the risk variant simulated and the ancestry risk on the
genomic region containing the variant. We simulated ancestry risk
by simulating ancestry deviation between cases and controls in the
region that contained risk variants. In the three-way simulation on
chromosomes 2 and 11, we simulated strong genotype and ancestry
risks; on chromosome 6, we simulated very strong ancestry risk and
weak genotype risk; and on chromosome 15, we simulated weak
genotype and ancestry risks. All the other chromosomes were
simulated under a null model in this scenario. In the five-way
simulation, we simulated similar levels of risk in the 500 cases
and 500 controls, as well as 2,500 cases and 2,500 control sample
sizes. On chromosome 2, we simulated strong genotype and ancestry
risks; on chromosomes 6 and 20, we simulated a strong genotype
and no ancestry risk; on chromosomes 11 and 15, we simulated weak
genotype and ancestry risks, along with a null model on all the other
chromosomes. The risk SNPs simulated in the three-way and five-
way scenarios, and their respective homozygosity and heterozygosity
relative risks specified in cases are listed in Supplementary Table S4.
Depending on the MAF of the risk SNPs, the specified risk effects
introduced risk signal strength, as indicated in
Supplementary Table S5.

Assessing simulated GWAS datasets through
population structure

We first assessed the structure of the simulated data for both the
homogeneous and admixed populations. Since the simulation
process was similar for the two sets of case–control datasets in
the homogeneous populations and the five-way admixture
simulation, we used the 500 cases and 500 controls for this
assessment.

In the three simulated datasets, European, African, and
admixed, we first merged the simulated GWAS datasets with
their corresponding reference populations used in generating
simulated data. We then obtained the first 10 principal
components (PCs) using principal component analysis (PCA)
implemented in genome-wide complex trait analysis (GCTA) and
proceeded to plot the first and second PCs using the GENESIS tool
(Buchmann and Hazelhurst, 2014). We used two approaches to
assess the global ancestry in the admixture simulation. We first ran
the ADMIXTURE tool (Alexander et al., 2009), using the supervised

option, for the merged admixed datasets; second, we calculated the
simulated global ancestry from the local ancestry block estimates
generated through FractalSIM. We then plotted the two admixture
tract plots for each scenario using the GENESIS tool.

Supplementary Figures S2, S3 show PCA plots for the African
and European population simulations, respectively, while
Supplementary Figures S4, S6 show the PCA plots for the
simulated three-way and five-way admixed populations,
respectively. The admixture tract plots for the three-way and
five-way admixture simulations are illustrated in Supplementary
Figures S5, S7, respectively. From Supplementary Figures S2, S3, we
observed that from the simulated African and European
populations, both cases and controls, clustered together, as would
be expected in a homogenous population, with no population sub-
structures. The simulated populations were also positioned between
merged reference populations on the PCA 2 axis for the real African
population and the PCA 1 axis for the real European population. On
the PCA 1 axis, the simulated African population was very close to
the reference population by considering the range of the axis, and
similarly, on the PCA 2 axis, the simulated European population was
also very close to the reference population, based on the range of the
axis. This implies that the simulated cases/controls were genetically
close to the respective merged African and European reference
samples. For the admixed population, we observed on the PCA
plots in Supplementary Figures S4, S6 that the admixed samples
were confined within their respective reference parental populations,
for both the three-way and five-way populations. Furthermore, we
observed that the simulated population was spread out, as would be
expected for an admixed population. The simulated three-way
admixed population was closer to the YRI population, which
contributed 70% of the ancestry, while the five-way admixed
population is spread out further away from the EAS population
but closer to the MAFR and SAS populations, which contributed
larger proportions of the ancestry. For the admixture tract, for both
the three-way and five-way scenarios, Supplementary Figures S5, S7
demonstrate that the ADMIXTURE tool estimates the global
ancestry close to the true estimates but performs better in a
three-way simulation than in a five-way simulation. This is
expected as the model accuracy decreases with increasing
parameter space (Zhou and Stephens, 2012). The PCA and
admixture plots indicate that the structure of the simulated
populations met the criteria of the population that we required
for the downstream analysis.

