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Background: Chronic kidney disease (CKD) is a globally prevalent and highly
lethal condition, often accompanied by dilated cardiomyopathy (DCM), which
increases the risk of cardiac complications. Early detection of DCM in CKD
patients remains challenging, despite established research demonstrating the
relationship between CKD and cardiac abnormalities.

Methods:We retrieved expression matrices for DCM (GSE57338, GSE29819) and
CKD (GSE104954) from GEO and a DCM scRNA-seq dataset (GSE145154). These
were analyzed for differential gene expression and WGCNA. KEGG and GO
analyses were performed on shared differentially expressed genes in DCM and
CKD. Potential drugs for DCM were identified using CMAP. Machine learning
methods LASSO, SVM-RFE, and RF were used to find biomarkers and develop a
diagnostic nomogram for CKD-associated DCM, validated with external datasets.
Single-gene GSEA was conducted to understand model gene mechanisms in
CKD-associated DCM. Immune cell infiltration was analyzed with CIBERSORT,
and single-cell sequencing examined model gene distribution and expression in
the heart.

Results:Our examination of the expression matrix datasets associated with DCM
and CKD revealed 115 key model genes that are shared by the two disorders as
well as 47 genes that are differently expressed. These 47 differentially expressed
genes were primarily linked to immune regulation and inflammation, according
to enrichment analysis. CMAP analysis suggested withaferin-a, droxinostat,
fluorometholone, and others as potential DCM treatments. Machine learning
identified MNS1 and HERC6 as significant CKD-associated DCM biomarkers. A
diagnostic nomogram using these genes was developed, showing strong
discriminative power and clinical utility. MNS1 and HERC6 are implicated in
metabolism, inflammation, immunity, and heart function. Immune cell
infiltration analysis indicated dysregulation in DCM, with MNS1 and
HERC6 correlating with immune cells. Single-cell sequencing showed
MNS1 and HERC6 expression in endothelial cells and fibroblasts, respectively.

Conclusion:We identified MNS1 and HERC6 as biomarkers and developed a new
diagnostic nomogram based on them for the timely diagnosis of CKD patients
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presenting with DCM complications. This study’s findings offer novel insights into
potential diagnostic methods and therapeutic strategies regarding the coexistence
of CKD and DCM.
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1 Introduction

Chronic Kidney Disease (CKD) significantly contributes to
morbidity and mortality associated with non-communicable
diseases. It is characterized by a structural or functional kidney
abnormality that persists for over 3 months, primarily involving
tubular, glomerular, or interstitial damage. This condition impairs
the kidneys’ ability to effectively eliminate waste products and excess
water from the body. Assessment of CKD involves various
parameters, including glomerular filtration rate (GFR), the
threshold for proteinuria, and the duration of the injury
(Webster et al., 2017). Screening conducted in various countries
during the 2000s revealed that indicators of kidney disease are
evident in over 10% of adults. As of 2017, the global prevalence
of CKD rose to 9.1%, reflecting a 29.3% increase since 1990 (Bikbov
et al., 2020). This trend indicates a significant escalation in the
burden of CKD, presenting a formidable public health challenge
globally in terms of effective management (Lin et al., 2022).

Dilated cardiomyopathy (DCM) is a progressive cardiac condition
that arises mainly without abnormal loading conditions or significant
coronary artery disease. It is characterized by ventricular dilation,
thinning of the ventricular walls, and impaired dilation and
contraction of the left ventricle or both ventricles, leading to
compromised cardiac pumping function (Japp et al., 2016; Heymans
et al., 2023). Prior research has established a robust correlation between
CKD and modifications in heart structure and function, particularly in
CKD patients, for whom cardiovascular illness is a significant
contributor to morbidity and mortality (Di Lullo et al., 2015a;
Thomas et al., 2017).In the setting of CKD, 80% of individuals are
classified as being at elevated risk for cardiovascular events, with
significant cardiac incidents accounting for over 50% of mortality
causes among those with CKD (Heywood et al., 2007; Anand et al.,
2015). The significant cardiac burden in the CKDpopulation frequently
results in dilated cardiomyopathy, which ultimately leads to the clinical
manifestations of heart failure (HF) and may exert a more severe
prognostic influence than the symptoms alone (Curtis and
Parfrey, 2005).

