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Epigenomics, a field that studies epigenetic changes on a genome-wide scale,
has gained prominence because of its potential to reveal biological mechanisms
underlying phenotypes in livestock. Animal production is highly dependent on the
interaction between animal genetics, physiology, environment, andmanagement
practises. Many of these factors have a bidirectional relationship with the
epigenome, as they influence and are influenced by it. This article focuses on
the role of epigenetics in the adaptation of livestock to environment, particularly
heat stress. Epigenetic changes induced by heat stress have been observed in
livestock, resulting in short- and long-term alterations that generally affect
production performance and health. Research provides strong evidence that
gene expression in livestock is also influenced by epigenetic processes such as
DNA methylation, histone modifications, chromatin remodelling, and non-
coding RNAs to cope with heat stress. Nutritional interventions are a
promising way to mitigate the epigenetic changes induced by heat stress. A
better understanding of the molecular mechanisms involved in the regulation of
gene expression during heat stress is crucial to identify strategies and
interventions that can maintain or even improve the health and productivity of
monogastric livestock and adapt their resilience and efficiency to different
environmental conditions.
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Introduction

The use of high-throughput technologies in livestock research has increased interest in
defining cellular signalling pathways through advances in molecular technology. These
include nucleic acid and protein sequencing, as well as metabolite profiling and analysis,
with the goal of better understanding the various biological molecules-DNA, RNA, proteins,
and metabolites. Often referred to as “omics” studies, this approach provides a better
understanding of the mechanisms regulating an animal’s actual physiology and interprets
biological mechanisms underlying complex phenotypes, like health and feed efficiency.
Enabling omics technology, livestock researchers can estimate breeding values more
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accurately, thereby assisting the selection of animals (Chakraborty
et al., 2022) and finding nutritional strategies or other interventions
(Kar, 2017) that enhance animal health and productivity during
environmental challenges.

Epigenomics is a field of study that explores the study of
epigenetic modifications on a genome-wide scale. From the
Aristotelian word epigenesis, the term ‘epigenetics’ was derived,
and it was first coined by Conrad Hal Waddington (Waddington,
1942). Epigenetics refers to changes in gene expression or cellular
phenotype that occur without altering the underlying DNA
sequence. This involves DNA methylation, post-translational
modification of histones, but also linked to the regulation of gene
expression by non-coding RNAs, genome instabilities or any other
force that could modify a phenotype. Enabling the rapid
advancements in next-generation sequencing technology,
livestock researchers often generate an enormous amount of
epigenomic sequencing data that help them to identify and
gather epigenomic biomarkers that reveal biological mechanisms
underlying complex health phenotypes in livestock. Increasing lines
of scientific evidence support the concept that certain acquired traits
are derived from environmental exposure during early embryonic
and foetal development, i.e., foetal programming, and can even be
“memorized” in the germline as epigenetic information and be
transmitted to future generations as a non-genetic inherited
factors (Zhu et al., 2021; David et al., 2019).

Epigenetic modifications play a crucial role in regulating gene
expression and can be influenced by various factors, including
developmental processes and environmental stimuli. Heat stress

is one of the main environmental factors that negatively affect
animal health and welfare, and it will certainly continue to
threaten food security (Ross et al., 2015). Specifically, heat stress-
induced economic losses result to poor performance, reduced and
inconsistent growth, decreased carcass quality, and increased
mortality and morbidity (Ross et al., 2015). Despite the fact that
all farm animal species are susceptible to heat stress, birds and pigs
are particularly sensitive to heat stress due to either lacking or non-
functional sweat glands and continues to threaten global sources of
animal protein (Ringseis and Eder, 2022; Guo et al., 2018; Nawab
et al., 2018; Saeed et al., 2019).

Animal production is highly dependent on the interaction
between animal genetics, physiology, environment, and
management practices, which include housing and feeding, many
of which have a bidirectional relationship with the epigenome, as
they influence and are influenced by it. Therefore, it is imperative to
consider epigenetics as one of the factors responsible for phenotypic
variation and resilience in livestock, and it should be considered in
livestock breeding, health and disease, management including
housing, and provision of nutrition, especially in response to heat
stress. While emerging studies indicate that RNA modifications, or
RNA epigenetics, also contribute significantly to stress responses in
livestock (Xing et al., 2024), only few studies have examined this
aspect in monogastrics. In this article, we review the epigenetic
coping mechanisms in poultry and pigs (see Figure 1 for a schematic
representation). In addition, the impact of changes during
embryogenesis and the putative impact of nutrients on animal
physiology are discussed.