Assessing genome association studies

We further examined state-of-the-art and commonly used
GWAS tools representing major GWAS models using the
simulated GWAS datasets described above. We included linear
mixed-model (LMM)-based approaches Efficient Mixed-Model
Association eXpedited (EMMAX) (Kang et al., 2010), GCTA
(Yang et al., 2011) and genome-wide efficient mixed model
association (GEMMA) (Zhou and Stephens, 2012), as well as
the most widely used GWAS analysis tools PLINK (Purcell et al.,
2007) and SNPTEST (Marchini et al., 2007). For the
homogeneous African and European population, we
considered the standard PLINK association test under a
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logistic model that allowed the inclusion of covariates, which we
labeled PLINK-Logistic.

For the admixture simulations, we only considered PLINK-
Logistic. For GCTA, we considered two association approaches
included in the tool. In the first approach, the GRM used
includes the chromosome with the SNP being tested for
association, which we labeled GCTA, while the second approach
uses a GRM that excludes the chromosome that contains the SNP
being tested for association, which we label GCTA-LOCO (leave one
chromosome out). This approach is an extension of GCTA to
eliminate proximal contamination that may be introduced in the
association analysis when this chromosome is included in the
calculation of the GRM. Similarly, in SNPTEST, we considered
both the frequentist association approach (which we refer to as
SNPTEST-Frequentist) and the Bayesian approach (which we refer
to as SNPTEST-Bayesian). We also assessed TRACTOR (Atkinson
et al., 2020; Atkinson et al., 2021) and joint ancestry and SNP
association method for a multi-way admixed population (JasMAP)
(Mugo et al., 2023), two recently joint SNP and admixture
association approaches tailored for admixed populations.
TRACTOR and JasMAP require LAIs as input, which we
obtained by running RFMIX (Maples et al., 2013). We used
RFMIX for ancestry deconvolution as this is the recommended
tool by TRACTOR and JasMAP.

First, we obtained the first 10 PCs under each simulated set of
data using GCTA. For the homogeneous populations, we included
five PCs as covariates when running PLINK-Logistic and SNPTEST;
based on the PCA plots, we did not observe any population structure
in the homogeneous cohorts. In the admixture populations,
however, we included 10 PCs as covariates in the association test
to control for global ancestry. No missingness was observed in the
datasets, and all the simulated samples were retained for the
association analysis.

We considered only common SNPs when running the
association tests. We thus ran the association analysis using eight
disease-scoring statistics for the homogeneous population and seven
for the admixed population. We then obtained the corresponding
summary statistics and Manhattan plots. To correct for multiple
tests, we used the Bonferroni correction approach. Since the number
of SNPs in our homogeneous population was >1, 000, 000, we used a
genome-wide significance of 5.0 × 10−08 for all the frequentist tests.
The significance threshold for the three-way admixed population
was 1.57 × 10−07; for the five-way admixed population, it was 8.48 ×
10−08 for the smaller sample size and 8.47 × 10−08 for the larger
sample size. We used log(BF) of 4.61 as the significant threshold for
the Bayes factor (BF) for the SNPTEST-Bayesian test, using Jeffrey’s
scale of evidence (Marchini et al., 2007; Kosheleva et al., 2021;
Wakefield, 2009; Jeffreys, 1961). JasMAP outputs the posterior
probability of association (PPA) as the final summary statistics,
and a significance threshold of PPA = 0.5 is used.

Evaluating European and African
simulated GWAS

Results in Supplementary Figures S8–S11 are based on the
homogeneous European and African populations, and the
corresponding summary statistics for the simulated SNPs with

risk effects are displayed in Supplementary Tables S6–S21. In
both simulations, we observed that, for all the tools assessed with
the small sample size, none detected the signals on chromosome 11.
However, for the European population, the LMM-based tools,
GEMMA, GCTA, and GCTA-LOCO, and the standard PLINK
approach captured the signals on four of the chromosomes, while
EMMAX, PLINK-Logistic, and SNPTEST detected significant
signals on three of the chromosomes. Despite EMMAX and
SNPTEST detecting three out of the five simulated risk regions at
this sample size for the European population, they eliminated the
SNP with simulated risk effects on chromosome 6 from the analysis
as part of internal quality controls, and thus, no significant SNP was
observed. In comparison, in the African simulated GWAS dataset
with the smaller sample size, we observed that all the tools, except for
SNPTEST, were only able to capture the signals on chromosomes 2,
6, and 20 at significant levels and the signals on chromosomes
15 only at marginal significance thresholds.