Inadequate diagnosis and intervention in DCM complicate the
reversal of the disease after it has advanced to serious cardiac
problems; prompt therapies are essential for enhancing the
prognosis of CKD-associated DCM. Nonetheless, we continue to
encounter numerous obstacles in early diagnosis. Despite the
widespread use of endomyocardial biopsy techniques, the precise
detection of myocardial injury linked to CKD continues to pose a
difficulty due to its poor sensitivity (Cooper et al., 2007).
Consequently, the status of the majority of DCM patients
typically deteriorates steadily, ultimately resulting in severe heart
failure or mortality. Furthermore, from the standpoint of
pathological mechanisms, CKD may negatively influence the

structure and function of the heart via multiple routes, including,
but not limited to, inflammation and oxidative stress (Di Lullo et al.,
2015b). The co-morbid mechanisms entail complex interactions,
and the principal molecules and underlying processes remain
unspecified; thus, there is an imperative to identify potential
biomarkers, establish a more comprehensive diagnostic model,
and investigate the associated mechanisms for the early diagnosis
and intervention of CKD-associated DCM.

The rapid advancement of microarray and high-throughput
sequencing technologies has significantly enhanced the reliability
and persuasiveness of bioinformatics analyses. In this study, gene
expression matrices from two DCMs and one CKD, sourced from
the GEO database, were employed alongside a single-cell RNA
sequencing (scRNA-seq) dataset related to DCM. Integrated
bioinformatics methods were utilized to identify hub genes and
potential mechanisms linking CKD to DCM. A diagnostic
nomogram, incorporating the genes MNS1 and HERC6, was
developed for DCM using machine learning techniques. The validity
of this nomogram was subsequently assessed and confirmed using
external datasets. Furthermore, the study explored the relationship
between the two model genes and the immunological landscape,
utilizing single-cell sequencing to reveal the expression distribution
of these genes across various cardiac cell types.

2 Methods

2.1 Data acquisition and preliminary
processing

The study utilized two raw expression profile datasets for DCM,
specifically GSE57338 and GSE29819, as well as one dataset for CKD,
GSE104954, all of which were sourced from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). To convert probe matrices into gene
matrices, the “GEOquery” package in R was employed, utilizing
probe annotation files during the conversion process. For genes
represented by multiple probes, expression values were averaged
across their corresponding probes. Additionally, a single-cell RNA
sequencing dataset related to DCM, identified as GSE145154, was
obtained from the same database. Table 1 provides comprehensive
information on all training and external validation sets that form the
foundation of this study. The workflow diagram is depicted in Figure 1.

2.2 Differentially expressed genes
(DEGs) analysis

This analysis employs the “Limma” package within the R
software (Ritchie et al., 2015) to identify differentially expressed
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genes (DEGs) in the CKD and DCM datasets (GSE57338 and
GSE104954). The criteria for identifying DEGs were set at a
p-value of less than 0.05 and an absolute log2 fold change
greater than 0.585 (Udhaya Kumar et al., 2020; Alva et al.,
2022; Zhang et al., 2023). To visualize the expression patterns
of these DEGs, the “pheatmap” and “ggplot2” packages in R
were utilized. Consequently, volcano plots were generated
to represent all DEGs, while clustered heat maps were created
to display the top 100 upregulated and top
100 downregulated genes.

2.3 Weighted gene co-expression network
analysis and identification of key
model genes

Weighted Gene Co-expression Network Analysis (WGCNA)
was implemented to systematically identify co-expressed gene
modules, elucidate the relationships between gene networks and
phenotypes, and determine key regulatory genes within these
networks. The analysis was performed using the “WGCNA”
package in R software (Langfelder and Horvath, 2008), which
enabled the construction of comprehensive co-expression
networks encompassing all genes in the dataset. Network
connectivity was assessed through the transformation of the
weighted adjacency matrix into a topological overlap matrix
(TOM), from which a hierarchical clustering tree structure
was derived. The resulting dendrogram branches represented
distinct gene modules, differentiated by color coding, with
genes exhibiting similar expression patterns and functional
characteristics clustered within the same module. To optimize
the network structure, modules with high similarity were merged
using a “mergeCutHeight” threshold of 0.25 (Dobnikar et al.,
2018; Liu et al., 2023b).

