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Background: Osteoarthritis (OA) is a degenerative disease associated with aging.
Although an increasing body of research suggests a close relationship between
aging and OA, the underlying mechanisms remain unclear. This study explores
the relationship between aging related genes (ARGs) and OA, providing potential
new targets for understanding the pathogenesis and treatment of OA.

Methods: The OA synovial tissue dataset was obtained from the GEO database,
and differentially expressed genes (DEGs) were screened. The DEGs were
intersected with ARGs to identify differentially expressed aging related genes
(DEARGs), which were then subjected to functional enrichment analysis, PPI
network analysis, and machine learning algorithms (LASSO and RF) to identify key
genes. In addition, a nomogram was constructed based on the key genes to
predict OA risk, and its diagnostic value was evaluated using ROC curves.
Subsequently, the expression levels of the key genes were validated through
qRT-PCR experiments. Finally, the CIBERSORT algorithm was applied to assess
the proportion of immune cells and investigate the correlation between the key
genes and immune cells.

Results: A total of 34 DEARGs were identified. PPI network analysis revealed
12 key DEARGs. Subsequently, LASSO and RF algorithms identified ATF3, KLF4,
NFKBIA, and SOD2 as key genes. Based on nomogram and ROC curve analysis,
these four key genes demonstrated good diagnostic value. qRT-PCR showed that
ATF3, KLF4, NFKBIA, and SOD2 were significantly downregulated in OA. Immune
infiltration analysis revealed differences in Plasma cells, T cells follicular helper,
Mast cells resting, T cells CD4memory resting, NK cells activated, Monocytes, and
Mast cells activated between the OA group and normal controls.

Conclusion: ATF3, KLF4, NFKBIA and SOD2 are identified as novel biomarkers
associated with aging in OA andmay serve as potential therapeutic targets for OA
treatment.
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Introduction

Osteoarthritis (OA) is a common degenerative joint disease in
the elderly, characterized primarily by synovial inflammation and
cartilage degradation, often resulting in joint pain, stiffness, and
functional limitations (Sellam and Berenbaum, 2010). With the
continuous increase in the aging global population, the
prevalence of OA is also steadily rising (Wei et al., 2023;
Giorgino et al., 2023). It is estimated that approximately
250 million people worldwide suffer from OA (Hunter and
Bierma-Zeinstra, 2019). Currently, treatment strategies for OA
mainly include pharmacological therapy, physical therapy, and
surgical intervention (Wang et al., 2025). However, these
treatments only alleviate symptoms and do not provide a
complete cure (Abramoff and Caldera, 2020). Therefore, a deeper
understanding of the pathogenesis of OA is essential for developing
more effective intervention and prevention strategies.

Although OA has long been considered a degenerative disease
primarily caused by cartilage wear, it is now recognized as a complex
pathological process (Man and Mologhianu, 2014). Increasing
evidence suggests that synovitis plays a critical role in the
pathogenesis of OA (Zhao et al., 2023). The synovial tissue is
composed of an intimal lining layer and a sublining layer, and it
plays a vital role in maintaining joint homeostasis (Han et al., 2020).
The intimal lining layer contains synovial macrophages and synovial
fibroblasts (Wu et al., 2024). In OA synovium, synovial
macrophages exacerbate local inflammation and promote
cartilage matrix degradation by secreting pro-inflammatory

cytokines (Xu and Ji, 2023). Meanwhile, synovial fibroblasts
contribute to extracellular matrix breakdown by releasing matrix
metalloproteinases, thereby participating in joint tissue remodeling
(Pap et al., 2020). These findings highlight the important role of
synovial tissue in the pathological progression of OA.

