
Development and validation of a
machine-learning-based model
for identification of genes
associated with sepsis-associated
acute kidney injury

Chen Lin  1‡, Meng Zheng  2‡, Wensi Wu  1,
Zhishan Wang  1, Guofeng Lu  1, Shaodan Feng  3* and
Xinlan Zhang  1*
1Department of Emergency, The Third Affiliated People’s Hospital, Fujian University of Traditional
Chinese Medicine, Fuzhou, China, 2Hemodialysis Center, The Third Affiliated People’s Hospital, Fujian
University of Traditional Chinese Medicine, Fuzhou, China, 3Department of Emergency, The First
Affiliated Hospital, Fujian Medical University, Fuzhou, China

Background: Sepsis frequently induces acute kidney injury (AKI), and the complex
interplay between these two conditions worsens prognosis, prolongs
hospitalization, and increases mortality. Despite therapeutic options such as
antibiotics and supportive care, early diagnosis and treatment remain a
challenge. Understanding the underlying molecular mechanisms linking sepsis
and AKI is critical for the development of effective diagnostic tools and
therapeutic strategies.

Methods: We used two sepsis (GSE57065 and GSE28750) and three AKI
(GSE30718, GSE139061, and GSE67401) datasets from the NCBI Gene
Expression Omnibus (GEO) for model development and validation, and
performed batch effect mitigation, differential gene, and functional
enrichment analysis using R software packages. We assessed
113 combinations of 12 different algorithms to develop an internally and
externally validated machine-learning model for diagnosing AKI. Finally, we
used functional enrichment analysis to identify potential therapeutic
agents for AKI.

Results: We identified 556 and 725 DEGs associated with sepsis and AKI,
respectively, with 28 overlapping genes suggesting shared pathways.
Functional enrichment analysis revealed important associations of AKI with
immune responses and cell adhesion processes. The immune infiltration
analysis showed significant differences in immune cell presence between
sepsis and AKI patients compared with the control group. The machine-
learning models identified eight key genes (NR3C2, PLEKHO1, CEACAM1,
CDC25B, HEPACAM2, VNN1, SLC2A3, RPL36) with potential for diagnosing
AKI. The diagnostic performance of the model constructed in this way was
excellent (area under the curve = 0.978), especially in the under 60 years and
male patient subgroups. The diagnostic performance outperformed previous
models in both the training and validation sets. In addition, cyclosporin A and nine
other drugs were identified as potential agents for treating sepsis-associated AKI.
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Conclusion: This study highlights the potential of integrating bioinformatics and
machine-learning approaches to generate a new diagnostic model for sepsis-
associated AKI using molecular crossovers with sepsis. The genes identified have
potential to serve as biomarkers and therapeutic targets, providing avenues for
future research aimed at enhancing sepsis-associated AKI diagnosis and treatment.
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1 Introduction

Sepsis and acute kidney injury (AKI) are serious healthcare
challenges that place a heavy burden on patient management and
healthcare systems worldwide (Zarjou and Agarwal, 2011; Skube
et al., 2018). Every year, millions of people develop sepsis, leading to
increased mortality rates and healthcare costs as a result of longer
hospital stays and increased need for intensive care (Souza et al.,
2021). Current treatment strategies for sepsis-associated AKI (SA-
AKI) include antibiotic therapy, fluid resuscitation, and supportive
care (Kellum et al., 2019; Montomoli et al., 2019; Reddy et al., 2023).
However, these approaches are often limited by the difficulty of early
detection and accurate prediction of patient prognosis. The complex
biological interactions between sepsis and AKI highlight the urgency
of further research to unravel the underlying mechanisms and
identify novel biomarkers that can aid in early diagnosis and
timely intervention. The purpose of this study was to explore the
relationship between sepsis and AKI in order to obtain new insights
to improve the early diagnosis and treatment of patients with
SA-AKI.