2.4 GO and KEGG functional analysis

To explore the biological functions and pathogenic mechanisms
of common differentially expressed genes in CKD and DCM, we
performed comprehensive GO and KEGG pathway enrichment
analyses. The analyses were conducted using multiple packages,
including “org.Hs.eg.db,” “GOplot,” “enrichplot,” and
“clusterProfiler.”. Statistical significance for enrichment analysis
was set at p < 0.05. The results of functional enrichment analysis
were visualized through various graphical representations, including

circle and composition plots, generated using “ggplot2” and
OmicShare Tools (Mu et al., 2024).

2.5 Connectivity map analysis

The Connectivity Map (CMAP) database (https://clue.io) serves as
a comprehensive repository for gene expression profiling data, enabling
researchers to investigate the impact of various perturbations on gene
expression patterns and elucidate the complex relationships between
genes and small molecules. In our investigation, we leveraged this
database by analyzing DEGs that exhibited consistent up- or
downregulation patterns in both DCM and CKD. This analytical
approach was specifically designed to identify potential therapeutic
compounds for DCM treatment. Through systematic analysis, we
identified and ranked the top 10 compounds based on their
enrichment scores. To facilitate the interpretation of these findings,
we constructed a Sankey diagram using the “ggalluvial” R package,
which effectively visualized the relationships and characteristic
properties of the identified compounds.

2.6 Machine learning

Three machine learning algorithms—Least Absolute Shrinkage
and Selection Operator (LASSO), Support Vector Machine
Recursive Feature Elimination (SVM-RFE), and Random Forest
(RF)—were employed to refine the selection of candidate
biomarkers. First, our study implemented the “randomForest”
package to perform the RF algorithm, and the hub gene was
defined as MeanDecreaseGini (MDG) greater than 4.0 (Savargiv
et al., 2021; Walker et al., 2022). Subsequently, we conducted LASSO
regression analysis utilizing the “glmnet” software package. The
optimal λ value in the LASSO model, characterized by the lowest
mean square error, was identified, and the genes exhibiting good
predictive capability associated with this λ value were picked
(Friedman et al., 2010) SVM-RFE for narrowing down candidate
biomarkers for the “e1071” package (Meyer et al., 2020).

To mitigate overfitting—particularly in the context of limited
sample sizes—we employed five-fold cross-validation across all
three algorithms. LASSO utilized L1 regularization to penalize
overly complex models by shrinking uninformative coefficients to
zero. SVM-RFE integrated recursive feature elimination with
repeated cross-validation to identify stable and discriminative
features. For Random Forest, out-of-bag (OOB) error estimation
was applied, and the number of trees was selected based on the

TABLE 1 Details of the 4 GEO datasets.

Data sets Platform Type of
samples

Control sample
size

CKD or DCM sample
size

Applications

GSE57338 GPL11532 DCM 136 82 Screening DEGs and Key modules; Training of
hub genes

GSE29819 GPL570 DCM 12 14 Validation of hub genes

GSE104954 GPL22945 CKD 18 39 Screening DEGs and Key modules; Training of
hub genes

GSE145154 GPL20795 DCM 4 8 Single-cell sequencing data analysis
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lowest classification error. These strategies collectively enhanced the
robustness of the gene selection process.

The intersecting genes identified by the three machine learning
techniques were designated as hub genes for the formulation of
diagnostic models for CKD-associated DCM. The expression levels
of the hub genes were determined using two datasets, GSE57338 and
GSE104954.Finally, the genes with common expression trends were
selected as the model genes for subsequent analysis.