FIGURE 1
Schematic overview of epigenetic markers, modification, and their effect on host phenotype. Here we highlight that heat stress affects the
epigenetic landscape of the embryonic chicken heart. Under the normal condition (baseline methylation), genes involved in antioxidant defence and cell
survival (i.e., MnSOD, Bcl-2, HSP70) remain silenced due to DNA methylation and histone modification. Heat stress partially relaxes chromatin structure,
but is insufficient alone, leading to reduced embryonic viability. Manganese (Mn) supplementation promotes histone H3K9 hypomethylation and
gene activation, leading to improved antioxidant responses and reduced embryonic mortality (Created with BioRender).
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Epigenetic processes

By epigenome, we refer to all epigenetic marks on DNA and
RNA in a single cell that are generated by epigenetic processes that
regulate gene expression and play an important role in genome
function and stability. These epigenetic processes are important to
the livestock (Pandey et al., 2025), which include DNA and RNA
methylation, histone modification, chromatin remodelling, and
non-coding RNAs. These processes, including DNA methylation,
histone modifications, chromatin remodelling, and non-coding
RNAs, play a central role in cellular identity, genome integrity,
and environmental adaptation (Sindhu et al., 2024; Ibeagha-Awemu
et al., 2022). Epigenetic mechanisms are increasingly recognised as
crucial regulators of phenotype in livestock species, impacting traits
such as growth, reproduction, immunity, and stress responsiveness
(Pandey et al., 2025). In recent years, major technological
breakthroughs have transformed our ability to study the animal
epigenome with greater resolution and biological relevance.
Approaches such as whole-genome bisulfite sequencing (WGBS)
for DNA methylation (Yang et al., 2025; Brito et al., 2025),
CUT&RUN and CUT&TAG for histone mark profiling (Zhou
et al., 2024), and single-cell transcriptomic and chromatin
accessibility mapping (e.g., single-cell ATAC-seq, multi-omics
platforms) now allow researchers to simultaneously map
transcriptional activity, chromatin accessibility, and epigenomic
state at the single-cell level in livestock tissues (Li et al., 2024;
Tan et al., 2025). These advances have led to unprecedented
insights into development, stress responses, and disease in
agriculturally important animals. Additionally, the emergence of
ideas like epigenetic memory, transgenerational inheritance, and the
discovery of functional epitranscriptomic marks (e.g., m6A) in stress
responses have shifted the view from static to dynamic and
reversible models of gene regulation (Laporta et al., 2024;
Henikoff et al., 2025; Sherif et al., 2024; Sajjanar et al., 2025; Xie
et al., 2025). With epigenetic memory, we refer to a transient stress
that can cause stable changes in gene expression through persistent
chromatin marks, such as H3K27ac or DNA methylation, at
regulatory regions. It has been demonstrated in chickens
conditioned to elevated embryonic incubation temperatures,
leading to sustained HSP downregulation and thermotolerance
(David et al., 2019; Rosenberg et al., 2022; Halli et al., 2025).
Transgenerational epigenetic inheritance, where stress-induced
epigenetic marks (e.g., altered methylation in germ cells or early
embryos) are passed to offspring, has been observed in poultry and
other relevant livestock species (Halli et al., 2025; He et al., 2023).
The rise of epitranscriptomics implicates RNA modifications,
especially N6-methyladenosine (m6A), as key regulators of
mRNA stability, translation, and stress signalling in livestock cells
(Chen et al., 2023). A livestock-wide review by Ren et al. (Ren et al.,
2024) consolidates evidence that m6A machinery operates across
target tissues, liver, muscle, reproductive organs, mediating
environmental adaptation and productivity traits.