Previous studies indicate a biological link between sepsis and
AKI, suggesting sepsis may trigger AKI development
(Martensson et al., 2010; Liu et al., 2024). Conversely, AKI
can exacerbate the clinical severity of sepsis (Vodovar et al.,
2021). Determining the time-point of onset of AKI in sepsis is
difficult (Murugan et al., 2010; Wen et al., 2020). To enhance
early diagnosis and treatment of SA-AKI, a deeper understanding
of the genes and mechanisms linking these conditions is vital, and
biomarkers play an important role in this process (Derive and
Gibot, 2011; Odum et al., 2022). Traditional kidney function
markers like serum creatinine and urine output are essential for
diagnosing AKI. Their limitations are becoming apparent,
especially in patients with sepsis, where changes in kidney
function tend to lag behind the AKI. This phenomenon has
prompted clinicians to search for new biomarkers in order to
recognize AKI early and improve the prognosis. Binding of tissue
inhibitory factor-2 (TIMP-2) and insulin-like growth factor
binding protein 7 (IGFBP7) in urine has been identified as a
useful biomarkers for predicting SA-AKI (Su et al., 2017; Jiang
and Zheng, 2022). In addition, the use of novel biomarkers such
as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-
associated lipid carrier (NGAL) provides more options for early
diagnosis (Ersavas et al., 2016; Ucakturk et al., 2016; Laurentino
et al., 2019). However, the diagnostic potential and immunologic
significance of predicting AKI using sepsis genes remains largely
unexplored.

Therefore, we chose to use bioinformatics methods and multiple
machine learning strategies to identify key biomarkers associated

with SA-AKI, to elucidate the intrinsic mechanisms and linkages
between these key biomarkers, to establish an early diagnostic
model, and to provide new perspectives for the early
identification of SA-AKI.

2 Methods

2.1 Data collection and consolidation

In this study, we obtained relevant datasets from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
using the keywords “sepsis” and “acute kidney injury.” We used
two sepsis datasets (GSE57065, GSE28750) and three AKI
datasets (GSE30718, GSE139061, GSE67401).
GSE57065 contained data on 25 control and 82 sepsis
samples; GSE28750 contained data on 20 control and 21
sepsis samples; GSE30718 contained data on 8 control and
28 AKI samples; and GSE139061 contained data on 9 control
and 39 AKI samples. GSE67401 contained data on 58 control and
53 AKI samples (Table 1). Two sepsis datasets (GSE57065 and
GSE28750) and two AKI datasets (GSE30718 and GSE139061)
were merged as training sets. The “ComBat” function within the
“sva package” of the R programming language was used to
eradicate the batch effect from the data (Leek et al., 2012).
The Institutional Review Board of the Third People’s Hospital,
which is associated with Fujian University of Traditional Chinese
Medicine, exempted the necessity for ethical approval. This
exemption was granted due to the fact that the data utilized is
readily accessible to the public via the GEO database.
Consequently, participants, along with their legal guardians or
next of kin, were not mandated to furnish written informed
consent for their involvement in this study, in accordance with
relevant national regulations and institutional protocols.

2.2 Identification of differentially expressed
genes (DEGs)

We used the R package “limma” to identify differentially
expressed genes (DEGs) in the sepsis and AKI datasets (Ritchie
et al., 2015). The established thresholds were |log2 fold change
(FC)| > 1 and P < 0.05. To illustrate the findings, volcano plots and
heat maps were created using the “ggplot2” and “pheatmap”
packages in R. We constructed a Venn diagram to show the
overlap between the DEGs associated with sepsis and those
associated with AKI.
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2.3 Enrichment analysis of
intersecting genes

We constructed a protein-protein interaction (PPI) network
using the GeneMANIA (http://genemania.org/) website to show the
interrelationships between crossover genes. For genomic functional
enrichment analysis, we used the Gene Ontology (GO) and Kyoto
Encyclopedia of the Genome (KEGG) with the R “org.Hs.e.g.,.db”
and “clusterProfiler” packages (P < 0.05).

