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Background: With the rapid advancement of gene sequencing technologies,
Traditional weighted gene co-expression network analysis (WGCNA), which relies
on pairwise gene relationships, struggles to capture higher-order interactions
and exhibits low computational efficiency when handling large,
complex datasets.

Methods: To overcome these challenges, we propose a novel Weighted Gene
Co-expression Hypernetwork Analysis (WGCHNA) based on weighted
hypergraph, where genes are modeled as nodes and samples as hyperedges.
By calculating the hypergraph Laplacian matrix, WGCHNA generates a
topological overlap matrix for module identification through hierarchical
clustering.

Results: Results on four gene expression datasets show that WGCHNA
outperforms WGCNA in module identification and functional enrichment.
WGCHNA identifies biologically relevant modules with greater complexity,
particularly in processes like neuronal energy metabolism linked to
Alzheimer’s disease. Additionally, functional enrichment analysis uncovers
more comprehensive pathway hierarchies, revealing potential regulatory
relationships and novel targets.

Conclusion: WGCHNA effectively addresses WGCNA’s limitations, providing
superior accuracy in detecting gene modules and deeper insights for disease
research, making it a powerful tool for analyzing complex biological systems.
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1 Introduction

With the rapid advancement of gene sequencing technologies, biological research has
entered the era of big data, leading to a swift increase in the variety and scale of gene
expression data (Soon et al., 2013). However, extracting meaningful biological information
from these complex and voluminous gene datasets has become a significant challenge in
current research (Zhang et al., 2024a; Deng et al., 2023). In light of the dramatic growth of
data and the intricate interactions among genes, many traditional bioinformatics analysis
methods (such as statistical correlation-based approaches) are gradually proving inadequate
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for modern research demands (Del Val et al., 2024). Consequently,
researchers have introduced Weighted Gene Co-Expression
Network Analysis (WGCNA), which has become a powerful tool
for analysing gene co-expression patterns (Langfelder and Horvath,
2008; Liang et al., 2018; Liu et al., 2016; Soleimani Zakeri et al., 2020).
WGCNA not only identifies modules of co-expressed genes and
reveals their associations with biological traits but also aids
researchers in better understanding the underlying mechanisms
of gene networks, facilitating the discovery of potential disease
biomarkers and therapeutic targets (Jha et al., 2024). This
method has achieved significant results in the study of various
diseases, providing new insights for precision medicine and
disease treatment (Abudereheman et al., 2024; Chen et al., 2024).

Although WGCNA has shown remarkable performance in
constructing gene co-expression networks, existing improvements
have primarily focused on aspects such as node similarity metrics
(Zhang and Wong, 2022; Hou et al., 2021), clustering algorithms
(Botía et al., 2017; Greenfest-Allen et al., 2017), and data
compatibility (Zoppi et al., 2021; Ke and Ge, 2024). For instance,
numerous studies have aimed to enhance the accuracy of network
construction by optimizing weighted correlation coefficients or
distance functions (Hou et al., 2022; Iancu et al., 2015).
Concurrently, advancements in clustering algorithms have
emerged as a research hotspot, including methods based on
modularity measures and dynamic tree cutting (Melo et al., 2024;
Yu et al., 2023), which aim to improve the accuracy of module
detection. Moreover, the applicability of WGCNA has expanded, as
it now supports the integration of various data types beyond
transcriptomics, including proteomics and epigenomics (Ma
et al., 2024; Cao et al., 2024; Zhang et al., 2024b; Xu et al., 2024).
These improvements have significantly enhanced WGCNA’s
flexibility and robustness across multi-dimensional datasets,
leading to its widespread application in biomedical research
(Demirbaga et al., 2024; Rezaei et al., 2022).

WGCNA primarily characterizes pairwise relationships within
gene co-expression networks by constructing co-expression
networks through the calculation of similarity between genes.
However, this approach fails to adequately capture the more
complex higher-order interactions among genes, such as patterns
of multi-gene cooperation, thereby imposing certain limitations on
the model’s ability to elucidate intricate biological network
structures (Feng et al., 2021; Tian et al., 2009; Barton et al.,
2023). Furthermore, in large-scale datasets and multi-gene
interaction analyses, WGCNA faces challenges regarding
computational efficiency and the accuracy of module extraction.
Specifically, when handling thousands of genes and their associated
interactions, there remains room for further optimization in the
model’s computational complexity and the precision of module
delineation (Rezaie et al., 2023; Yang et al., 2024).

To address the above problems, this paper proposes a weighted
gene co-expression hypernetwork analysis (WGCHNA) based on
weighted hypergraph. The algorithm introduces hypergraph theory
into gene co-expression network analysis. First, a weighted gene co-
expression hypernetwork is constructed for the preprocessed gene
expression profiles. Then, the topological overlap matrix is calculated
through the hypergraph Laplacian matrix. Finally, the gene co-
expression modules are mined using hierarchical clustering. To
demonstrate the applicability of the algorithm, we compare it with

traditional WGCNA (such as PyWGCNA and R WGCNA) and
distance-correlated weighted gene co-expression network analysis
(DC-WGCNA) methods, and analyze them from the aspects of
scale-free property verification, clustering performance evaluation,
and time complexity. Experimental results show that the hypergraph
can more accurately capture the complex connection relationship
between genes and samples, highlight the pathogenic gene module,
and effectively screen out key genes significantly related to the disease,
demonstrating its practicality and reliability in biological data analysis.