2.7 Construction of column line diagrams
and evaluation of predictive models for
diagnostic markers

To evaluate the model genes, we first performed multivariate
logistic regression analyses. Subsequently, we constructed a
diagnostic nomogram using the “rms” package. The predictive
performance of both individual model genes and the integrated

FIGURE 1
Flowchart of the steps of bioinformatics analysis. Abbreviations: CKD, Chronic Kidney Disease; DCM, Dilated Cardiomyopathy; WGCNA, Weighted
gene co-expression network analysis. DEGs, Differentially expressed genes; CGs, Common genes; CUGs, Co-upregulated genes; CDGs, Co-
downregulated genes; ROC, Receiver operating characteristic; DCA, Decision curve analysis.
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diagnostic model was assessed through ROC analysis implemented
via the “ROCR” package. To validate the clinical utility and
predictive accuracy of the nomogram, we employed Decision
Curve Analysis (DCA) and calibration curves, which were
generated using the “calibration” function from the “rmda”
package and the “rms” package, respectively. The robustness of
our findings was further verified using GSE29819 as an external
validation cohort.

2.8 Single gene GSEA analysis

To explore the potential enrichment of model genes in various
biological processes, we conducted single-gene Gene Set Enrichment
Analysis (GSEA). Initially, model genes were sequenced based on
their correlation with other genes. Subsequently, these genes
underwent GSEA using the GSE57338 expression profiles. The
analysis focused on identifying relevant pathways and biological
processes, utilizing the Molecular Signatures Database with Gene
Ontology as the background gene set. Statistical significance was
determined by a |normalized enrichment score (NES)| greater than
0.5 and an adjusted P-value of less than 0.05.

2.9 Analysis of immune infiltration

The “CIBERSORT” package was utilized to evaluate immune
cell infiltration in the gene expression profiles of DCM and CKD.
The quantity and ratio of immunological infiltration in each sample
were depicted as bar graphs 。utilizing the “ggplot2” software. The
proportions of 22 immune cell types were examined between DCM
and normal samples. The results are presented through stacked
histograms produced by the “ggplot2” software. The relationship
between the two model genes and the differential immune cells was
analyzed using the “ggplot2” software, with a significance threshold
of p < 0.05 deemed statistically significant.

2.10 Assessing model gene expression on
single-cell RNA-seq data

The data were initially processed using the Seurat software
package (Stuart et al., 2019), followed by analysis with the
UMAP method to identify the interrelationships between clusters
and cell types. Subsequently, pertinent marker genes were acquired,
and cells were primarily annotated by referencing the Cell Marker
2.0 database (http://yikedaxue.slwshop.cn/) (Zhang et al., 2019). A
threshold was applied to marker gene expression levels, specifically
min.pct = 0.25 and log2FC > 1, to ensure robust cell type
identification.

2.11 Statistical analysis

Statistical analyses were performed using the R programming
language (version 4.4.0). The diagnostic performance of each model
gene was evaluated through the AUC score. A p-value below
0.05 was considered statistically significant.

3 Results

3.1 Weighted gene co-expression network
analysis and characterization of key
module genes

To investigate key genes associated with CKD and DCM, we
conducted WGCNA to identify the most relevant gene modules in
samples from both conditions. In the CKD-WGCNA analysis, a soft
threshold of 14 was selected based on scale independence and average
connectivity, optimizing the performance of scale-free networks
(scale-free R2 = 0.85; Figure 2A). The dendrogram illustrating
module clustering is presented in Figure 2B. Our analysis revealed
that the turquoise module, comprising 2376 genes, exhibited the most
significant positive correlation with CKD (r = 0.65, p = 4e-08), thereby
identifying it as a key module for further investigation (Figure 2C).
Similarly, in the DCM-WGCNA analysis, a soft threshold of 9 was
chosen (Figure 2D), and the corresponding dendrogram of module
clustering is shown in Figure 2E. The blue module, containing
866 genes, demonstrated the strongest positive correlation with
DCM (r = 0.78, p = 2e-46), designating it as a key module for
subsequent study (Figure 2F). Following this, we intersected the key
module genes identified in the CKD and DCM datasets to pinpoint
115 important genes, referred to as Key genes, for further investigation
(Supplementary Figure S1).