On increasing the sample size for the European population, we
observed that all the tools were able to capture the simulated disease
signals, and although EMMAX and SNPTEST excluded the risk SNP
on chromosome 6 by internal quality control, SNPs in LD with these
risk SNPs were captured for this population, and a significant signal
was detected. However, in the African population, the signals at
chromosomes 15 and 20 showed improvement with increased
sample sizes, but with less significant thresholds compared to the
European population. We also note that at chromosome 11, where a
weak signal was simulated for the African simulation, even with a
larger sample size, the signals were still at a marginal significance
threshold with all assessed scoring statistics.

The findings suggested that in a homogeneous European
population with small sample sizes, GEMMA, GCTA, GCTA-
LOCO, and PLINK were more robust in capturing most of the
simulated risk variants at significant levels, with PLINK-Logistic
following suit. With large sample sizes, all the tools were effective in
capturing the simulated risk at significance levels. We also noted that
internal quality control checks implemented in EMMAX,
SNPTEST-Frequentist, and SNPTEST-Bayesian might remove
risk variants, especially in analyses with small sample sizes, and
thus miss out significant associations. In addition, our results
revealed that with a small sample size, most tools were
underpowered to detect some of the risk variants present at a
significant level in the African GWAS, and even with an
increased sample size, as observed on chromosome 11, some risk
variants struggled to reach the stringent standard GWAS threshold
in the presence of a signal. Similar significant thresholds were
observed for the risk SNPs simulated on chromosome 2,
rs113456069 and rs112486568, in the European and African
populations, respectively, and similarly on chromosome 20,
rs6115358 and rs57343318, in the European and African
populations, respectively. It is noteworthy that only SNPs
rs113456069 on chromosome 2 and rs6115358 on chromosome
20 were simulated with strong risk effects in the European dataset,
but not in the African data set, while SNPs rs112486568 on
chromosome 2 and rs7343318 on chromosome 20 were
simulated with strong risk effects in the African population, but
not in the European dataset (Figure 2). Although SNPs
rs113456069 and rs112486568 on chromosome 2 were simulated
to be in high LD in the European population, we observed that these
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SNPs were also in high LD in the African population. Similarly,
SNPs rs6115358 and rs57343318 on chromosome 20 were also in
high LD in the African datasets. We thus deduce that if strong risk
signals exist in both European and African populations with high-
powered studies, cross-population replication is possible using most
of the tools assessed. In addition, we noticed that the local LD pulls
out several non-risk variants (variants that were not simulated with
risk effect) to reach genome-wide significance, suggesting that
current tools might not distinguish between background LD
(correlation due to nearby markers) and the linkage or
correlation to true SNPs with risk effect.

Assessment of association tests from
simulated admixed GWAS data

The association tests of GWAS tools assessed using the three-
way admixed population simulation are displayed in Supplementary
Figure S12, while Supplementary Tables 22–S28 present the
summary statistics of the risk SNPs simulated. LMM-based tools
EMMAX, GEMMA, and GCTA performed quite similarly in
detecting the simulated risk variants and captured the risk
variants on chromosomes 2 and 6 at a significant threshold.
These three tools detected the risk variants simulated on
chromosomes 11 and 15 at marginal significance thresholds; the
SNPs in LD with the risk variant on chromosome 11 were detected
as significant. GCTA-LOCO, an LMM-based approach, performed
quite similarly to PLINK-Logistic, SNPTEST-Frequentist, and
SNPTEST-Bayesian in capturing the risk variants on
chromosomes 2, 6, and 11 as significant, while capturing the
signal on chromosome 15 at a marginal significance threshold.
On chromosome 11, however, we note that the four approaches
detected a second region that was not simulated with a risk variant
and, thus, a false-positive association that could be due to admixture
was observed. The four approaches also captured a significant signal
on chromosome 12 that was not simulated as significant but
detected at a marginal significance threshold using the other
tools. We, therefore, noted that the LMM-based approaches
EMMAX, GEMMA, and GCTA were more robust in capturing a
wide range of population structures, which enabled them to control
for any spurious associations. However, GCTA-LOCO, also an
LMM-based approach, was ineffective in capturing the sample
structures, and we hypothesize that the LOCO approach might
have missed accounting for a significant level of the sample structure
in the analysis.