To more intuitively demonstrate the significant advantages of the
WGCHNAmethod in characterizing high-order gene interactions, we
compared the differences between WGCHNA and traditional
WGCNA in constructing gene interaction networks (as shown in
Figure 1). In the traditionalWGCNA shown in Figure 1a, the network
nodes represent genes, the edges between nodes represent the co-
expression relationship between gene pairs, and the thickness of the
edge represents the co-expression strength. This weighted network
structure can only capture the direct co-expression relationship
between pairs of genes, but it is difficult to reveal more complex
multi-gene collaborative interaction patterns. For example, TP53 and
BRCA1may jointly participate in cell cycle regulation, and their direct
co-expression relationship can be intuitively represented by a
weighted edge, but when more genes are involved in co-regulation,
this structure is insufficient. In contrast, as shown in Figure 1b, the
WGCHNA method we proposed adopts a weighted hypergraph
structure. The nodes in WGCHNA also represent genes, but
samples are used as hyperedges. The weight of the hyperedge is
aggregated according to the correlation between multiple genes. The
thickness of the hyperedge represents the sum of the weights of
multiple nodes connected by the hyperedge. This method can not only
reflect the direct co-expression relationship between paired genes, but
more importantly, it can reveal the complex co-regulatory patterns
between multiple genes. For example, TP53, BRCA1, and PIK3CA
may be involved in the same cancer signaling pathway. WGCHNA
can connect these three genes with hyperedges at the same time, which
more intuitively shows their potential co-regulatory effects. Therefore,
compared with traditional WGCNA,WGCHNA can more effectively
and comprehensively reveal high-order interaction networks
in genomics.

2 Materials and methods

2.1 Datasets

The gene data utilized in this study were sourced from the
(MODEL-AD) database, specifically the mouse Alzheimer’s disease
dataset (5xFAD) (Forner et al., 2021), as well as the (GEO) database,
which includes datasets for breast cancer (GSE48213) (Daemen
et al., 2013) and hypertension (GSE75360, GSE75670) (Dluzen et al.,
2016). Detailed information for each dataset is presented in Table 1.

2.2 Extension of gene co-expression
networks based on weighted hypergraphs

WGCNA(5) typically constructs networks based on the
correlation between pairs of genes, using an adjacency matrix to
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represent the direct co-expression relationships between gene pairs.
However, WGCNA faces challenges in capturing the global features
of the network and the complex higher-order regulatory patterns
involved in multi-gene cooperation. To address this limitation, this
study proposes a weighted gene co-expression hypernetwork model
based on hypergraph theory. In this model, multiple gene nodes are
connected through hyperedges, reflecting the complex cooperative
expression relationships across samples.

Compared to traditional adjacency matrices, the Laplacian
matrix of a hypergraph provides a more comprehensive
characterization of the network’s global properties, with
significant advantages in identifying gene modular structures and
multi-gene cooperation. The Laplacian matrix not only reflects the
“flow” or “diffusion” between genes but also effectively handles
higher-order associations in hypergraphs, enhancing the network’s
analytical capabilities to uncover deeper biological functions.

Figure 2 presents an example of a weighted hypergraph (Claude,
1973), containing 7 gene nodes and 4 sample hyperedges. The node
set is V � v1, v2, v3, v4, v5, v6, v7{ }, and the hyperedge set is
E � e1, e2, e3, e4{ }, where e1 � v1, v2, v3{ }, e2 � v3, v5{ }, e3 � v5, v6{ }
and e4 � v4, v7{ }. The hyperedge weight set is W � 3, 2, 2, 2{ }.

By constructing a weighted hypergraph and calculating its
Laplacian matrix, we further integrate it into the computation of
the Topological Overlap Matrix (TOM). Combining this with a
hierarchical clustering algorithm, we can identify key gene modules
that reveal the co-expression patterns of genes across different
samples. This approach enhances the identification of complex
biological modules and improves the analytical capacity of gene
co-expression networks.

2.3 Weighted gene co-expression
hypernetwork analysis

To more precisely capture complex higher-order interactions
between genes and improve computational efficiency for large-scale
datasets, we designed the algorithmic workflow of Weighted Gene
Co-expression HyperNetwork Analysis (WGCHNA), as illustrated
in Figure 3. This workflow encompasses data preprocessing,
hypergraph construction, gene module identification, and
functional enrichment analysis, ultimately revealing the
relationships between modules and the potential functions of
key genes.

As shown in the Figure 3, WGCHNA constructs a weighted
hypergraph that connects multiple genes, capturing the complex
patterns of co-expression across samples. The following section
provides a detailed description of the specific steps involved in
the algorithm.