3.2 Screening of differentially expressed
genes (DEGs)

A differential analysis comparing CKD samples to normal samples
identified a total of 481 DEGs, with 282 genes upregulated and
199 downregulated. In contrast, DCM revealed 319 DEGs, consisting
of 160 upregulated and 159 downregulated genes. The expression profiles
of these DEGs in both the CKD and DCM datasets were visually
represented using volcano plots and heat maps, as shown in Figures
3A,B,D,E. By intersecting the DEGs from CKD and DCM samples using
the “VennDiagram” package in R software, we identified 47 common
genes (CGs), as depicted in Figure 3C. DEGs and CGs are shown in
Supplementary File S1. Additionally, by cross-referencing these CGswith
115 previously recognized key genes, we identified 5 hub genes, as
illustrated in Figure 3F.

3.3 Functional enrichment analysis

Functional analysis was conducted based on the acquired CGs to
ascertain the probable mechanism of CKD-associated DCM. KEGG
enrichment analysis indicated that these genes were considerably
abundant in the Complement and coagulation cascades, IL-17
signaling pathway, TNF signaling pathway, and Fc epsilon RI
signaling pathway (Figure 4A). Figure 4B illustrates that the
Gene Ontology enrichment analysis of these genes corroborated
the participation of immunological and inflammatory responses in
the pathophysiological mechanisms of CKD-associated DCM,
particularly highlighting “neutrophil chemotaxis” and “leukocyte
cell-cell adhesion.” In the Gene Ontology analysis of biological
processes (BP), pathogenic genes associated with CKD-associated
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DCM were predominantly enriched in the categories of “regulation
of inflammatory response,” “humoral immune response,”
“inflammatory response,” “immune response,” “neutrophil
chemotaxis,” and “leukocyte cell-cell adhesion.” The Gene
Ontology analysis of cellular components (CC) indicated that
these pathogenic genes are predominantly situated in the “blood
microparticle,” particularly inside the “platelet alpha granule,”
“cytoplasmic vesicle lumen,” “secretory granule lumen,” and

“collagen-containing extracellular matrix.” Molecular function
(MF) study indicated that “RAGE receptor binding” and “long-
chain fatty acid binding” were the most pertinent functionalities in
the pathogenic genes. The integrated analysis revealed that the
causal genes and possible mechanisms of CKD-associated DCM
were markedly enriched in inflammatory and immune response
pathways. For comprehensive GO analysis results, please consult
Supplementary File S2.

FIGURE 2
The construction of weighted gene co-expression network in CKD and DCM. (A) β = 14 was selected as the soft threshold for CKD, based on scale
independence and average connectivity. (B)Dendrogram of gene clustering in CKD, with different colors representing different modules. (C)Correlation
between module eigengenes and CKD, where blue indicates negative correlation and red indicates positive correlation. (D) β = 9 was selected as the soft
threshold for DCM, based on scale independence and average connectivity. (E) Dendrogram of gene clustering in DCM, with different colors
representing different modules. (F) Correlation between module eigengenes and DCM, where blue indicates a negative correlation and red indicates a
positive correlation. Abbreviations: CKD, Chronic Kidney Disease; DCM, Dilated Cardiomyopathy; WGCNA, weighted gene co-expression
network analysis.
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FIGURE 3
Identification of DEGs in CKD and DCM. (A) The volcano plot of DEGs in DCM dataset GSE57338. Red and yellow indicate the most significantly
upregulated and downregulated differentially expressed genes in the DCM samples, respectively. (B) Heatmap of the top 100 upregulated and
100 downregulated DEGs in the DCM dataset. (C) The volcano plot of DEGs in CKD dataset GSE104954. Red and yellow indicate the most significantly
upregulated and downregulated differentially expressed genes in the CKD samples, respectively. (D) Heatmap of the top 100 upregulated and
100 downregulated DEGs in the CKD dataset. (E) Venn diagram showing the intersection of DEGs in DCM and CKD, named CGs. (F) A Venn diagram was
used to identify Hub genes by intersecting the key genes from the WGCNA modules in DCM and CKD with CGs. Abbreviations: CKD, Chronic Kidney
Disease; DCM, Dilated Cardiomyopathy; DEGs, Differentially expressed genes; CGs, Common genes.
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3.4 Identification of prospective small
molecule agents for the treatment of DCM