2.4 Machine-learning algorithms

We evaluated the diagnostic accuracy of 113 combinations
of 12 distinct machine-learning algorithms (Supplementary
Table S1). We used the AKI de-batch effect datasets
(GSE30718 and GSE139061) as the training set and an
external dataset (GSE67401) as the validation set. During
the model training phase, we evaluated the performance of a
variety of machine-learning algorithms, including Enet
regression (λ = 0.1), Lasso regression (λ = 0.05), Ridge
regression (λ = 1.0), SVM (C = 1.0, γ = 0.01), LDA,
Gradient Boosting Machine (GBM, learning rate = 0.1,
number of trees = 100), RF (number of trees = 200),
XGBoost (XGB, learning rate = 0.01, number of trees =
150). The models were developed using the training set and
the hyperparameters were refined by cross-validation
(Supplementary Table S2). During the model evaluation
phase, the area under the curve (AUC) of each model was
computed using the validation set to evaluate its classification
accuracy. The model with the highest AUC was chosen as the
optimal model. Calibration curves were used to evaluate the
reliability, whereas decision curve analysis (DCA) was used to
assess the clinical applicability of each model. The performance
of the models was assessed in different subgroups and
compared with published models of key genes for sepsis AKI
pathogenesis were compared (DeLong test, P < 0.05).

2.5 Analysis of immune infiltration

We performed immune infiltration analysis of sepsis and AKI
data using the “CIBERSORT” package in R with LM22 as the
reference data set (P < 0.05). The results were illustrated using
box-plots. Furthermore, heatmaps were used to show the correlation
between immune cells and DEGs.

2.6 Identification of potential drug
candidates

Weused the Enrich platform (https://maayanlab.cloud/Enrichr/) to
identify drug candidates capable of targeting the underlying
pathological mechanisms associated with sepsis and AKI.

2.7 Statistical analysis

Data were processed and analyzed using R software (version
4.2.2; The R Foundation for Statistical Computing, Vienna, Austria).
Normality of continuous variables was assessed using the Shapiro-
Wilk test, supplemented by visual inspection of histograms.
Variables conforming to a normal distribution (Shapiro-Wilk P ≥
0.05) were compared between groups using the independent
samples t-test, whereas non-normally distributed variables
(Shapiro-Wilk P < 0.05) were compared between groups using
the Mann-Whitney U test. Statistical significance was defined as
a two-tailed P value <0.05.

3 Results

3.1 Data collection and de-batching

A summary of the study design is shown in Figure 1. After
eliminating the batch effects from the sepsis datasets (GSE57065 and
GSE28750), 103 cases of sepsis and 45 healthy controls were
identified (Figures 2A,B). Similarly, after eliminating the batch
effects from the AKI datasets (GSE30718 and GSE139061),
67 cases of AKI and 17 healthy controls were identified (Figures
2C,D). Boxplots effectively highlighted the variances observed prior
to and subsequent to the removal of the batch effect. Furthermore,
Uniform Manifold Approximation and Projection (UMAP) plots
indicated that, prior to the batch-effect correction, the samples from
each dataset exhibited a central clustering pattern. However, after
correction, the samples displayed a more dispersed distribution,
indicating a successful mitigation of the batch effect (Figures 3A–D).

3.2 Determination of sepsis and AKI DEGs
separately

A total of 309 upregulated DEGs and 247 downregulated DEGs
were identified in the sepsis dataset (Figure 4A), and a total of

TABLE 1 Basic information on the GEO dataset.

Dataset Disease Sample Platform Attribute

GSE57065 Sepsis 82 patients with sepsis and 25 controls GPL570 Training set

GSE28750 Sepsis 21 patients with sepsis and 20 control GPL570 Training set

GSE30718 AKI 28 patients with AKI and 8 controls GPL570 Training set

GSE139061 AKI 39 patients with AKI and 9 controls GPL20301 Training set

GSE67401 AKI 53 patients with AKI and 58 controls GPL9115 Validation set

AKI: acute kidney injury.
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231 upregulated DEGs and 494 downregulated DEGs were identified
in the AKI dataset (Figure 4B). Hierarchical clustering heatmaps of
these DEGs revealed different expression patterns between the two
groups (Figures 4C,D). Comparison of the two datasets revealed
28 overlapping co-morbid genes in sepsis and AKI (Figure 4E;
Supplementary Table S3).