2.3.1 Construction process andweight definition of
weighted hypergraph
2.3.1.1 Hypergraph construction method

This study constructs a weighted gene co-expression
hypernetwork (WGCHNA) based on the gene expression

FIGURE 1
The difference between WGCNA and WGCHNA in the gene interaction network. (a) WGCNA Network. (b) WGCHNA Weighted Hypergraph.

TABLE 1 Details of experimental datasets.

Datasets Number of genes Number of samples

5xFAD 55448 192

GSE48213 36953 56

GSE75360 47231 21

GSE75670 15840 12

FIGURE 2
Weighted hypergraph.
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spectrum matrix. Let the gene set V be the node set of the
hypergraph, the sample set E be the hyperedge set, and each
hyperedge e connects all the genes in the sample. The hyperedge
weight matrix W reflects the co-expression strength of gene sets in
different samples.

Different from the traditional gene co-expression network,
WGCHNA adopts sample-level hyperedge modeling, that is, each
sample forms a hyperedge, and all genes in the sample are regarded
as a high-order co-expression unit. This design is in line with the
idea of hypergraph modeling, because hyperedges not only connect
multiple genes, but also connect a set of genes that may be
biologically related.

2.3.1.2 Definition of hyperedge weight
In order to characterize the co-expression strength of gene

sets, we define the weightWe of hyperedge e as an aggregate measure
of the expression correlation between gene pairs in the sample. The
specific calculation is shown in Formula 1:

We � 1
| Pe | ∑

gi ,gj∈Pe

corr gi, gj( ) (1)

Among them, Pe represents the set of all gene pairs within
hyperedge e, corr(gi, gj) is the expression correlation of genes gi

and gj in all samples, and | Pe | is the total number of gene pairs
within hyperedge e. Different from the traditional weighted gene
co-expression network (WGCNA) that only builds a network
based on the correlation of paired genes, WGCHNA uses
sample-level hyperedges in the hypergraph structure to
aggregate the expression relationship of multiple genes, thereby
improving the model’s ability to capture high-order gene
interactions.

Our method follows the core idea of hypergraph modeling, that
is, hyperedges are not limited to pairs of genes, but organize multiple
genes together to form a higher-order structure. Although the

weight calculation uses the aggregation of pairwise correlations,
its purpose is to quantify the co-expression pattern of multiple genes
in the same sample, rather than simple pairwise interactions.
Therefore, this method can capture the higher-order co-
expression effects of the entire genome, such as the synchronous
upregulation or downregulation of large-scale gene expression
under specific conditions, rather than just the changes in the
correlation of pairwise genes.

2.3.2 Calculation of the hypergraph
laplacian matrix

After constructing the hypergraph, the next step involves
calculating the laplacian matrix of the hypergraph (Gao et al.,
2020), which is used for further topological analysis. The
hypergraph laplacian matrix provides a mathematical
representation of the complex associations between nodes (genes)
and hyperedges (samples) within the hypergraph, allowing for the
capture of higher-order relationships among multiple genes and
samples. The Laplacian matrix of the hypergraph is shown in
Formula 2:

Δ � Dv −HWD−1
e HT (2)

where Dv is the diagonal matrix of hyperdegrees of the gene nodes,
De is the diagonal matrix of hyperdegrees of the sample hyperedges,
W is the weight matrix of hyperedges, andH is the incidence matrix
of the hypergraph. The symbols appearing later have the same
meanings as defined here. To further adapt to the scale of the data
and ensure computational stability, the Laplacian matrix is
normalized as Formula 3:

Δ � I −D−1/2
v HWD−1

e HTD−1/2
v (3)

here, I is the identity matrix. Compared to the laplacian matrix
of simple graphs, this definition better reflects the higher-order
structure in the weighted gene co-expression hypernetwork.

FIGURE 3
Weighted Gene Co-expression HyperNetwork Analysis (WGCHNA) workflow.
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2.3.3 Calculation of the topological overlap matrix
Next, based on the hypergraph laplacian matrix, we calculate the

Topological Overlap Matrix (TOM), which reflects the topological
overlap between gene pairs and serves to measure their similarity.
For genes i and j, the TOM is computed as Formula 4:

TOM i, j( ) � Δij + ∑kΔikΔkj

min di, dj( ) + 1 − Δij

(4)

where Δij represents the value between genes i and j in the hypergraph
laplacian matrix, and di and dj are the degrees of genes i and j,
respectively, indicating their connections to other genes. The TOM
matrix serves as a measure of similarity for each pair of genes, aiding in
the identification of gene pairs that are co-expressed across multiple
samples, ultimately contributing to module clustering analysis.

2.3.4 Gene module clustering
Upon obtaining the TOM matrix, WGCHNA employs

hierarchical clustering to identify gene modules. Specifically, the
dissimilarity of the Topological Overlap Matrix (dissTOM) is
computed, defined as Formula 5:

dissTOM i, j( ) � 1 − TOM i, j( ) (5)

to enhance the accuracy of module identification, the algorithm
employs a dynamic module merging strategy. By dynamically
detecting similar modules and merging them, it ensures that the
identified modules exhibit higher stability and biological relevance.