DNA methylation

DNA methylation, an addition of a methyl group to a cytosine
adjacent to guanine (CpG), is a critical and most studied epigenetic

process in mammalian models, catalysed by DNA
methyltransferases and demethylated by ten-eleven translocation
methylcytosine dioxygenases (TETs) (Unoki, 2019; Wu and Zhang,
2017). Methylation in promoter regions often leads to gene
silencing, probably achieved via direct inhibition of transcription
factor (TF) binding (Becker et al., 1987; Dantas Machado et al.,
2015), while intragenic methylation can enhance transcription and
affect splicing (L et al., 2009; Gelfman et al., 2013). This process
modulates gene expression in response to environmental stimuli,
such as heat stress, across various animal taxa, like worms
(Caenorhabditis elegans), fish (Gasterosteus aculeatus) and
chicken (Gallus gallus) (Wan et al., 2021; Metzger and Schulte,
2017; Vinoth et al., 2018). DNAmethylation’s role in transcriptional
regulation suggests a significant potential contribution to inherited
phenotypes, although research predominantly focuses on parent-to-
offspring inheritance (Fitz-James and Cavalli, 2022).

Histone modifications

Histone modification is another epigenetic mechanism with
important implications for altering gene expression in response
to external stimuli. Histones are a family of proteins (H1-H5) that
form structures called nucleosomes via the ordering and packing of
the DNA molecule into structural units. Usually, the post-
translational modification encompasses methylation,
phosphorylation, acetylation, ubiquitylation, or sumoylation of
the histone N-terminal tail (Bannister and Kouzarides, 2011;
Swygert and Peterson, 2014). While these modifications often
upregulate gene expression, the effect is complex, depending on
the modification’s nature and location (Jambhekar et al., 2019).
Histone modifications, governed by enzymes like histone acetylases
and deacetylases, regulate chromatin structure and, thus,
transcription factors’ access (Huang et al., 2015; Dose et al.,
2011). In heat stress studies, the focus has been on H2B and
H3 histones, noting changes in methylation patterns (Marinova
et al., 2011; Wu et al., 2020), and multigenerational inheritance of
modifications (Klosin et al., 2017).

Chromatin remodelling (3D genome
organisation)

In recent years, more importance has been given to the role of
the genome structural organisation and DNA folding in gene
regulation, DNA repair, chromosome translocation and cell
development (Therizols et al., 2014). Despite DNA folding
into nucleosome being well described in the literature (Luger
et al., 1997), little is known about how nucleosome interacts with
each other or how chromatin folds within the nucleus (Bonev and
Cavalli, 2016). Major chromatin remodelling has also been
observed upon heat shock, mediated by the Heat Shock
Protein 70 (HSP70) and aimed to activate the heat shock
response (Khanna et al., 2014). Moreover, local, and quick
chromatin changes have been observed within 60 s from
temperature elevation, as well as displacement of nucleosomes
followed by extensive transcriptional activation of several HSP
genes (Chowdhary et al., 2019; Kainth et al., 2021). Finally,
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chromatin remodelling seems to play a pivotal role in animal
acclimatisation, increasing resilience to future heat exposures
upon moderate heat over long periods (Murray et al., 2022).

Non-coding RNAs

Non-coding RNAs (ncRNAs) are RNA molecules not translated
into proteins but perform various molecular functions. Among the
different types of ncRNAs, PIWI-interacting RNA (piRNA), small
interfering RNA (siRNA), Long non-coding RNAs (lncRNA), and
microRNAs (miRNA) regulate gene expression at the
transcriptional and post-transcriptional level. In recent years, a
growing interest has been posed on their role in stress response,
adaptation, and epigenetic information inheritance (Duempelmann
et al., 2020; Czech et al., 2018; O’Brien et al., 2018; Raza et al., 2021;
Rossnerova et al., 2020).

RNA modification

RNA modifications, such as N6-methyladenosine (m6A),
represent a dynamic and reversible layer of gene regulation, also
referred to as RNA epigenetics. Beyond m6A, more than 160 distinct
RNA chemical modifications have been identified, influencing RNA
stability, splicing, localization, and translation. Recent
breakthroughs reveal that m6A and its associated enzymes
modulate the heat stress response in livestock (Cerneckis et al.,
2024). For example, maternal heat exposure in pigs alters m6A
methylation patterns in neonatal liver and adipose tissue, affecting
early fat deposition and metabolic programming (Heng et al., 2019).
Similar regulatory roles for m6A have been demonstrated in sheep,

where heat stress influences both lipid metabolism and heat shock
protein gene expression via m6A-dependent mechanisms (Chen
et al., 2023). Although direct evidence in poultry remains limited,
cell and a few animal studies indicate that m6A methylation
dynamically regulates heat-shock protein pathways in response to
acute temperature shifts, suggesting a conserved function across
species (Cao et al., 2024). These insights position RNA epigenetics as
a promising frontier for enhancing thermotolerance and resilience
in monogastric livestock.