Aging is a progressive decline in physiological function at both
the tissue and cellular levels (Han et al., 2024). One of the core
features of aging is cellular senescence, which is characterized by
irreversible cell cycle arrest and the secretion of pro-inflammatory
factors into the surrounding microenvironment. This phenomenon
is known as the senescence-associated secretory phenotype (SASP)
(Childs et al., 2015; Muñoz-Espín and Serrano, 2014). The persistent
presence of SASP can induce chronic low-grade inflammation,
further promoting senescence in neighboring cells and
accelerating the overall aging process (Rodier et al., 2009). An
increasing number of studies have indicated that aging plays a
critical role in the development of OA (Ansari et al., 2024).
However, the precise molecular relationship between aging and
OA remains unclear. Therefore, further elucidating the role of
aging in OA pathogenesis is of significant scientific importance.

In this study, we screened aging-related differentially expressed
genes (DEGs) associated with OA by integrating data from the GEO
and CellAge databases. Protein–protein interaction (PPI) networks
and machine learning algorithms were then used to identify key
genes, providing a theoretical foundation for further understanding
the pathogenesis of OA and exploring potential therapeutic
strategies. The detailed workflow of this study is illustrated
in Figure 1.

FIGURE 1
The flow chart of the analyses.
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Materials and methods

Data collection and processing

Data were retrieved from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) using the keywords “osteoarthritis,” “Homo sapiens,” and
“expression profiles by array.”Datasets of normal synovial tissue and OA
synovial tissue, including GSE55235, GSE55457, GSE82107, GSE1919,
GSE206848, and GSE89408, were obtained. The detailed information of
the dataset can be found in Table 1. Probe annotation files were used to
convert probes into gene symbols. R software’s “limma” packagewas then
applied for background correction and normalization of each dataset.
Additionally, the “sva” package was used to merge the gene expression
data of the GSE55235, GSE55457, and GSE82107 datasets into a single
gene expression profile (training set) to remove batch effects for
subsequent analysis (Leek et al., 2012). Meanwhile, GSE1919,
GSE206848, and GSE89408 were used as the validation sets.

Identification of ARDEGs

Differential expression analysis was performed using the “limma”
package in R software, with a threshold of adjusted p-value < 0.05 and |
log2FC| > 1. DEGs were visualized using the “ggplot2” and “heatmap”
packages (Ritchie et al., 2015). Aging-related genes were obtained from
the Human Ageing Genomic Resources (GenAge, https://genomics.
senescence.info/). Overlapping genes between DEGs and aging-related
genes were identified as ARDEGs, and a Venn diagram was generated
using the “VennDiagram” package.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of ARDEGs were performed
using the “clusterProfiler” package in R software (Chen et al., 2017).
The GO enrichment analysis was divided into three categories:
biological process (BP), cellular component (CC), and molecular
function (MF). Additionally, the results were visualized using the
“ggplot2” package in R software, and a p-value <0.05 was considered
statistically significant.

PPI network construction and analysis

PPI analysis of ARDEGs was performed using the STRING
database (https://cn.string-db.org/), with a minimum interaction
score set to 0.4 (Szklarczyk et al., 2023). The PPI network was
then constructed using Cytoscape (version 3.9.1) software, and
the MCODE plugin within Cytoscape was employed to identify
key ARDEGs for subsequent analysis.

Machine learning for key genes selection

To further identify key genes from the ARDEGs, we employed two
machine learning algorithms: Least Absolute Shrinkage and Selection
Operator (LASSO) and Random Forest (RF). The LASSO algorithm

minimizes the absolute values of regression coefficients and removes
redundant or irrelevant genes, effectively reducing the risk of overfitting
(Friedman et al., 2010). The LASSO algorithmwas performed using the
“glmnet” package in R software, with the optimal λ parameter
determined by 10-fold cross-validation. The minimum λ value was
selected to determine the number of genes to be filtered. RF is a robust
predictive algorithm that improves prediction accuracy by aggregating
multiple decision trees (Gao et al., 2024). The RF algorithm was
executed using the “randomForest” package in R, with genes having
an importance score greater than 2 considered the most valuable.
Finally, the intersection of results from both machine learning
methods was used to identify key genes.