2.3.5 Module output and subsequent analysis
Ultimately, WGCHNA outputs the identified gene co-

expression modules. These modules represent groups of co-
expressed genes across different samples and can reflect potential
biological functions or regulatory mechanisms. The identified gene
modules can be further utilized for functional enrichment analysis,
disease relevance studies, or other subsequent biological analyses.

2.4 Comparative experiments

To evaluate the effectiveness of WGCHNA, we compared it with
traditional WGCNA methods [especially PyWGCNA(31) and R
WGCNA(5)] and distance-correlation-based weighted gene co-
expression network analysis [DC-WGCNA(18)]. WGCNA was
originally widely used in the R programming language, but with
the increasing influence of Python in the field of bioinformatics, the
Python version of WGCNA has also been developed and gained
widespread attention. Each version has unique advantages in terms
of functions and application scenarios, suitable for different research
needs. DC-WGCNA applies distance correlation to WGCNA.
Compared with traditional WGCNA, DC-WGCNA can improve
the results of enrichment analysis and the stability of the module.
However, it has higher time complexity and requires more memory.

2.5 Experimental setup

To ensure a fair comparison of different methods under the
same experimental conditions, we set strict and consistent

hyperparameters for WGCHNA, PyWGCNA, R WGCNA, and
DC-WGCNA to reduce the bias caused by parameter selection
and ensure the comparability of experimental results. In the
process of gene co-expression module detection, the minimum
module value (minClusterSize) was uniformly set to 50 to ensure
that the module contains a sufficient number of genes, thereby
improving the stability of the module and avoiding the generation of
too many small modules. At the same time, the module partition
depth (deepSplit) was set to 2 to moderately control the granularity
of module splitting, so that larger modules can be further
decomposed while preventing excessive fragmentation. In
addition, to improve the consistency of modules, we merged
modules with a similarity of more than 80% to reduce module
redundancy caused by random fluctuations and improve the
biological relevance of modules.

3 Results and discussion

3.1 Data preprocessing and scale-free
verification

The first step in WGCNA involves selecting an appropriate soft
threshold to construct a gene co-expression network that exhibits
scale-free properties. This step effectively captures the inherent
characteristics of biological networks, specifically the uneven
connectivity between a few hub genes and numerous other genes.
When extending this analysis to a weighted hypergraph, it is
similarly necessary to use a soft threshold to construct a
weighted gene co-expression hypernetwork with scale-free
properties. A scale-free hypernetwork not only captures the
complex higher-order relationships among multiple genes but
also ensures that the network’s topology aligns with the
characteristics of real biological systems.

Therefore, before the experiment begins, it is necessary to first
perform missing value processing and soft threshold selection
operations on each gene data set to construct a weighted gene
co-expression hypernetwork. The hypernetwork constructed by the
soft threshold we selected has been verified by the hyperdegree
distribution law and all conforms to the scale-free feature. Take the
5xFAD data as an example, as shown in Figure 4, and other data
results can be found in Supplementary Material 1.

3.2 Clustering performance evaluation

In this study, Silhouette Index, (SI) (Dudek, 2020), Calinski-
Harabasz Index, (CHI) (Lima and Cruz, 2020), and Davies-Bouldin
Index, (DBI) (Xiao et al., 2017) were used as internal clustering
evaluation metrics to assess the quality of the clusters produced by
various methods. Additionally, Adjusted Mutual Information,
(AMI) (Lazarenko and Bonald, 2021) and Adjusted Rand Index,
(ARI) (Chacón and Rastrojo, 2023) were employed as external
clustering evaluation metrics to further evaluate the clustering
quality of the datasets. The experimental results are listed in
Tables 2, 3 respectively.

The experimental data in Tables 2, 3 indicate that WGCHNA
exhibits superior clustering performance on multi-sample datasets,
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especially in capturing complex gene expression patterns. However,
the performance differences among methods become less
pronounced when dealing with smaller or highly similar datasets.

3.2.1 Performance advantages on multi-
sample datasets

From the results in Tables 2, 3, WGCHNA demonstrates a clear
advantage on larger datasets (such as 5xFAD and GSE48213),
particularly in terms of internal evaluation metrics (SI, CHI,
DBI) and external evaluation metrics (AMI, ARI).

• 5xFAD Dataset: The SI of WGCHNA is 0.470, which is
significantly higher than PyWGCNA (0.386), R WGCNA

(0.394) and DC-WGCNA (0.374), indicating that
WGCHNA is superior in the clarity of module boundaries
and internal tightness. In terms of CHI index, WGCHNA
achieved 4909.988, far exceeding other methods (PyWGCNA:
2304.095, R WGCNA: 2237.917, DC-WGCNA: 2126.021),
indicating that it has a higher ability to distinguish
differences between modules. For the DBI index,
WGCHNA obtained a lower value of 0.680, while DC-
WGCNA obtained a value of 0.872, further proving that
WGCHNA has more advantages in maintaining internal
consistency of modules. The AMI and ARI of WGCHNA
are 0.334 and 0.205, respectively, which are higher than
PyWGCNA (0.287 and 0.196), R WGCNA (0.277 and

FIGURE 4
Soft threshold processing and scale-free validation. When the soft threshold is 9, the constructed hypernetwork conforms to the scale-
free property.