Coping with the changing
environment, heat stress and
epigenetic modifications

Heat stress affects livestock productivity, disrupting growth
rates, fertility, meat quality, and overall health and welfare. Such
stress reprioritizes metabolism, physiology, and behaviour,
emphasizing thermoregulation over other activities (Wu et al.,
2020; Negrón-Pérez et al., 2019). Over time, heat stress triggers
metabolic adaptations and epigenetic modifications that aid in the
altered physiological states, from structural and behavioural
adjustments to physiological and immunoregulatory changes
(Gupta et al., 2022; Goel et al., 2021). Epigenetics plays a major
role in this response and eventual adaptation to heat and other
stressors, inducing a molecular memory of past experiences (see
also Figure 2).

DNA methylation and histone modifications are fundamental
regulatory mechanisms found across all biological states, but
changes in these epigenetic marks have been observed in animals
experiencing heat stress (Wu et al., 2020; Murray et al., 2022; Wang
et al., 2019), and can contribute to both short-term adaptation and

FIGURE 2
Schematic representation of adaptation to heat stress. The blue zone indicates conditionswithout heat stress, characterized by a baseline epigenetic
landscape. When the animal is experiencing heat stress, adaptation (green zone) ormaladaptation (red zone) of the epigenetic landscape occurs. Adapted
animal are adjusted to handle increased temperatures often with improved immune function, whereas maladapted animals show overheating, are
harmed by the increased temperatures and show a detrimental effect on their immune function. (Created with BioRender).
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long-term health consequences. Long and moderate exposure
promotes alteration to suboptimal ambient temperature
(acclimation to heat or adaptation), leading to easier and faster
activation of the heat shock response in the future (Murray et al.,
2022). On the other hand, intense heat stress or severe heat injury is
associated with long-term health consequences, affecting several
metabolic and physiological processes, i.e., immunosuppression,
altered heat shock protein (HSP) response, impair cell
morphology and apoptosis, which can lead to maladaptation
(Wang et al., 2019; Murray et al., 2021; Argaud et al., 2007).

The heat shock response is crucial in cellular and animal survival
under stress. This response triggers the rapid increase of HSP that
function mainly as molecular chaperones, providing
thermotolerance and protection from other stressors (Hietakan
et al., 2006). Importantly, HSP expression can be regulated
through epigenetic mechanisms, providing an important link
between stress adaptation and epigenetics (Tetievsky and
Horowitz, 1985; Kisliouk et al., 2017). Temperature-dependent
histone-phosphorylation induces the active state of the chromatin
that will also be maintained when the stressors are removed,
allowing a rapid re-acclimation and promoting a more heat-
resilient phenotype (Murray et al., 2022), forming epigenetic
memory and affecting HSP expression for several cell cycles
(Kisliouk et al., 2017; Dor and Cedar, 2018). For livestock,
poultry researchers have shown that by increasing the egg shell
temperature during incubation, reduces HSP gene expression post-
hatch when encountering a high ambient temperature (Rajkumar
et al., 2017).

Dietary strategies and nutritional interventions, including
increased dietary fat content and reduced protein intake, have
been shown to mitigate heat stress, leading to improved egg
production, growth performance, and metabolic efficiency
(Poorghasemi et al., 2013; Spencer et al., 2003; Moallem et al.,
2010; Kolani et al., 2018). Additives rich in phenolic compounds,
flavonoids, and antioxidants also enhance animal welfare during
thermal stress (Zimbelman et al., 2010; Oke et al., 2021; Oke, 2018).
Moreover, the overall micronutrient composition of the feed must
be formulated based on the environmental condition to help the
animal to mitigate stress effects. Vitamin C, E, minerals (Na+, K+,
and Mg+), and methionine have been reported to produce beneficial
effects in goats and chicken (Nwunuji et al., 2014; Saiz del Barrio
et al., 2020).