3.3 Functional enrichment analysis of sepsis
and AKI intersection genes

A PPI network diagram depicting the genes implicated in SA-AKI
was constructed using the GeneMANIA database (Figure 5A). The
biological processes (BP) identified through GO enrichment analysis
(Supplementary Table S4) encompassed the regulation of cell-cell
adhesion facilitated by integrins, leukocyte activation, cell-cell adhesion
mediated by integrins, innate immune responses, and myeloid leukocyte
activation (Figure 5B). The cellular components (CC) comprised the
tertiary granule membrane, secretory granule membrane, polysomal
ribosome, secretory granule, and the bounding membranes of
organelles (Figure 5C). The molecular functions (MF) included
protein homodimerization activity, alpha-1,4-glucosidase activity,
prostaglandin E receptor activity, pantetheine hydrolase activity, and
receptor signaling protein tyrosine kinase activator activity (Figure 5D).
Additionally, the KEGG enrichment analysis revealed pathways
associated with prion diseases, the p53 signaling pathway,
complement and coagulation cascades, Chaga’s disease (American
trypanosomiasis), and the cell cycle (Figure 5E; Supplementary Table S5).

3.4 Development of a diagnostic model for
SA-AKI through machine learning

Model training was conducted by amalgamating data from the
AKI datasets to establish a training set, using 113 combinations of
12 distinct machine-learning algorithms for performance evaluation.
The final synthesis of the glmBoost and Stepglm [both] algorithms
yielded a model that demonstrated the best performance, with an
AUC of 0.978. Validation against an external AKI dataset (GSE67401)
indicated moderate performance with an AUC of 0.671 (Figures
6A–C; Supplementary Table S6). The model performed equally
well for the subgroup under 60 years of age (AUC = 0.925) and
the male subgroup (AUC = 0.956; Figures 6D–G). The algorithm
identified eight key genes (NR3C2, PLEKHO1, CEACAM1, CDC25B,
HEPACAM2, VNN1, SLC2A3, RPL36), which were subsequently used
to develop a nomogram. The calibration and DCA curves
demonstrated good agreement between the predicted and actual
probabilities of occurrence, and good clinical utility of the model
(Figures 7A–E).

3.5 Analysis of immune cell infiltration in
sepsis and AKI

Immune infiltration analysis showed distinct infiltration levels
in the sepsis group compared with the control group, which included

FIGURE 1
A full flowchart for the diagnosis of acute kidney injury based on
sepsis-related genes. The six sections include data preparation, GO
and KEGG pathway analysis, immune infiltration analysis, machine-
learning algorithms, model validation and ROC analysis, and
predictive drugs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; ROC, receiver operating characteristic.
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FIGURE 2
Merging and de-batching of sepsis dataset and acute kidney injury (AKI). (A) Boxplots of the sepsis dataset before removing batch effects. (B)
Boxplots of the sepsis dataset after removing the batch effect. (C) Boxplots of the AKI dataset before removing batch effects. (D) Boxplots of the AKI
dataset after removing the batch effect.
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increased plasma cells, activated natural killer (NK) cells,
M0 macrophages, eosinophils, CD8 T-cells, M1 macrophages,
M2 macrophages, naive B cells, resting memory CD4 T-cells,
naive CD4 T-cells, activated memory CD4 T-cells, gamma delta
T cells, activated dendritic cells, neutrophils, and memory B cells in
the sepsis group (Figure 8A). Similarly, differences in immune cell
infiltration were observed between the AKI and control groups,
including differences in plasma cells, CD8 T-cells, activated memory
CD4 T-cells, monocytes, M0 macrophages, M1 macrophages, and
eosinophils (Figure 8B).

Figure 9 shows the correlation between the immune cell counts
and the sepsis and AKI model genes. Table 2 shows immune cell
indicators were highly correlated (absolute magnitude of the
correlation coefficient >0.60) with model genes in each data set.