TABLE 2 Comparison of internal evaluation metrics obtained by WGCHNA with different modeling methods on all gene expression datasets.

Dataset Evaluation measures PyWGCNA R WGCNA DC-WGCNA WGCHNA

5xFAD SI 0.386 0.394 0.374 0.470

CHI 2304.095 2237.917 2126.021 4909.988

DBI↓ 0.807 0.861 0.872 0.680

GSE48213 SI 0.389 0.301 0.285 0.393

CHI 4907.275 2835.172 2693.413 5132.688

DBI↓ 0.870 0.992 0.996 0.830

GSE75360 SI 0.478 0.322 0.305 0.481

CHI 1295.324 591.379 561.810 1304.344

DBI↓ 0.691 0.928 0.931 0.681

GSE75670 SI 0.382 0.314 0.298 0.383

CHI 2874.955 1949.226 1851.765 2888.122

DBI↓ 0.834 0.898 0.903 0.831
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0.184) and DC-WGCNA (0.263 and 0.174), indicating that
WGCHNA is more accurate in reconstructing real
biological modules.

• GSE48213 Dataset: The SI of WGCHNA is 0.393, which is
slightly better than PyWGCNA’s 0.389, and significantly
higher than R WGCNA (0.301) and DC-WGCNA (0.285).
In terms of CHI value, WGCHNA achieved 5132.688, which is
higher than PyWGCNA (4907.275), R WGCNA (2835.172)
and DC-WGCNA (2693.413). In the DBI index, WGCHNA is
0.830, showing a higher intra-module compactness compared
with DC-WGCNA’s 0.994. The AMI and ARI of WGCHNA
are 0.376 and 0.231, respectively, which are higher than other
methods, among which DC-WGCNA is 0.292 and 0.207,
respectively, indicating that WGCHNA performs better in
capturing complex gene expression patterns.

3.2.2 Performance on small-scale or
similar datasets

In contrast, on smaller or more homogeneous datasets, the
performance differences among the methods are relatively minor.
For instance, on the GSE75360 and GSE75670 datasets, the
clustering results are more comparable across methods.

• GSE75360 Dataset: The SI of WGCHNA is 0.481, which is
close to that of PyWGCNA (0.478), but significantly higher
than R WGCNA (0.322) and DC-WGCNA (0.305). In the
CHI index, WGCHNA (1304.344) is slightly better than
PyWGCNA (1295.324), while DC-WGCNA is only
561.810. In DBI, WGCHNA (0.681) is lower than
PyWGCNA (0.691), while DC-WGCNA’s 0.931 indicates
poor consistency within the module. The differences in
AMI and ARI among the methods are small, 0.201 and
0.199 for WGCHNA, respectively, while those for DC-
WGCNA are 0.185 and 0.188, indicating that the methods
perform relatively closely on smaller datasets.

• GSE75670 Dataset: The SI of WGCHNA is 0.383, which is
basically the same as PyWGCNA (0.382), and both are better
than R WGCNA (0.314) and DC-WGCNA (0.298). In terms
of CHI value, WGCHNA (2888.122) is slightly higher than
PyWGCNA (2874.955), while R WGCNA and DC-WGCNA
are 1949.226 and 1851.765 respectively. In the DBI index,
WGCHNA (0.831) is close to PyWGCNA (0.834), while DC-

WGCNA achieves 0.913, indicating that the internal
consistency of its clustering module is weak. In terms of
AMI and ARI, WGCHNA is 0.202 and 0.201 respectively,
slightly higher than DC-WGCNA’s 0.191 and 0.190, but the
overall difference is small, reflecting that when the data scale is
small or the features are simple, the performance of each
method tends to be consistent.

In summary, WGCHNA showed significant advantages on
multi-sample, large-scale gene expression datasets, and its
performance in both internal and external indicators was better
than other methods, including PyWGCNA, R WGCNA, and DC-
WGCNA. In particular, WGCHNA showed higher accuracy and
module consistency in capturing complex gene expression patterns
and distinguishing differences between modules. In contrast, DC-
WGCNA performed relatively poorly on all datasets, and its
performance lagged behind WGCHNA in terms of clarity of
module division, differences between modules, and internal
tightness. For small-scale or similar-featured datasets, the
performance differences between the methods were small, but in
large-scale and complex data, WGCHNA was selected to more
accurately reflect biological modules, providing more reliable
support for subsequent functional annotation and
mechanism studies.

3.3 Time complexity comparison

In the experiment, the average running time of four algorithms
(WGCHNA, PyWGCNA, R WGCNA, DC-WGCNA) was
calculated for gene datasets of different orders of magnitude, and
the results are shown in Figure 5. The experiment covers gene
datasets from small to large scales, aiming to evaluate the
performance of each algorithm when processing different
numbers of genes.