To identify potential small molecule therapeutics for CKD-
associated DCM patients, we leveraged the CMAP database to
screen for compounds capable of reversing disease-specific gene
expression signatures. We focused on analyzing DEGs that showed
concurrent upregulation or downregulation in both CKD and DCM
conditions, with the detailed DEGs data presented in Supplementary
File S3. Through computational analysis using the CMAP platform
(https://clue.io/query), we generated 8,969 prediction outcomes
encompassing 2,429 distinct chemical compounds based on these
co-regulated DEGs. Following the exclusion of untargeted
medicines, we identified and prioritized ten compounds
demonstrating the most significant negative median tau scores,
indicating their potential to reverse disease-associated gene
expression patterns. These promising therapeutic candidates include
triamcinolone, withaferin-a, anisomycin, fluorometholone, droxinostat,
tegaserod, proscillaridin, VU-0418946-1, CGK-733, and prostratin
(Figure 5A). The molecular targeting mechanisms and chemical

structures of these compounds are comprehensively illustrated in
Figures 5B,C, respectively, providing insights into their potential
therapeutic applications in CKD-associated DCM management.

3.5 Identifying hub genes of diagnostic value
through machine learning

Given that DEGs common to CKD and DCM may significantly
influence patients with CKD-associated DCM, the LASSO
regression algorithm was utilized on five hub genes. The findings
indicated that four of these genes could serve as potential candidates
with considerable implications for the diagnosis of CKD-associated
DCM (Figures 6A,B). Notably, in Figures 6C,D, the
MeanDecreaseGini of all five hub genes found by the Random
Forest algorithm above 4.0, whereas four genes were identified
based on the importance of SVM-RFE calculations and 5-fold
cross-validation findings (Figures 6E,F). Ultimately, we
intersected the genes identified by the three approaches, resulting
in four genes: SERPINA3, MNS1, MME, and HERC6 (Figure 6G).

FIGURE 4
Functional enrichment analysis of CGs, Functional enrichment analysis of CGs. (A) Composition plot of the results of KEGG enrichment analysis
based on CGs. (B) Circular plot of the results of GO enrichment analysis based on CGs. Abbreviations: CGs, Common genes; GO, Gene ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes.
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3.6 Validation of four gene expression levels
in DCM and CKD

Figure 7A illustrates that in the CKD dataset (GSE104954),
the expression levels of MNS1, HERC6, and SERPINA3 were
markedly increased in CKD patients relative to controls.
Nonetheless, the expression levels of MME were decreased in
patients with CKD. In the DCM dataset (GSE57338), as
illustrated in Figure 7B, the expression levels of MNS1,
HERC6, and MME were markedly elevated in DCM patients
relative to controls. Conversely, the expression level of
SERPINA3 was reduced in patients with DCM. Consequently,
it can be inferred that among the four selected genes, only
the expression levels of MNS1 and HERC6 were stable in CKD
and DCM patients, both exhibiting upregulation, indicating a
link between their gene expression levels and illness
development.

3.7 Construction of nomogram and
evaluation of diagnostic biomarker
prediction models

Logistic regression analysis was conducted for MNS1 and
HERC6 to improve diagnostic and predictive capacities, revealing
analogous expression trends (Supplementary File S4).
Subsequently, we created a nomogram for these two genes as
model genes, as illustrated in Figure 8A. The calibration curve
analysis in this study revealed a Dxy value of 0.876, signifying a
strong correlation between predicted and actual values. The Brier
score was 0.097, indicating effective calibration. Additionally, the
z-values and p-values from the Spiegelhalter Z-test are denoted as
S:z and S:p, respectively, with the p-value exceeding 0.05,
suggesting an acceptable model fit (Figure 8B). The area under
the curve (AUC) of the two model genes and the nomogram was
assessed by Receiver Operating Characteristic (ROC) analysis to