Furthermore, an intriguing concept known as cross-tolerance
has been observed in mice and chicken, where early-life heat stress
exposure results in increased resilience to other forms of stress (Ben-
Nun et al., 2022; Shein et al., 2005). This response is likely due to
shared molecular mechanisms across different stress types, leading
to a faster and more robust response to subsequent stressors (Ben-
Nun et al., 2022; Shein et al., 2005). Rosenberg et al. (Rosenberg et al.,
2022; Rosenberg et al., 2020) showed that chicks exposed to high
temperatures during embryonic stages displayed transgenerational
heat and immunological resilience, emphasizing the potential of
epigenetic processes in modulating stress responses (Rosenberg
et al., 2022). This transgenerational adaptation, the potential for
dietary intervention, and understanding of the heat shock response
highlight the importance of multi-disciplinary approaches to tackle
the challenges climate change presents to monogastric livestock
production.

Epigenetic impact of heat stress in
chicken embryo

During embryogenesis, careful epigenetic remodelling is
necessary to avoid developmental defects and ensure healthy
development of the embryo. Genomic imprinting involves genes
only expressed from the maternal or paternal chromosome in
diploid cells and plays crucial roles in early vertebrate
development (Barlow, 2011). Heat stress during the early
embryonic period can result in lifelong consequences, altering
physiological processes, for example, in mouse embryos aberrant
methylation imprinting resulted in developmental failure (Zhu et al.,
2008). Moreover, these changes may significantly affect embryonic
growth, as well as the potential to pass down DNA methylation
errors to subsequent generations of livestock (Ross et al., 2017; Ayo
et al., 2011; Huber et al., 2020). Previous research has focused
primarily on the negative effects of heat stress during
embryogenesis (Ross et al., 2017; Ayo et al., 2011; Wettemann
and Bazer, 1985). Recent studies have shown that controlled
exposure to heat stress during this period can induce epigenetic
changes that enhance an animal’s ability to adapt to higher
temperatures later in life (Rocha et al., 2022; Piestun et al., 2011).

Host response to heat stress

Heat shock proteins provide cellular protection, have anti-apoptotic
effects, and are synthesized under stress. They play a key role in the heat
stress response and adaptation of an animal’ (Parsell et al., 1994). Their
expression can be modulated by embryonic heat exposure, and
epigenetic processes, such as histone modifications or DNA
methylation of HPS promoter regions, may have subsequent effects
on heat stress resistance in adulthood (Vinoth et al., 2018; Tetievsky and
Horowitz, 1985; Kisliouk et al., 2017).

Epigenomic alteration results shed light on coping and adaptive
abilities during heat stress in livestock. Plasticity of the preoptic anterior
hypothalamus (POAH) plays an important role in thermoregulation of
an animal, and its response may vary depending on heat stress during
embryogenesis’ (Tzschentke and Basta, 2002; Griffin et al., 2001).
Changes in thermoregulatory activity due to embryonic heat stress
may differ between vertebrates. Piglets born from heat-stressed sows
had less skeletal muscle and more adipose tissue (Johnson et al., 2015),
whereas heat-stressed chickens demonstrated reduced metabolic rates
and core temperatures (Piestun et al., 2011; Piestun et al., 2009; Piestun
et al., 2008). The plasticity of the POAH in response to environmental
stressors has increased the interest in the hypothalamus’s underlying
epigenetic changes. Heat stress-induced epigenetic alterations in the
hypothalamus may impact the whole body thermoregulation and
metabolism. Reduced thyroid gland activity and thyroid hormone
T3 levels in heat-stressed chickens emphasize the metabolic shifts,
potentially optimizing the animals’ energy efficiency (Vinoth et al.,
2018; Piestun et al., 2008; McNabb, 1995).