Construction and evaluation of the key
genes prediction model

To enhance clinical applicability, we constructed a key gene
nomogram prediction model using the “rms” package in R software
(Zhang et al., 2024). In this model, “Points” represent the individual score
for each candidate gene, while “Total Points” is the sum of the scores for
all genes. Subsequently, we evaluated the accuracy of the model through
Decision Curve Analysis (DCA), calibration curves, and ROC curves,
including the Area Under the Curve (AUC) values. Additionally, the
robustness and reliability of the model were further validated using three
external datasets (GSE1919, GSE206848, and GSE89408).

Evaluation of immune cell infiltration

Immune cell infiltration in both the normal control group and the
OA group was assessed using the CIBERSORT algorithm, which
estimates the relative proportions of 22 distinct immune cell types
(Song et al., 2019). To further analyze the differences in immune cell
between the two groups, a box plot was generated using the “ggplot2”
package in R software. Additionally, the correlations among the
22 immune cell types were visualized in a heatmap created with the
“corrplot” package in R software.

Correlation analysis between key genes and
immune cells

To further explore the relationship between key genes and
immune cells, we employed the “ggplot2” package in R software

TABLE 1 The details of gene expression datasets.

Dataset Platform Samples OA Normal Class

GSE55235 GPL96 Synovium 10 10 Train

GSE55457 GPL96 Synovium 10 10 Train

GSE82107 GPL570 Synovium 10 7 Train

GSE1919 GPL91 Synovium 5 5 Test

GSE206848 GPL570 Synovium 7 7 Test

GSE89408 GPL11154 Synovium 22 28 Test
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to create a lollipop plot illustrating the correlations between the key
genes and immune cell types.

Clinical sample collection

In this study, synovial tissue samples were collected from 5 patients
with meniscal injury (Control group) and 6 patients undergoing total
knee arthroplasty for OA (OA group). The inclusion criteria were as
follows: (1) diagnosis of OA according to the criteria established by the
Chinese Orthopedic Association; (2) patient age between 45 and
65 years; (3) provision of written informed consent. The exclusion
criteria included: (1) patients with autoimmune diseases such as
rheumatoid arthritis or systemic lupus erythematosus; (2) patients
with serious infections, hypertension, coronary artery disease,
diabetes, or other significant comorbidities. Furthermore, this study
was approved by the Ethics Committee of the EighthMedical Center of
the PLA General Hospital and conducted in accordance with the
principles of the Declaration of Helsinki.

qRT-PCR experimental validation

Total RNA was extracted from the synovial tissues using Trizol
reagent (Servicebio), and reverse transcription was performed with
Takara Prime Script® RT Master Mix to synthesize cDNA. qRT-PCR
was then carried out using 2 × SYBR Green qPCRMix, and the relative
expression levels of the genes were calculated using the 2−ΔΔCT method.
The primer sequences used for the qRT-PCR assays are listed in Table 2.

Statistical analysis

Experimental data were processed and analyzed using R software
(version 4.2.1) and GraphPad Prism 9. Correlation analysis was
performed using Pearson’s correlation test. Differences between the
two groups were compared using an independent sample t-test, with
p < 0.05 considered statistically significant.

Results

Identification of ARDEGs

After removing batch effects, we merged the gene expression
profiles from the GSE55235, GSE55457, and GSE82107 datasets into

a single gene expression data set (Figures 2A,B). Differential
expression analysis identified a total of 301 DEGs, including
178 upregulated and 123 downregulated genes (Figures 3A,B).
Furthermore, by intersecting the DEGs with aging ARGs, we
identified 34 ARDEGs (Figure 3C), which comprised
9 upregulated genes and 25 downregulated genes (Figure 3D).