3.6 Comparison of AKI diagnostic models

In order to comprehensively compare the performance of our
model with other models, we compared the involvement of VMP1,
SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 genes in the
development of AKI in patients with sepsis as described in the
paper by Tang et al. (2021). The VMP1 gene was not found in the
validation cohort and was excluded. In the training cohort, our
model achieved an AUC of 0.978 (95% CI: 0.952–0.995) vs 0.683
(95% CI: 0.538–0.828) for the Tang model (DeLong test, P =
3.6e−05). The AUC of our model was also higher than that of
the Tang model using the validation cohort with AUCs of 0.671
(95% CI: 0.575–0.767) and 0.470 (95% CI: 0.362–0.583) for our

model and the Tang model, respectively (DeLong test, P = 2.6e−04)
(Figures 10A,B).

3.7 Drug predictions

We analyzed the model genes using the Drug Signatures
Database (DSigDB) and the Enrich platform to identify potential
pharmacological agents that could be used to treat AKI in patients
with sepsis. The leading ten drug candidates identified were
etynodiol (HL60 DOWN), estradiol (CTD 00005920), cyclosporin
A (CTD 00007121), progesterone (CTD 00006624), prednisolone
(BOSS), cefoxitin (HL60 UP), corticosteroid (BOSS), sodium
chloride (BOSS), D-glucose (BOSS), and cerivastatin
(BOSS) (Figure 11).

4 Discussion

The integration of bioinformatics with machine learning is
becoming progressively significant in the realm of disease
diagnosis. With the rapid growth of biomedical data, traditional
analytical methods are no longer adequate for a deeper
understanding of complex biological systems (Qian et al., 2024).
In recent years, many studies (Pillai et al., 2022; Alsaeedi et al., 2024)
have shown that the combination of machine-learning methods with
bioinformatics approaches can enhance the training and validation
process, identify the best interpretable features, and facilitate deeper
investigation of features andmodels. Therefore, this study developed

FIGURE 3
UMAP plots of the merged and de-batched sepsis dataset and acute kidney injury (AKI). (A) UMAP plot of the sepsis dataset before removing batch
effects. (B)UMAP plot of the sepsis dataset after removing the batch effect. (C)UMAP plot of the AKI dataset before removing batch effects. (D)UMAP plot
of the AKI dataset after removing the batch effect.
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a model for diagnosing AKI based on a database of patients with
sepsis, using a combination of machine learning and bioinformatics.
The integration of these methods holds promise for improving the
early detection and clinical treatment of SA-AKI.

This study highlights the intricate relationship between sepsis
and AKI by identifying DEGs. 28 genes were identified as shared
differential genes. These 28 overlapping genes may lead to common
molecular pathways in the pathogenesis of both sepsis and AKI. This

FIGURE 4
Identification of DEGs. (A) The volcano plot depicts the differential genes between the control and sepsis groups. (B) The volcano plot depicts the
differential genes between the control and AKI groups. (C) Heatmap depicting the top 50 differential genes between the control and sepsis groups. (D)
Heatmap depicting the top 50 differential genes between the control and AKI groups. (E) Venn diagram of the intersection of sepsis and AKI DEGs. AKI,
acute kidney injury; DEG, differentially expressed gene.
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FIGURE 5
Protein-protein interaction (PPI) network analysis and enrichment analysis. (A) PPI analysis of intersecting differential genes. (B) Circle plot of GO
enrichment analysis results for biological process. (C) Circle plot of GO enrichment analysis results for the cellular component. (D) Circle plot of GO
enrichment analysis results for molecular function. (E)Circle plot of KEGG pathway enrichment analysis.GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes.
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is consistent with previous findings that emphasize the importance
of changes in gene expression for understanding disease
mechanisms (Goggi et al., 2020).