As can be seen from Figure 5, as the number of genes increases,
the running time of the four algorithms increases, but there are
significant differences in the magnitude and speed of the increase.
When the amount of gene data is small, the running time of the four
algorithms is not significantly different, and the performance of
PyWGCNA, R WGCNA and DC-WGCNA is close to WGCHNA.
However, as the scale of gene data increases, WGCHNA gradually

TABLE 3 Comparison of external evaluation metrics obtained by WGCHNA with different modeling methods on all gene expression datasets.

Dataset Evaluation measures PyWGCNA R WGCNA DC-WGCNA WGCHNA

5xFAD AMI 0.287 0.277 0.263 0.334

ARI 0.196 0.184 0.174 0.205

GSE48213 AMI 0.322 0.308 0.292 0.376

ARI 0.214 0.218 0.207 0.231

GSE75360 AMI 0.196 0.195 0.185 0.201

ARI 0.199 0.198 0.188 0.199

GSE75670 AMI 0.200 0.202 0.191 0.202

ARI 0.200 0.200 0.190 0.201
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shows a significant computational advantage, and its running time is
significantly shorter than that of the other three algorithms,
especially on large-scale data sets of thousands to tens of
thousands of genes. Compared with the traditional WGCNA
method (both Python and R versions) and DC-WGCNA,
WGCHNA shows higher computational efficiency when
processing more complex gene expression networks. Its
advantage mainly comes from the use of a hypergraph structure
in the algorithm design, which can effectively capture the high-order
correlation between multiple genes, while reducing unnecessary
pairwise correlation calculations, thereby reducing the overall
computational complexity. On the other hand, as the number of
genes increases, the running time of R WGCNA shows a more
significant linear growth, and the computational overhead is higher
on large-scale data sets, which may be related to the computational
efficiency limitations of the R language itself. PyWGCNA has
optimized the computational process to a certain extent.
Although the performance gap between PyWGCNA and
WGCHNA is not large on small and medium-sized data sets, the
scalability of PyWGCNA is still inferior toWGCHNA on large-scale
data sets. DC-WGCNA has a similar running time to RWGCNA on
small-scale data, but also shows a significant time growth trend on
large-scale data sets, and even the overall time consumption exceeds
R WGCNA, indicating that its algorithm scalability still needs to be
further optimized. In general, WGCHNA can maintain high
computational efficiency on data sets of different sizes, especially
showing more outstanding performance advantages in large-scale
data analysis scenarios.

3.4 Identification of co-expression modules

In the subsequent analysis, WGCHNA used the same method as
WGCNA to construct gene co-expression modules. Specifically, we
calculated the topological overlap matrix (TOM) based on the

hypergraph Laplacian matrix and used the dynamic tree cutting
method to identify gene co-expression modules. Figure 6 shows
the 5xFAD gene modules identified by WGCHNA and their
associations with sample traits, of which only the black modules
are shown. The detailed results of other modules can be found in
Supplementary Material 2. The selection of modules was based on the
following criteria: First, the selected modules achieved high statistical
significance (p < 0.05) in the correlation analysis with sample traits,
indicating that they may have important biological significance in the
5xFAD model. Second, the modules contained multiple core genes
(Top-ranked genes) with high connectivity, which played a key role in
the co-expression network. In addition, functional enrichment
analysis showed that the selected modules were significantly
associated with biological processes such as Alzheimer’s disease-
related pathways or neuroinflammatory responses. Finally, the
modules showed high robustness under different parameter
settings, further verifying their structural reliability and biological
explanatory power. Therefore, we highlighted the black modules as
representative cases to illustrate the effectiveness and biological
explanatory power of WGCHNA in gene module identification.

As shown in Figure 6, the expression patterns of two gene
modules (black) in the 5xFAD dataset vary under different
experimental conditions. The color bars represent sample
genotype, sex, tissue type, and age group. The expression of
genes in the black module exhibits significant variation across
conditions, particularly at specific ages (e.g., 8 and 12 months)
and in hippocampal tissues, where 5xFAD/WT genotype samples
show higher characteristic gene values.

3.5 Downstream analysis of co-
expression modules

WGCHNA supports the same downstream analysis functions and
visualization of co-expressionmodules as PyWGCNA. It can calculate

FIGURE 5
Comparison of running time of WGCHNA and Python and R versions WGCNA and DCWGCNA under different numbers of genes.
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module-trait correlations and summarize the expression of module
characteristic genes in sample source data (Virshup et al., 2021; Fang
et al., 2023), detect hub genes in each module, and perform functional
enrichment analysis in each module using databases such as GO,
KEGG, and REACTOME (Ashburner et al., 2000; Fabregat et al.,
2018; Szklarczyk et al., 2021). Figure 7 shows the functional
enrichment analysis results of the black module in the 5xFAD
gene co-expression module identified by WGCHNA. Other related
results can be found in Supplementary Material 3.