Functional enrichment analysis of ARDEGs

GO and KEGG pathway enrichment analyses were performed
on ARDEGs to explore their potential biological functions. The
results of the GO enrichment analysis showed that in BP, ARDEGs
were enriched in processes such as response to oxidative stress,
response to reactive oxygen species, and regulation of smooth
muscle cell proliferation. In CC, ARDEGs were enriched in
processes related to vesicle lumen, ficolin-1-rich granule lumen,
and ficolin-1-rich granule. In MF, ARDEGs were enriched in
processes such as DNA-binding transcription factor binding,
DNA-binding transcription activator activity, RNA polymerase
II-specific, and DNA-binding transcription activator
activity (Figure 4A).

The KEGG enrichment analysis revealed that DEARGs were
mainly enriched in pathways such as Kaposi sarcoma-associated
herpesvirus infection, MicroRNAs in cancer, Human T-cell
leukemia virus 1 infection, PI3K-Akt signaling pathway, and IL-
17 signaling pathway (Figure 4B).

PPI network construction and analysis

To explore the interactions between ARDEGs, PPI network was
constructed using Cytoscape software, which included 31 nodes and
126 edges (Figure 5A). Based on the MCODE plugin in Cytoscape, a
cluster was identified (Figure 5B), consisting of 12 key ARDEGs:
MMP9, MCL1, KLF4, JUN, IL6, EGFR, ATF3, ZFP36, SOD2,
PTGS2, NFKBIA and MYC.

Machine learning screening for key genes

To enhance the reliability of the results, we employed two
machine learning algorithms to further identify key aging-related
genes. The LASSO algorithm selected 11 aging-related genes from
the 12 key ARDEGs, including ATF3, EGFR, IL6, JUN, KLF4,
MCL1, MMP9, NFKBIA, PTGS2, SOD2, and ZFP36 (Figures

TABLE 2 Primer Sequences for qRT-PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

GAPDH CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT

ATF3 CCTCTGCGCTGGAATCAGTC TTCTTTCTCGTCGCCTCTTTTT

KLF4 CGGACATCAACGACGTGAG GACGCCTTCAGCACGAACT

NFKBIA CTCCGAGACTTTCGAGGAAATAC GCCATTGTAGTTGGTAGCCTTCA

SOD2 GCTCCGGTTTTGGGGTATCTG GCGTTGATGTGAGGTTCCAG
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FIGURE 2
Removal of Batch Effects. (A) Distribution of the three datasets before batch effect removal. (B) Distribution of the three datasets after batch
effect removal.

FIGURE 3
Identification of ARDEGs. (A) Volcano plot of DEGs. (B) Heatmap of the top 50 DEGs. (C) Intersection of DEGs and ARGs. (D) Heatmap of
the 34 ARDEGs.
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6A,B). Based on importance scores greater than 2, the RF algorithm
identified 5 aging-related genes: ATF3, MYC, KLF4, NFKBIA and
SOD2 (Figures 6C,D). Ultimately, by intersecting the results of
LASSO and RF, we identified 4 key genes (ATF3, KLF4, NFKBIA
and SOD2) (Figure 6E).

Construction of the key gene
prediction model

First, we validated the expression levels of the four key genes
in the training set. The results showed that ATF3, KLF4, NFKBIA
and SOD2 were significantly downregulated in OA (Figure 7A).

Next, we constructed a risk prediction model using these four key
genes. The nomogram score was used to predict the risk of OA
development (Figure 7B). Additionally, the calibration curve
demonstrated the accuracy of the model in predicting OA
(Figure 7C). DCA indicated that the model had high
predictive ability in OA diagnosis (Figure 7D). We also
performed ROC curve analysis to assess the diagnostic
performance of each gene in the risk prediction model. The
training set results showed that the AUC values for ATF3,
KLF4, NFKBIA and SOD2 were 0.916, 0.762, 0.903 and 0.813,
respectively (Figure 7E). Furthermore, the nomogram showed
that the model had high diagnostic performance, with an AUC of
0.967 (95% CI: 0.916–0.988) (Figure 7F).