The association tests using five-way admixed population
simulation are displayed in Supplementary Figures S13–S14,
while Supplementary Tables S29–S35 present the summary
statistics of the risk SNPs simulated. We observed that for the
small sample size of 500 cases and 500 controls, all the tools
could capture the simulated risk variants on chromosomes 2, 6,
and 20. However, none of the tools captured the risk variants on
chromosomes 11 and 15 at a significant level. With a large sample
size, we observed that all the tools could capture one of the risk
variants on chromosome 11, but the signal at chromosome 15 could
still not reach the significance threshold. We thus noted that when
the genotype risk was strong, irrespective of the presence and
strength of the ancestry association, all the tools were also able to

detect the risk variant at a significant level, as observed on
chromosomes 2 and 6 in the three-way simulation and on
chromosomes 2, 6, and 20 in the five-way simulation analysis.
This was true for most tools, even with the smaller sample size
in the five-way simulation analysis. However, when the genotype
risk was weak and the ancestry risk present was weak or strong, most
of the tools were limited in their ability to detect the simulated risk
variant at a significant level, as observed on chromosome 15 in the
three-way simulation and on chromosomes 11 and 15 in the five-
way simulation.

Although GCTA-LOCO, PLINK-Logistic, SNPTEST-
Frequentist, and SNPTEST-Bayesian were able to detect the risk
SNPs simulated on chromosome 11 in the three-way admixed
simulation at significance thresholds, they were limited in
capturing the admixture-LD on this chromosome and resulted in
spurious association signals, which GEMMA, EMMAX, and GCTA
successfully controlled for; however, they detected this risk variant at
marginal significance thresholds. By increasing the sample size, one
simulated risk SNP on chromosome 11 in the five-way admixed
population association was also detected as significant by all tools.
The simulated ancestry risk on this chromosome was weak, which
implied that the increase in power to detect the risk variant was
highly likely due to the increase in sample size and not associated
with ancestry risk.

We observed that TRACTOR performed quite similarly to the
PLINK-Logistic, GCTA-LOCO, SNPTEST-Frequentist, and
SNPTEST-Bayesian in capturing the simulated risk SNPs in the
three-way admixed population (Supplementary Figure S15;
Supplementary Table S36) and in the smaller sample size for the
five-way admixed population (Supplementary Figures S16, S17;
Supplementary Tables S37–S38). JasMAP (Supplementary Figures
S18–S20) was able to improve the power to detect the risk SNP as
significant when both the genotypic and ancestry risk signals were
marginal in both simulated three-way (Supplementary Table S39)
and five-way admixed datasets (Supplementary Tables S40, S41).
Using the larger sample size, TRACTOR was able to capture the risk
region that was close to the simulated risk SNP as significant but not
the simulated risk SNP. We noted that for quite a number of
ancestry backgrounds, TRACTOR was not able to generate a
result for most SNPs, possibly due to the fact that it has not yet
been optimized for multi-way admixed populations. Overall, joint
association implemented in TRACTOR and JasMAP showed
significant improvement in association power when the genotype
risk effects are strong, irrespective of the strength of the ancestry risk
and sample size (Supplementary Table S41).

Our results support the need for better calibrated methods of
association in a multi-way admixed population that control
population structure not only at a global level but also at a more
local level by incorporating the effect of local ancestry.