Through KEGG enrichment analysis, we identified several key
pathways that reveal the intrinsic mechanisms of interdependence
between sepsis and AKI. The p53 signaling pathway is crucial for the
cellular response to stress, the induction of apoptosis, and the
regulation of the cell cycle. Its dysregulation is associated with a
variety of pathologic conditions, including sepsis (Hotchkiss et al.,
2000). Activation of p53 may lead to kidney cell apoptosis and
exacerbate AKI during sepsis (Lee et al., 2024; Lv et al., 2024). The
complement and coagulation cascades represent an additional
pathway of enrichment, aligning with findings from prior
research (Lin et al., 2024; Wei et al., 2024). The complement
system is activated during sepsis, promoting an inflammatory

response, and potentially leading to kidney microvascular injury.
Activation of this pathway can lead to the formation of membrane
attack complexes, which can damage kidney endothelial cells and
further exacerbate AKI. The analysis revealed that the regulation of
cell-cell adhesion mediated by integrins is an important biological
process. Integrins are essential for maintaining the integrity of the
endothelial barrier (Ayloo et al., 2022), and their dysregulation leads
to increased vascular permeability and tissue edema (Infanger et al.,
2008), a common feature of sepsis and AKI. Disruption of cell
adhesion mechanisms may promote leukocyte infiltration and
exacerbate inflammation, leading to AKI (Grande et al., 2010).

Immune cell analysis showed significant differences between the
sepsis and control groups, highlighting the roles of specific immune
cells in sepsis and AKI. The main cell types involved included
activated NK cells, M0macrophages, and CD8 T-cells. Activated NK

FIGURE 6
Diagnostic performance of machine-learning models. (A) 113 combinations of machine-learning algorithms with less than 12 genes were included.
(B) ROC curves for training set. (C) ROC curves for validation set. (D) ROC curves for the female subgroup model. (E) ROC curves for the male subgroup
model. (F) ROC curves for the age under 60 years subgroup model. (G) ROC curves for the age 60 years or older subgroup model. ROC, receiver
operating characteristic.
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FIGURE 7
Nomogram and calibration of AKI diagnostic gene models. (A) Nomogram based on eight key genes. (B) Calibration curves for training set. (C)
Calibration curves for validation set. (D) DCA curve for the training set. (E) DCA curve for the validation set. AKI, acute kidney injury; DCA, decision
curve analysis.
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cells are crucial for the innate immune response, recognizing and
eliminating infected or malignant cells (Wu and Lanier, 2003;
Brandstadter and Yang, 2011). In sepsis, the presence of NK cells
is associated with an improved immune response to infection. NK
cells produce pro-inflammatory cytokines, contributing to the
systemic inflammatory response in sepsis (Jensen et al., 2021).
The infiltration of activated NK cells in sepsis suggests that this
may be a compensatory mechanism to restore homeostasis, but
overactivation of NK cells can lead to tissue damage, including AKI.
M0 macrophages maintain tissue homeostasis and initiate immune
responses (Chen et al., 2017). The infiltration of M0 macrophages in
sepsis suggests potential transformation into a pro-inflammatory
phenotype, which is crucial in early sepsis. M0 macrophages can
differentiate into inflammatory M1 or tissue-repairing
M2 macrophages (Enderlin Vaz Da Silva et al., 2014; Isali et al.,
2022). The balance between these phenotypes is critical in
determining the outcome of sepsis and AKI. CD8 T-cells, which
are cytotoxic, are key to the adaptive immune response (Jung et al.,
2021). CD8 T-cells exacerbate inflammation and lead to organ
dysfunction (Martin et al., 2018). In this study, the activation of
CD8 T-cells was correlated with poorer prognosis of sepsis. The
pattern of immune cell infiltration highlights the complex
relationship between the immune system and sepsis and AKI.
The study of activated NK cells, M0 macrophages, and
CD8 T-cells could shed light on the pathogenesis of AKI in

patients with sepsis and provide further insights into the
relationship between these two conditions.