Figure 7 presents the trait correlations and functional
annotations of genes in the black module identified by
WGCHNA. The heatmap(A) shows the correlation between the
module eigengenes and various traits (e.g., age, sex), revealing a
significant negative correlation with samples at 12 months of age
and a positive correlation at 18 months. The bubble plot(B)
highlights the primary biological processes involving the module
genes through GO functional annotation, including cytoplasmic
translation, protein targeting to membranes, and mitochondrial
ATP synthesis.

3.6 Literature verification and
enrichment analysis

Existing studies have shown that hypergraph network modeling
methods (Feng et al., 2021; Tian et al., 2009; Barton et al., 2023) have

significant advantages in complex biological network analysis,
especially in the identification of key gene modules. For example,
the study by Tian et al. (Feng et al., 2021) showed that by introducing
a hypergraph model, the complex synergy between multiple genes
can be more effectively captured. In particular, when processing
multi-sample disease data, the hypergraph model can screen out
gene modules that are highly related to the disease. To verify this
point of view, this paper takes the mouse Alzheimer’s disease dataset
(5xFAD) as an example to compare the performance of the two
methods WGCHNA and PyWGCNA. Table 4 shows the top
10 genes in the gene co-expression modules mined by the two
methods. N/A means that the relevant genes could not be identified
due to the limitation of the numerical calculation accuracy of the
algorithm. To intuitively demonstrate this phenomenon, we added a
visualization diagram of the WGCHNA and WGCNA recognition
modules, as shown in Figure 8.

Comparative analysis reveals significant differences between
PyWGCNA and WGCHNA in identifying key genes. PyWGCNA
identifies the top 10 genes including Cttn (Sarabi et al., 2024), Prkcg
(Jiang et al., 2019), and Rasgrf1(50) (Song et al., 2016), which are
previously reported to be associated with neurodegenerative diseases
such as Alzheimer’s disease. However, PyWGCNA encounters
substantial noise interference in certain gene detections (e.g.,
Cttn, Prkcg), potentially introducing uncertainties in the
functional information of these genes (Sarabi et al., 2024; Jiang
et al., 2019).

FIGURE 6
Visualization of the correlation between the black module characteristic gene expression profile module and sample traits in the 5xFAD mouse
model. In the figure, the first three rows show the traits of each sample, including sex, tissue, and age. The bar graph shows themodule characteristic gene
expression of each sample divided by genotype, and the module characteristic gene expression of a single sample is shown as a point.
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In contrast, WGCHNA identifies a more diverse set of gene
modules, capturing genes associated with crucial biological
processes such as mitochondrial function and translation

regulation. For instance, mt-Nd4l (Zhang et al., 2022) and Cox8b
(Xiyang et al., 2020), mitochondrial DNA-encoded genes known to
be closely related to neuronal energy metabolism, where energy

FIGURE 7
Downstream analysis and visualization of co-expression modules. (A) Module-trait correlation calculation. (B) GO function enrichment analysis of
black modules.
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metabolism dysfunction is a major pathological mechanism of
Alzheimer’s disease. This suggests that WGCHNA can more
effectively capture complex higher-order gene interactions highly
relevant to disease mechanisms. Although WGCHNA encounters
cases of N/A in specific gene identifications, possibly due to
algorithmic precision limitations under certain computational
conditions, this does not significantly affect the overall biological
functionality of the modules. Overall, WGCHNA identifies a more
biologically relevant list of genes, particularly excelling in mining
disease-related modules.

As shown in Figure 8, the pink part represents the gene module
identified by WGCHNA, while the green part comes from the
analysis results of WGCNA. It can be seen that the pink module
identified by WGCHNA establishes denser connections between
multiple genes, indicating that under the hypergraph model, these
genes frequently co-occur in multiple samples (hyperedges),
forming functional modules with higher-order co-expression
characteristics. In contrast, the green module identified by
WGCNA mainly relies on pairwise correlation metrics, and the
presented network structure emphasizes the linear relationship
between genes, which makes it difficult to reflect the overall

effect of multi-gene joint expression. By comparing the gene
composition and functional annotations of the two modules, we
can further verify the advantages of WGCHNA in mining complex
co-expression relationships.

To further validate the differences between the two methods, we
conducted GO enrichment analysis on the identified gene modules.
Figure 9 illustrates the enrichment results, where panel A represents
the enrichment analysis by WGCHNA and panel B by PyWGCNA.

Go functional enrichment analysis highlights three aspects
demonstrating the superiority of WGCHNA: Firstly, gene
modules identified by WGCHNA exhibit higher statistical
significance, particularly in pathways closely associated with
disease core mechanisms such as mitochondrial function and
energy metabolism. Secondly, WGCHNA reveals a more diverse
spectrum of biological processes, encompassing multiple levels of
biological functionality including translation, protein targeting, and
gene expression regulation, whereas PyWGCNA’s enrichment
results are relatively focused on limited biological processes.
Finally, WGCHNA captures complex gene interactions through
higher-order modeling, demonstrating stronger analytical
capabilities, and thus exhibits significant advantages in
identifying critical gene modules relevant to diseases.