Evaluating the replication of European
GWAS in African populations

To assess the false-positive rate (FPR) for the association
analysis for the different tools, using the GWAS summary
statistics generated from each tool, we computed the proportion
of non-risk SNPs that reached genome-wide significance; FPR =
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false positive/(false positives + true negatives). Based on our results,
all the tools had some percentages of false positives in the association
test of the African (Figure 3A), European (Figure 3B), and admixed
(Figure 3C) populations. In the simulated European and African
populations, FPR seemed to be lower for EMMAX and SNPTEST,
but the difference among the tools was very marginal. In the
admixture simulation, based on five-way simulated datasets, it
was clear that the LMM-based tools, except for GCTA-LOCO,
had relatively lower FPR compared to the other tools. By
eliminating a substantial number of SNPs in the calculation of
the GRM, the LOCO approach possibly missed accounting for a
significant level of the population structure in the analysis, which
could have resulted in the relatively high FPR.

To evaluate the replication of European GWAS results in
African GWAS, we generated three GWAS (sample sizes 500,
1,500, and 2,500) in each of the simulated African and European
datasets. For an easier presentation, we focused on these simulated
SNPs on chromosomes 2 and 20 (Figure 2) and used the resulting
summary statistics from the LMM model EMMAX to carry out
meta-analysis across African and European datasets. We assessed
the level of false replication by comparing fixed, random, and binary
effects (Figure 3D). The results from cross meta-analysis suggest that
replication between European and African GWAS is possible if the
effect exists across the two populations.

Considering our findings in Supplementary Tables S6–21, we
observe that cross-population GWAS replication through meta-
analysis is possible and increases with sample size when a similar
magnitude of risk effect exists across populations, and a fixed effect
can be applied. Random effects are commonly used in meta-analysis

as we often do not know the existence of the risk effect; however, our
simulation results show that the random effect may suffer from false
positives due to heterogeneity and differing population-specific LD
patterns (Figure 3D). In addition, the implemented fixed effect in
METASOFT (Han and Eskin, 2011) has fewer false positives than
that in METAL (Willer et al., 2010). Our recommendation is to use
METASOFT as it enables reporting on fixed, random, and binary
effects with m-values [posterior distribution (≥0.9) that effects exist
in the GWAS cohort] from each GWAS cohort in the meta-analysis.

What lessons can be drawn from
European GWAS to benefit diverse
populations?

In the last decade, the increase in human genomic data has led to
more than 3,700 GWAS (Welter et al., 2014; Buniello et al., 2019).
These studies predicted thousands of genetic risk variants, enabling
gene discovery, biological function analysis, and the prediction of
the genetic liability of various human phenotypes. The majority of
these GWAS have been conducted in European decent populations.
The variability in the predictive methods and categorization of
functionally relevant genetic variants still pose specific challenges
in diverse populations, particularly mixed-ancestry populations
(Kim et al., 2018; Shriner et al., 2011a; Shriner et al., 2011b;
Shriner, 2017). In addition, GWAS tools and pipelines commonly
used in European descent populations may lead to high rates of
false-positive/-negative results if stratification is not carefully
controlled, particularly in African genomes that harbor the

FIGURE 3
Proportion of non-risk simulated variants reaching genome-wide significance across GWAS tools. (A) From African (AFR); (B) from European (EUR);
(C) admixed (five-way simulation); (D) cross meta-analysis of AFR and EUR simulated datasets.
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highest genetic diversity and are currently disproportionately under-
represented in public databases and reference panels (Buniello et al.,
2019). The lesson learnt from various GWAS from European
descent populations is that one should consider (i) applying
population-specific GWAS pipelines; (ii) choosing appropriate
GWAS tool among the existing tools or possibly casting a vote of
the association results from running multiple GWAS tools to allow
genome-wide level of significance to have a consensus across many
tools; (iii) the direction of effect size in each study in meta-analysis
with African populations to replicate European GWAS; and (iv)
reporting theminor allele frequency, effect size, standard error of the
effect size, and LD of the associated variants in African versus non-
African populations to enable improved interpretation of the results.