FIGURE 5
Screening of potential small molecule compounds for DCM treatment using connectivity map analysis. (A) Heatmap displaying the top
10 compounds with the highest enrichment scores across 9 cell lines based on connectivity map analysis. (B) Descriptions of the top 10 compounds. (C)
Chemical structures of these 10 compounds.
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ascertain their sensitivity and specificity in diagnosing CKD-
associated DCM. The results indicated that the AUC values of the
two model genes were above 0.84, but the nomogram
demonstrated a superior AUC value relative to the two model
genes, signifying its substantial diagnostic efficacy in identifying
CKD-associated DCM (Figure 8C). Furthermore, decision curve
analysis (DCA) was conducted to further investigate the
predictive model, indicating that decision-making utilizing the
nomogram may assist in detecting CKD-associated
DCM (Figure 8D).

An external validation set from the GEO database,
specifically the GSE29819 dataset of DCM patients, was
utilized to validate the nomogram. The calibration curves,
ROC curve analysis, and DCA of this column line graph
demonstrated strong diagnostic performance for CKD-related
DCM patients (Figures 8E–G).

3.8 Single gene GSEA

To elucidate the potential biological roles of the two genes in
DCM, we conducted a single-gene Gene Set Enrichment Analysis
(GSEA) using the Gene Ontology gene set. As illustrated in Figures
9A–H, the gene MNS1 is implicated in several crucial pathways,
including “Cardiac conduction,” “Cardiac muscle contraction,”
“Mitochondrial respiratory chain complex assembly,” and
“Oxidative phosphorylation.” It is also involved in immune and
inflammatory pathways such as the “Interleukin 1 mediated
signaling pathway,” “Neutrophil activation involved in immune
response,” “Positive regulation of NF-κB transcription factor
activity,” and the “Toll-like receptor signaling pathway.”
Similarly, the gene HERC6 shares regulatory pathways with
MNS1, including “Cardiac conduction,” “Cardiac muscle
contraction,” “Mitochondrial respiratory chain complex

FIGURE 6
Identification of candidate hub genes via machine learning. (A) Plot of partial likelihood deviance. (B) Plot of LASSO coefficient profiles. (C) The
decision tree in RF algorithm. (D)TheMeanDecreaseGini of the 5 genes with MeanDecreaseGini >1.0 were selected by the RF algorithm. Accuracy (E) and
error (F) of 5-fold cross-validation (CV) in SVM-RFE algorithms. (G) UpSet Venn diagram showing the characteristic genes shared by three algorithms.
Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random Forest; SVM-RFE, Support Vector Machine-Recursive Feature
Elimination.
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assembly,” and “Oxidative phosphorylation.” Additionally,
HERC6 is engaged in processes related to the “Regulation of
inflammatory response,” “Neutrophil activation involved in
immune response,” “T helper 1 type immune response,” and
“Myeloid cell activation involved in immune response,” as
depicted in Figures 9I–P. These findings indicate that both genes
may play significant roles in metabolic, immune, and inflammatory
responses in the context of CKD-associated DCM.

3.9 Immune cell infiltration and
correlation analysis

The enrichment analysis results revealed a significant
correlation between the functional and pathway analysis of
pathogenic genes associated with CKD and DCM and
inflammatory and immunological processes. To further
investigate this relationship, we utilized the CIBERSORT method
to examine immune cell infiltration and its association with
immunomodulatory and diagnostic biomarkers in CKD and
DCM. Notably, the analysis identified a lack of expression in
follicular helper T cells and resting dendritic cells, resulting in
their exclusion from the study. Consequently, the bar graph

(Figure 10A) illustrates the proportions of the remaining
20 immune cell types in each sample.

Figure 10B illustrates the immune cell profile of patients with
DCM, revealing elevated levels of B cells naive, Plasma cells, T cells
CD8, T cells CD4 naive, Macrophages M0, and Mast cells resting. In
contrast, these patients exhibit decreased levels of memory-activated
T cells CD4 memory activation, Macrophages M2, and Neutrophils.
This differential pattern of immune cell infiltration suggests that
various immune cells may play a regulatory role in the therapeutic
management of DCM.