3.7 The role of hyperedge weights in
capturing high-order co-
expression patterns

In this method, we construct hyperedges based on samples, one
hyperedge for each sample, connecting all genes in the sample. This
design can effectively retain high-order information about the
overall gene expression in the sample. For example, under a
certain condition, even if 20 of 40 genes are significantly
upregulated and 20 are significantly downregulated, but the
pairwise correlation between the genes is close to zero, the
hyperedge construction still ensures that all upregulated genes
and downregulated genes co-occur in the same hyperedge. The
hyperedge weights can reflect the expression trends in the sample as
a whole by aggregating the correlations of all gene pairs in the
sample, rather than relying solely on individual pairwise
relationships. This aggregation effect allows the overall co-
expression pattern to be accurately captured even if the local
pairwise correlation is not significant. In addition, the hyperedge
weights provide an important basis for the subsequent division of
gene co-expression modules. The close association between the
hyperedge weights and the multi-gene joint expression patterns is
further demonstrated by statistical methods, thereby improving the
biological significance and explanatory power of the constructed
modules. Taking the 5xFAD dataset as an example, we calculate the
hyperedge weights using the correlation-based and mutual
information-based methods respectively, and compare them in
the Figure 10 (as shown in the Figure 10, the horizontal axis is
the hyperedge weight measured by correlation, and the vertical axis
is the hyperedge weight measured by mutual information).

The Figure 10 above shows the relationship between the
“hyperedge weight based on correlation” (horizontal axis) and
the “hyperedge weight based on mutual information” (vertical
axis) of 192 hyperedges. Each scatter point represents a

TABLE 4 Comparison of 5xFAD gene co-expression modules.

Algorithm Top-10

PyWGCNA Cttn Prkcg Lrrtm1 Ncdn Rasgrf1

Fam131a Tnfrsf21 Faah Galnt16 Cpt1c

WGCHNA Rps12-
ps3

N/A Tshb mt-
Nd4l

Gm15421

Gm6361 Rn7s6 Rps19-
ps6

Cox8b Gm2423

FIGURE 8
Comparison of top-10 gene module recognition. (Pink)
WGCHNA (Green) PyWGCNA.
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hyperedge composed of several genes, and its horizontal axis value is
the average correlation of all gene pairs in the hyperedge, and the
vertical axis value is the average mutual information of all gene pairs
in the hyperedge. It can be seen that most of the scatter points are
distributed from the lower left to the upper right, showing an
obvious positive correlation trend. By calculating the Spearman
correlation coefficient (Spearman = 0.69, p = 0.000), we found
that there is a moderately strong positive correlation between the
two weights, and it is statistically significant. This shows that when
the genes of a hyperedge are more closely related in pairwise

correlation, they tend to show stronger synergistic expression in
higher-order mutual information metrics, thus supporting the
hypothesis that hyperedge weights can effectively reflect the joint
action of multiple genes.

4 Conclusion

This study introduces Weighted Gene Co-expression
Hypernetwork Analysis (WGCHNA), a novel approach grounded

FIGURE 9
Comparison of GO enrichment analysis of Top-10 genes. (A) WGCHNA (B) PyWGCNA.

FIGURE 10
Comparison of hyperedge weights based on correlation and mutual information in the 5xFAD dataset.
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in hypergraph theory, designed to overcome the limitations of
traditional WGCNA in capturing pairwise gene interactions. By
constructing a weighted hypergraph, WGCHNA integrates high-
order gene interactions, utilizing the hypergraph Laplacian matrix to
characterize complex co-expression patterns with greater precision.
This enables the identification of co-expression modules that are
closely associated with key biological processes.

Experimental evaluations demonstrate that WGCHNA
significantly outperforms both the Python and R implementations
of WGCNA and DCWGCNA in computational efficiency,
particularly in handling large-scale datasets with multiple samples
and intricate gene interaction networks. Moreover, the hypergraph-
basedmodeling approach enhances the ability to dissect complex gene
interactions while achieving substantial improvements in
computational performance. Notably, WGCHNA excels in
pathogenic gene screening, successfully identifying key genes linked
to Alzheimer’s disease (e.g., mt-Nd4l and Cox8b). These findings not
only confirm previously established biological knowledge but also
reveal novel regulatory relationships, further substantiating the crucial
roles of these genes in neuronal energy metabolism.

In terms of functional enrichment analysis, WGCHNA
effectively identifies a diverse range of biologically relevant gene
modules, encompassing pathways related to energy metabolism,
mitochondrial function, protein targeting, and gene expression
regulation, demonstrating its broad applicability in disease
mechanism research and biological discovery.

Looking ahead, with advancements in big data analytics, the
computational efficiency and module detection capabilities of
WGCHNA are expected to improve, facilitating the analysis of
even larger-scale and more complex gene interaction networks.
Additionally, integrating WGCHNA with high-order network
modeling frameworks such as directed hypergraphs and
simplicial complexes will enable deeper exploration of nonlinear
and high-order genetic interactions, potentially unveiling novel gene
regulatory mechanisms that remain undiscovered.
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