FIGURE 4
Functional Enrichment Analysis of ARDEGs. (A) Bubble plot of GO enrichment analysis for ARDEGs in BP, CC, and MF. (B) Bubble plot of KEGG
pathway enrichment analysis for ARDEGs.

FIGURE 5
PPI Network Construction and Analysis. (A) PPI network of ARDEGs. (B) A cluster containing 12 key ARDEGs identified by MCODE.
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Validation of the prediction model

To further assess the accuracy of the prediction model, we
validated the diagnostic performance of the four key genes using
three OA synovial tissue datasets. First, in the GSE1919 dataset, the
AUC values for ATF3, KLF4, NFKBIA, and SOD2 were 1.000, 1.000,
1.000, and 0.760, respectively (Figure 8A). The AUC value of the
prediction model was 1.000 (95% CI: 1.000–1.000) (Figure 8D),
demonstrating a high diagnostic efficacy. Next, in the
GSE206848 dataset, the AUC values for ATF3, KLF4, NFKBIA,
and SOD2 were 0.816, 0.755, 0.796, and 0.735, respectively
(Figure 8B). The AUC value of the prediction model was 0.816
(95% CI: 0.531–1.000) (Figure 8E). Furthermore, in the
GSE89408 dataset, the AUC values for ATF3, KLF4, NFKBIA,
and SOD2 were 0.508, 0.591, 0.683, and 0.733, respectively
(Figure 8C). The AUC value of the prediction model was 0.744
(95% CI: 0.585–0.881) (Figure 8F).

In vitro qRT-PCR experimental validation

The qRT-PCR results showed that, compared to normal synovial
tissue, the expression levels of ATF3, KLF4, NFKBIA, and
SOD2 were significantly downregulated in OA, which is
consistent with the results from the aforementioned
bioinformatics analysis (Figures 9A–D).

Immune cell infiltration analysis

Based on the CIBERSORT algorithm, the correlation
between immune cells revealed that Macrophages M0 were
negatively correlated with resting Dendritic cells, while
Macrophages M1 were positively correlated with gamma
delta T cells (Figure 10A). Additionally, immune cell
differential analysis between the OA group and normal
controls showed that Plasma cells, follicular helper T cells,
and resting Mast cells were significantly elevated in OA. In
contrast, memory resting CD4+ T cells, activated NK cells,
Monocytes, and activated Mast cells were significantly
decreased in OA (Figure 10B).

Correlation analysis between key genes and
immune cells

The correlation analysis results showed that ATF3 was positively
correlated with activated Mast cells, CD4 memory resting T cells,
M1 Macrophages, and activated NK cells, and negatively correlated
with Plasma cells, M0 Macrophages, and resting Mast cells
(Figure 11A). KLF4 was positively correlated with activated Mast
cells, CD4 memory resting T cells, activated NK cells, and
Eosinophils, and negatively correlated with naïve CD4 T cells,
activated memory CD4 T cells, Plasma cells, and resting Mast

FIGURE 6
Machine Learning Screening for Key Genes. (A) LASSO coefficient analysis. (B) 10-fold cross-validation for selecting the optimal parameter in the
LASSO model. (C) Relationship between the number of trees and error rate in the RF model. (D) Ranking of importance scores in the RF model. (E)
Identification of key genes through the intersection of results from the two machine learning algorithms.
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cells (Figure 11B). NFKBIA was positively correlated with activated
Mast cells, CD4 memory resting T cells, Monocytes, and activated
NK cells, and negatively correlated with activated memory

CD4 T cells, Plasma cells, and resting Mast cells (Figure 11C).
SOD2 was positively correlated with activated Mast cells,
CD4 memory resting T cells, Monocytes, and Neutrophils, and