Early diagnosis of SA-AKI is challenging for clinicians (Zhang
et al., 2024). Delayed diagnosis not only leads to deterioration of
the disease, but also sometimes leads to the transformation of SA-
AKI into chronic kidney disease in some patients (Heung and
Chawla, 2014), resulting in increased medical and social costs.
Although the application of machine-learning techniques in this
field shows good prospects, it still faces various challenges such as
data quality, model interpretability, and clinical applicability. In a
study based on machine-learning algorithms (Li et al., 2023; Li
et al., 2024), it was shown that a model built using electronic
medical record data enabled accurate prediction of SA-AKI in
patients admitted to the intensive care unit. Our study differs from
previous studies in that we focus on the overlap of genes between
sepsis and AKI, which may be the key genes in the development of
sepsis into AKI, and in this way build a more suitable model.
Among 113 combinations of 12 machine-learning algorithms, the
models were screened for number of genes <12. Of the models
considered, the glmBoost and Stepglm [both] algorithms
combined produced the highest AUC value, which suggests
their potential utility in a clinical setting. This algorithm also
reduces the bias caused by incomplete algorithm selection and
subjective human selection (Liu et al., 2022; Qin et al., 2023). In
terms of model effect validation, our model showed excellent

FIGURE 8
Immune infiltration analysis of sepsis and AKI. (A) Split-plane visualization of the CIBERSORT score of immune cells in the control and sepsis groups,
with each facet representing a different immune cell subtype. (B) Visualization of the CIBERSORT score of immune cells in the control and AKI groups,
with each facet representing a different immune cell subtype. *P < 0.05, **P < 0.01, ***P < 0.001, AKI, acute kidney injury.
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FIGURE 9
Heatmap of the correlation of each immune cell with themodel genes. (A)Heatmap of the correlation of each immune cell type with sepsis-related
genes. (B) Heatmap of the correlation of each immune cell type with AKI-related genes. AKI, acute kidney injury.

FIGURE 10
Comparison of AKI diagnostic genes. (A) Comparison of ROC curves between the current model in the training cohort and the model of Tang et al.
(B) Comparison of ROC curves between the current model in the validation set and the model of Tang et al. AKI, acute kidney injury; ROC, receiver
operating characteristic.
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diagnostic accuracy based on the high AUC in both the internal
and external validation sets, especially in the age under 60 years
and male patient subgroups, which showed stronger diagnostic
performance. At the same time, our model achieved diagnostic

performance superior to that of the previous diagnostic model
identified by Tang et al. (2021). that influences the composition of
genes important for the development of SA-AKI, both in the
training and validation cohorts.

TABLE 2 Correlation of immune cells with model genes.

Data set Gene name Immune cell Correlation coefficient

Sepsis NR3C2 T.cells.CD4.naive +0.70

Sepsis NR3C2 Macrophages.M0 −0.60

Sepsis PLEKHO1 Neutrophils −0.61

Sepsis PLEKHO1 Macrophages.M0 −0.65

Sepsis CDC25B Neutrophils −0.72

Sepsis CDC25B Macrophages.M0 −0.60

Sepsis CDC25B NK cells.resting +0.69

Sepsis CDC25B T.cells.CD4.naive +0.63

Sepsis VNN1 Neutrophils +0.61

Sepsis VNN1 Macrophages.M0 +0.69

Sepsis VNN1 NK.cells.resting −0.64

Sepsis VNN1 T.cells.CD8 −0.71

Sepsis SLC2A3 Neutrophils +0.68

Sepsis SLC2A3 Macrophages.M0 +0.63

Sepsis SLC2A3 NK.cells.resting −0.61

Sepsis SLC2A3 T.cells.CD8 −0.70

Sepsis RPL36 Neutrophils −0.65

Sepsis RPL36 T.cells.CD4.naive +0.65

AKI RPL36 Eosinophils −0.63

AKI: acute kidney injury.