Despite most of the current well-established GWAS tools
(Figure 1) being benchmarked using populations of European
ancestry, several studies demonstrated that the high genetic
diversity found in African and admixed populations makes their
genomic studies more likely to detect many novel variants that are
yet to be described in current public databases such as the GWAS
Catalog (Sirugo and Tishkoff, 2019; Mills and Rahal, 2019; Welter
et al., 2014; Buniello et al., 2019) and the Phenotype–Genotype
Integrator (PheGenI) (Javed et al., 2014). Due to differing patterns of
LD, population-specific allele frequencies, and the proportion of
derived/ancestral risk alleles, caution must be used in (1) performing
a meta-analysis which combines data from participants across
multiple datasets within/between African and non-African
populations to analyze millions of variants to increase the power
of GWAS and (2) interpreting results from risk prediction and
estimation of heritability.

Consistent with other recent studies (Shriner et al., 2011a;
Shriner et al., 2011b; Shriner, 2017; Patron et al., 2019), the
lesson learnt from various benchmarks of GWAS analysis is that
one should consider A) applying significance thresholds and
population-specific GWAS pipelines, B) choosing appropriate
GWAS tools among the existing tools or considering a consensus
approach by possibly running multiple GWAS tools to allow a
genome-wide level of significance to have consensus across many
tools, C) reporting population-specific minor allele frequency, effect
size, standard error of the effect size, and LD of the associated
variants in diverse populations to enable improved interpretation of
the results, and D) the direction of effect size in each study in meta-
analysis with diverse populations to replicate European or other
population-specific GWAS.

Although increasing sample size improved the association
power for most current GWAS tools, our simulation
demonstrated that some risk variants could not reach the
genome threshold level. As GWAS extends to diverse
populations, the following should be noted:

1) Although increasing sampling may improve the association
power, the more the samples, the more genetic variability
within such data is swallowed, resulting in current GWAS tools
possibly failing to detect some risk variants in large-scale
GWAS data (Tam et al., 2019).

2) Diverse or admixture populations may harbor several disease-
relevant rare, unique, or population-specific variants
compared to Europeans who have undergone population
bottlenecks (with more disease-specific common variants);

thus, the current GWAS assumption based on “common
disease – common variant” (Peng and Kimmel, 2007) may
have a reduced benefit to diverse populations, mostly
characterized by high genetic variation and low LD, or to
admixture populations (Tishkoff and Williams, 2002; Martin
et al., 2017; Campbell and Tishkoff, 2008; Chimusa et al., 2018;
Chimusa et al., 2016; Saint Pierre and Génin, 2014).

3) Despite joint SNP and admixture association tests improving
the association power and demonstrating added value beyond
standard GWAS tools (Figure 1), they critically rely on
accurate LAI, which also requires well-specified founder
(reference) populations (Mugo et al., 2023; Atkinson et al.,
2020; Atkinson et al., 2021).

4) It remains a challenge to construct appropriate reference or
founders’ panels for LAI that accurately characterize admixed
populations. A consensus has not yet been reached about best
practices for reference panels, including the use of continental
versus sub-continental reference populations (Geza
et al., 2019).

5) LAI methods in multi-way admixed populations may suffer
from spurious deviations in average local ancestry at some
chromosomal locations of cases/controls, where the modeled
ancestral population is unusually different from the true
ancestral population, due to historical actions such as
natural selection (Chimusa et al., 2014; Secolin et al., 2019).
This is still a serious unresolved weakness of admixture
association (Chimusa et al., 2014; Secolin et al., 2019; Mani,
2017) in most multi-way admixed populations, which worsens
when two or more reference populations are genetically and
closely related, resulting in the ancestry being inaccurately
assigned or misassigned to admixed individuals (Chimusa
et al., 2014; Mugo et al., 2023; Atkinson et al., 2020;
Atkinson et al., 2021; Secolin et al., 2019; Mani, 2017).

6) There are very few joint SNP and admixture tools, possibly
because of their multi-stage process requiring (A) improved
LAI accuracy (Mugo et al., 2023; Atkinson et al., 2020;
Atkinson et al., 2021); (B) building integrative software for
running multi-way admixture deconvolution analysis (Geza
et al., 2019); (C) persisting dilemma in modeling effect sizes
conditional on local ancestry, resulting in significant reduction
in association power (Mester et al., 2023).