FIGURE 7
Construction of the Nomogram Prediction Model and ROC Curve Analysis. (A) Expression levels of key genes in the training set. (B) Construction of
the nomogram prediction model. (C) Calibration curve of the nomogram prediction model. (D)DCA of the nomogram prediction model. (E) ROC curves
of the four key genes in the training set. (F) ROC curve of the prediction model.
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FIGURE 8
Validation of the PredictionModel. (A) ROC curve of key genes in GSE1919. (B) ROC curve of key genes in GSE206848. (C) ROC curve of key genes in
GSE89408. (D) ROC curve of the prediction model in GSE1919. (E) ROC curve of the prediction model in GSE206848. (F) ROC curve of the prediction
model in GSE89408.

FIGURE 9
In Vitro qRT-PCR Experimental Validation. (A) mRNA expression levels of ATF3 in normal and OA synovial tissue. (B) mRNA expression levels of
KLF4 in normal and OA synovial tissue. (C) mRNA expression levels of NFKBIA in normal and OA synovial tissue. (D) mRNA expression levels of SOD2 in
normal and OA synovial tissue. *P < 0.05.
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negatively correlated with regulatory T cells (Tregs),
M0 Macrophages, Plasma cells, and resting Mast cells (Figure 11D).

Discussion

Osteoarthritis (OA) is a degenerative joint disease closely
associated with aging (Liao et al., 2024; Li et al., 2024). Cellular
senescence is a key hallmark of the aging process and is particularly
evident in OA, where features of cellular senescence can be observed
(Loeser et al., 2016). Although growing evidence suggests a close
association between aging and OA, the underlying pathogenic
mechanisms remain unclear (Yan et al., 2023). Therefore, this
study aims to explore the role of aging-related genes in OA using
bioinformatics and machine learning algorithms, providing new
insights into the pathogenesis and potential treatment strategies
linking aging and OA.

In this study, 34 DEARGs were identified from synovial tissue
samples of normal controls and OA patients using bioinformatics
analysis. Subsequently, four key genes (ATF3, KLF4, NFKBIA and
SOD2) were identified through PPI network analysis, LASSO
regression, and random forest algorithms. An OA prediction
model constructed based on these genes demonstrated good
diagnostic performance. Furthermore, qRT-PCR experiments
confirmed that all four genes were significantly downregulated in
OA synovial tissues, consistent with the computational analysis.
These findings may offer new insights into therapeutic strategies for
elderly patients with osteoarthritis.

Activating Transcription Factor 3 (ATF3) is a stress-induced
transcription factor that plays a crucial role in the cellular response
to various stresses, regulating the interaction between cell
metabolism, immunity, and inflammation to maintain cellular
homeostasis (Liu et al., 2024; Li et al., 2023). Interestingly,
ATF3 can regulate the expression of matrix metalloproteinase 13
(MMP13), leading to the degradation of type II collagen, loss of
extracellular matrix, and disruption of cartilage homeostasis,

thereby potentially contributing to the aging process in OA
(Chan et al., 2017). Li et al. found that the PR11-364P22.2/
ATF3 regulatory axis can modulate the catabolic activities of
cartilage tissue and chondrocytes induced by IL-1β, thereby
influencing the progression of OA (Li et al., 2021). Moreover,
ATF3 deficiency can suppress the expression of inflammatory
cytokines in OA chondrocytes, thereby playing a role in the
onset and progression of OA (Iezaki et al., 2016). In this study,
we also observed a significant decrease in ATF3 levels in OA synovial
tissue, providing new insights into the role of ATF3 in OA.