FIGURE 11
Bar graph of drug prediction for the intersection of sepsis and AKI genes.
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In our model, four genes (NR3C2, CEACAM1, VNN1, and
SLC2A3) were linked to the development of AKI in patients with
sepsis. NR3C2 participates in corticosteroid signaling, a process that
is essential for modulating the inflammatory response observed in
sepsis (Wong et al., 2016). The upregulation of NR3C2 in the sepsis
cohort suggests a compensatory mechanism designed to counteract
the inflammatory milieu, which may have implications for
therapeutic interventions targeting this receptor. CEACAM1 is a
member of the carcinoembryonic antigen family and plays a crucial
role in immune regulation and cell-cell interactions. It modulates
T cell responses and promotes inflammatory regression (Skubitz,
2024). In our AKI cohort, downregulation of CEACAM1may reflect
impaired immune responses in the context of sepsis, leading to the
development of SA-AKI. Downregulation of SLC2A3 expression in
sepsis decreases glucose uptake by kidney cells, leading to
insufficient intracellular energy metabolism. The proper
physiological functioning of renal cells is contingent upon a
sufficient energy supply, and insufficient energy impairs tubular
reabsorption, glomerular filtration and other functions, and triggers
oxidative stress, which damages the biomolecules of kidney cells,
further aggravating the kidney injury, and promoting the
development of AKI (Luo et al., 2023). VNN1 is involved in
processes such as lipid metabolism (Ucakturk et al., 2016). VNN1
triggers senescence in renal tubular cells by stimulating RB1
expression (Chen et al., 2022). In animal models, elevated VNN1
expression correlates with the degree of AKI and inhibition ofVNN1
activity attenuates pathological changes in the kidney (Hosohata
et al., 2011). PLEKHO1 is involved in a variety of cellular functions,
including cytoskeletal arrangement and cell signaling (Nie et al.,
2013). In this study, the different expression levels of PLEKHO1
highlight its potential role as a biomarker and therapeutic target for
SA-AKI. Few studies have assessed the direct involvement of
CDC25B, HEPACAM2, and RPL36 in the progression of SA-AKI.
Although these genes have important functions in intracellular
signaling, cell cycle, intercellular interactions, and protein
synthesis, their specific mechanisms of action in SA-AKI have
not been fully clarified. Consequently, additional investigations
into their particular roles and mechanisms of action are essential
to convert these discoveries into clinical applications and to avert the
onset of SA-AKI.

Finally, through drug analysis on the Enrich platform, we identified
10 drug candidates, and the identification of potential therapeutic agents,
including cyclosporine A and estradiol, opens new avenues for targeted
therapeutic strategies. Cyclosporin A is a potent immunosuppressant
that acts primarily on T lymphocytes (Flores et al., 2019). The primary
mechanism may involve reducing the harm to the kidney tissue caused
by the inflammatory response by suppressing the excessive activation of
immune cells. Estradiol has antioxidant properties. It may have a
therapeutic effect on AKI by blocking the mitochondrial apoptotic
pathway through its direct effect on organelles (Borras et al., 2010),
helping to maintain the normal structure and function of kidney cells.
These drug candidates warrant further investigation through clinical
trials to evaluate their efficacy in SA-AKI.

This study has some limitations. First, the lack of wet-laboratory
validation limits the ability to confirm the biological relevance of

identified DEGs and their interactions. Although bioinformatics
methods provide valuable insights, they cannot fully replace
empirical data. Second, the longitudinal design of GSE57065
(with multiple time points per septic shock patient) may
introduce intra-individual correlation bias, potentially inflating
statistical significance for certain DEGs. Furthermore, while
ComBat was applied to harmonize GSE57065 (septic shock) and
GSE28750 (sepsis without shock), this batch correction method may
inadvertently attenuate biologically meaningful time-dependent
expression patterns. Third, despite the incorporation of multiple
GEO datasets, the limited sample size could potentially restrict the
broader applicability of the results obtained. Future studies should
prioritize multi-omics validation in prospectively collected cohorts
with standardized sampling time points while adopting advanced
batch correction methods that better preserve temporal dynamics.

5 Conclusion

In conclusion, this study identified the key genes linking sepsis
and AKI through comprehensive bioinformatics analysis. A model
was developed for early AKI diagnosis in the context of sepsis using
machine learning. These findings have the potential to advance the
development of clinical diagnostic and co-treatment strategies,
paving the way for improved prognosis of SA-AKI.
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