Results from studies indicate that embryonic heat stress causes
epigenetic reprogramming in the hypothalamus, which changes
molecular pathways involved in thermoregulation and metabolism.
David et al. reported epigenomic modification while investigating the
genome-wide distribution of histone modifications in the hypothalamic
tissue of heat-stressed chicken embryos. They found modifications in
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genes related to neurodevelopment, metabolism, and gene regulation
that may contribute to environmental stress response (David et al.,
2019). These epigenetic changes may contribute to thermal acclimation
later in life. Furthermore, the genes like the mammalian ortholog for
CREB Binding Protein (Cbp-1) and the gene encoding SWI/SNF
complex subunit SMARCC2 (Swsn-1), are vital for acetylation and
chromatin remodelling, respectively, play central roles in heat stress
adaptation (Zhou et al., 2019). In Caenorhabditis elegans, inhibiting
these genes disrupted the memory of heat adaptation, suggesting their
pivotal role in long-term thermoregulatory responses (Zhou et al., 2019;
Booth and Brunet, 2016; Benayoun et al., 2015).In addition, embryonic
heat stress boosts levels of both corticotropin-releasing hormone (CRH)
(Cramer et al., 2019) and brain-derived neurotrophic factor (BDNF) in
the hypothalamus (Yossifoff et al., 2008). In fact, extreme heat stress in
early postnatal chickens caused an increase in CRH protein levels in the
hypothalamus compared to moderate heat stress and control chicken.
This increase was associated with hypermethylation in the intron site of
the Crh, silencing the gene expression (Cramer et al., 2019). Moreover,
the expression of the BDNF, an activator of the biochemical pathway
involved in heat adaptation (Labunskay and Meiri, 2006; Meiri, 2008)
and also controlled by epigenetic processes, in the hypothalamus was
increased 3 days after hatching, suggesting a potentially long-lasting
effect of embryonic heat stress on several neuronal changes (Yossifoff
et al., 2008).

A better understanding of the molecular mechanisms involved
in the regulation of gene expression during heat stress is crucial to
identify strategies and interventions that can maintain or even
improve the health and productivity of livestock and adapt their
resilience and efficiency to different environmental conditions.

Combating heat stress and research
opportunities

Heat stress can impact the epigenome during embryonic
development, adulthood, and even across generations. As a result,
the agricultural sector is searching for ways to lower the impact of
the epigenomic changes caused by embryonic heat stress or develop
genetic variants of monogastric livestock that are better adapted to
heat stress as adult.

Chickens have emerged as pivotal models for understanding
the epigenetic repercussions of heat stress (Kisliouk et al., 2010).
Exposure to heat, particularly ‘conditioning’ embryos via
elevated incubation temperatures, bestows an adaptive
epigenetic memory in chickens, thus enhancing their resilience
against subsequent heat stress (Zaboli et al., 2017; Yahav and
Hurwitz, 1996). This adaptive mechanism speeds up the
expression of HSPs and heat shock factor genes and bolsters
interleukin and ROS-scavenging protein production (Yahav
et al., 2004). Such responses are intricately tied to epigenetic
mechanisms, including DNAmethylation, histone modifications,
and miRNA activity (Ramiah et al., 2022; Kisliouk et al., 2011).
Notably, genomic regions associated with chicken domestication
display differential methylation patterns, suggesting alterations
stemming from selection pressures (Li et al., 2015; Nätt et al.,
2012). Conditioning through modified embryonic incubation
holds promise as a method to produce poultry that are better
equipped to endure heat stress.

In parallel to conditioning embryos with heat, there’s growing
interest in “epi-nutrients”. Epi-nutrients are essential nutrients that
modulate the epigenome, especially DNA methylation during
embryonic development (Kussmann and Bladeren, 2011;
Delcurto et al., 2013). These include vital nutrients like vitamin
B12, choline, and folate (Mazzio and Soliman, 2014). It is evident
that epi-nutrient like folate is present in the bovine oviductal fluid
during the oestrous cycle and bovine oviduct epithelial cells express
folate receptors and transporters (Garcia et al., 2018). Research has
shown that folic acid supplementation in pregnant mice can counter
heat stress-induced neural tube defects and alter imprinted gene
methylation (Shin and Shiota, 1999). A similar effect has been
observed in human embryos when the expecting mothers
consumed folic acid (Haggarty et al., 2013). In chickens,
manganese-supplemented diets have demonstrated increased
hatchability ratios and decreased mortality when exposed to heat
stress. This protective effect was tied to heightened expression of the
antioxidant enzyme manganese superoxide dismutase, which
correlated with global DNA hypomethylation of histone
H3 lysine 9 (H3K9) deacetylation in the embryonic heart. The
reduced mortality is believed to stem from decreased cell death
in the embryonic heart, potentially driven by elevated expression of
the anti-apoptotic B-cell lymphoma 2 (Bcl-2) (Zhuo et al., 2017).

While conditioning and epi-nutrients offer encouraging
outcomes for countering the epigenetic alterations caused by heat
stress, understanding their long-term implications and mechanisms
remains an ongoing pursuit. Further studies will help ascertain their
full potential in increasing livestock resilience against heat stress,
thus aiding in more sustainable agricultural practices.
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