Kruppel-like factor 4 (KLF4) is a transcription factor characterized
by a zinc-finger (ZNF) structure, and it is implicated in the pathogenesis
of various inflammatory diseases, including inflammatory bowel
disease, OA, kidney inflammation, pneumonia, and
neuroinflammation (Liang et al., 2024). In addition, KLF4 has been
confirmed to be involved in the aging process of OA. Studies have
shown that KLF4 upregulates the expression of MMP13 in
chondrocytes, potentially providing a new therapeutic target for OA
(Takeuchi et al., 2020). In OA, KLF4 can regulate the catabolic and
inflammatory responses of chondrocytes and synovial cells, thereby
preventing joint tissue destruction and inflammation (Kawata et al.,
2022). Additionally, the study found that KLF4 expression is decreased
in OA synovial tissues, which may offer a theoretical basis for exploring
the pathogenesis of OA-related aging.

NFKBIA is a member of the NF-κB inhibitor family, and it plays a
crucial role in regulating NF-κB activity and modulating inflammatory
responses (Tang et al., 2018; Wang et al., 2020). In addition, NFKBIA
may be associated with the senescence of chondrocytes and synovial
cells, making it a potential therapeutic target for OA (Chien et al., 2011).
In OA synovial fibroblasts, suppression of NFKBIA overexpression has
been shown to reduce inflammation by decreasing the levels of
MMP13 and ADAMTS4 (Bondeson et al., 2007). Lin et al. found
that modulating the NF-κB signaling pathway can downregulate
MMP13 expression in synovial fibroblasts, suggesting a potential
approach for treating inflammatory arthritis (Lin et al., 2011).
Interestingly, Xu et al. reported that inhibiting the activation of the

FIGURE 10
Immune Cell Infiltration Analysis. (A) Heatmap of correlations between immune cells. (B) Differential levels of immune cells between the normal
control group and OA group. P < 0.05 was considered statistically significant.
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NF-κB pathway exerts anti-inflammatory effects on chondrocytes,
thereby alleviating OA (Xu et al., 2021). Although NFKBIA plays a
crucial role in OA-related aging, its underlying mechanisms remain
unclear and require further investigation.

Superoxide dismutase 2 (SOD2) is a mitochondrial antioxidant
enzyme that catalyzes the conversion of superoxide radicals into oxygen
and hydrogen peroxide, thereby protecting cells from oxidative damage
(Zhou et al., 2023). Increasing evidence suggests that SOD2 plays a
significant role in cellular senescence associated with OA (Bolduc et al.,
2019). Jian et al. found that modulating the SIRT3/SOD2 pathway can
inhibit chondrocyte senescence, potentially offering a new therapeutic
avenue for OA (Jiang et al., 2025). Interestingly, downregulation of
SOD2 leads to oxidative stress and mitochondrial dysfunction in
chondrocytes, which may be a contributing factor to OA
pathogenesis (Gavriilidis et al., 2013). Furthermore, this study found
that SOD2 is significantly downregulated in synovial tissue, providing
new insights into the connection between OA and aging.

There are several limitations in this study. First, although this
study validated gene expression using clinical synovial tissue

samples, the relatively small sample size may affect the reliability
of the results. In addition, clinical confounding factors such as age,
medication use, surgical history, and lifestyle may have influenced
gene expression. Therefore, future studies should include a larger
number of samples with clearly defined clinical characteristics to
verify and extend the current findings. Second, the validation
experiments conducted were relatively limited. Future studies
should include animal models and in vitro cell experiments to
further verify the roles of these genes. Moreover, synovial tissue
exhibits cellular heterogeneity, and this study did not clarify whether
these genes are expressed in specific cell types. This limitation could
be addressed through single-cell RNA sequencing or
immunohistochemical analysis in future research.

Conclusion

In this study, we employed bioinformatics and machine learning
to identify four key aging-related genes associated with OA and

FIGURE 11
Correlation Between Key Genes and Immune Cells. (A) Correlation between ATF3 and immune cells. (B) Correlation between KLF4 and immune
cells. (C) Correlation between NFKBIA and immune cells. (D) Correlation between SOD2 and immune cells.
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constructed a predictive model for OA. These genes may play
important roles in the pathogenesis of OA-related aging and
offer new directions for future prevention and treatment strategies.
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