7) It is critical to develop new or adapted pipelines for diverse
genetic data or to evaluate existing bioinformatics pipeline
tools using diverse populations to account for diverse genetic
and environmental characteristics that could differently shape
phenotypic variation.

Concluding remarks and future
perspectives

GWAS have significantly contributed to medical genomics and
understanding of complex traits; however, large numbers of false
positives and the small effect size of genetic risk variants have
induced a need for calibrated sample sizes and a culture of FAIR
(findability, accessibility, interoperability, and reusability) data and
sharing. Although GWAS has not yet fully translated into an ability
to predict phenotypes in real-world applications based on genetic
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markers, polygenic and transcriptional risk scores (PRSs and TRSs)
for complex diseases hold potential for stratification according to risk,
and there is a critical need for new approaches, methodologies, and
diverse large data to address questions about the genetic architecture
of complex traits and applicability of findings to clinical settings. In
this study, we leveraged FractalSIM to generate simulated GWAS
datasets mimicking European, African, and admixed populations to
evaluate commonly used GWAS tools, as well as newly joint SNP
association and admixture tools on their performance, using our
simulated GWAS datasets. Our results suggested that LMM-based
tools were more robust in capturing risk variants present in the
European population with smaller samples but with increased samples
in African and admixed populations. All the tools performed similarly
and were limited in their ability to capture risk variants present in
small sample sizes when using simulated African-specific data.
Although increasing the sample size did improve the power to
capture risk variants, when the signal was weak, some risk variants
still struggled to reach the significance levels set in GWAS. Given the
increased frequency of independent testing in simulated African
population GWAS analysis due to the generally higher number of
SNPs and short LD blocks, it has been suggested and shown that a
stricter significance threshold should be considered (Choi et al., 2020).
In considering this, it raises the question of whether the risk signals
observed at the near marginal significance thresholds in the African
GWAS simulated datasets with increased sample sizes would still be
significant withmore stringent thresholds. This, therefore, emphasizes
the dire need for increased sampling in African populations if African
GWAS is to catch up with European GWAS, given that small sample
sizes still pose a limitation for African GWAS.

When the genotype risk was weak in the presence of a strong
ancestry risk, the association between joint SNPs and admixture was
successful in leveraging the ancestry risk to enhance the power to
detect the signal even when the sample size was small. We observed
that joint associations implemented in TRACTOR and JasMAP are
calibrated for admixed populations and have significantly improved
the association’s power in detecting risk effect signals when the
genotype risk was strong, irrespective of the strength of the ancestry
risk and sample size.

We observed that cross-population replication in the presence of
strong risk signals in both European and African populations is
possible when applying most of the current state-of-the-art tools
from homogeneous population-based association analysis, provided
the studies are high-powered. However, caution should be exercised
while using EMMAX, SNPTEST-Frequentist, and SNPTEST-
Bayesian approaches as internal quality control procedures in
these tools may eliminate risk variants from the analysis.
Furthermore, we observed that the LMM-based models, except
for GCTA-LOCO, performed better at controlling for spurious
associations in the admixture context. However, they were
limited in detecting the simulated risk variant when the genotype
risk was very weak, irrespective of whether the ancestry risk was very
high or moderate at the genomic region containing the risk SNP.

Overall, GWAS reproducibility is critical, and it is also
important to keep fostering a culture of replication to
maintain reliability in findings. As sequencing and,
consequently, the availability of genomic information on
African populations increases, there are new opportunities to
design next-generation disease scoring statistical models that

capture not only common variants but also rare and
population-specific variants. These new approaches should be
tailored to and leverage the characterization of diverse
populations with longer histories, high genetic diversity, and
environmental heterogeneity, as well as varying types of LD
patterns. This will enable us to better understand and
elucidate the genetic architecture of African complex traits,
variation in drug/treatment response, and disease outcomes.
There are potentially many uses of novel disease-scoring
statistics models that further leverage the environmental
diversity, such as on the African continent, including a better
understanding of the pathogenesis of diseases of global health
relevance, new leads for studying underlying risk prediction, and
advancing clinical prediction of global treatment. The findings
from these African-specific disease scoring statistics on African
data will pave the way for a new, more diverse research
dimension in public health translation1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19.
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