In our study, we performed a comprehensive analysis to explore
the correlation between the expression of two model genes and the
distribution of various invading immune cell types. As depicted in
Figure 10C, the expression of MNS1 showed a substantial positive
correlation with resting Mast cells, CD8 T cells, naive B cells,
activated CD4 memory T cells, and naive CD4 T cells.
Conversely, MNS1 exhibited a negative correlation with
Neutrophils, Monocytes, and resting CD4 memory T cells.
Similarly, the expression of HERC6 was positively correlated with
resting Mast cells, naive B cells, Plasma cells, and Eosinophils.
However, it demonstrated a negative correlation with
Neutrophils, Monocytes, activated Mast cells, M2 Macrophages,
and resting CD4 memory T cells. These findings indicate that

FIGURE 7
Validation of the expression levels of four genes in CKD and DCM. (A) Expression patterns of the 4 genes in the CKD dataset GSE104954. (B)
Expression patterns of the 4 genes in the DCM dataset GSE57338.
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immune cell infiltration in DCM samples undergoes significant
alterations compared to the control group, and the expression
levels of the two model genes are significantly correlated with
these changes in immune cell infiltration.

3.10 Distribution and expression of hub
genes in the heart

Single-cell data from GSE145154, sourced from publicly
accessible DCM single-cell RNA sequencing resources, facilitated
the identification of 21 distinct cell clusters. These clusters were
primarily composed of T cells, monocytes, endothelial cells, smooth
muscle cells, natural killer cells, fibroblasts, tissue stem cells, and

B cells, as illustrated in Figure 11A(Huang et al., 2024). Furthermore,
the expression levels of MNS1 and HERC6 across these various cell
types are presented in Figures 11B,C, respectively.

4 Discussion

The incidence of heart failure and sudden cardiac mortality
escalates with the advancement of chronic kidney disease, which
may be linked to the heightened prevalence of CKD-associated
DCM as renal function deteriorates (Law et al., 2023).
Nonetheless, the fundamental mechanisms underlying the
development of CKD-associated DCM remain little
comprehended, and considerable ambiguity exists in its diagnosis.

FIGURE 8
The development and efficacy evaluation of the diagnostic nomogram model involved several analytical steps. (A) The nomogram model was
constructed based on MNS1 and HERC6. (B) The calibration curves of the nomogram in the GSE57338. (C) ROC curve for the diagnostic performance of
the two candidate biomarkers (MNS1 and HERC6). (D) The DCA curves of nomogram in the GSE57338. (E–G) Calibration curve, ROC curve, and DCA
decision curve for the nomogram in the external dataset GSE29819 of DCM. Abbreviations: ROC, receiver operating characteristic; AUC, the area
under the curve; DCA, Decision curve analysis.
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This study thoroughly examined CKD-associated DCM utilizing
various bioinformatics tools and analytical approaches. The study
sought to elucidate the potential relationship between CKD and
DCM, investigate probable shared pathological mechanisms, and
identify viable biomarkers for diagnosing CKD-associated DCM.

In this study, differential gene expression analysis and WGCNA
identified 47 common differentially expressed genes. Subsequent
GO and KEGG analyses revealed that these genes are predominantly
enriched in pathways related to inflammation and immune
response. This enrichment suggests that immunological and
inflammatory processes play a significant regulatory role in the
pathogenesis of CKD and DCM.

In the development of a diagnostic model for predicting DCM
onset in chronic kidney disease patients, MNS1 and
HERC6 emerged as significant model genes. Single-cell
sequencing analysis revealed distinct cellular distribution
patterns, with MNS1 showing enrichment in fibroblasts and

HERC6 predominantly expressing in endothelial cells within
cardiac tissues. Correlation analyses demonstrated that these
biomarkers exhibited significant positive associations with resting
mast cells and naive B cells while displaying inverse relationships
with monocytes and neutrophils. These differential correlation
patterns with immune cell populations suggest that both genes
may contribute to DCM pathogenesis through immune
infiltration-mediated mechanisms.

MNS1 (meiosis-specific nuclear structural protein 1) is a
protein-coding gene primarily associated with the function of
motile cilia and the assembly of sperm flagella (Maraval et al.,
2025).Existing research indicates that abnormalities in
MNS1 may increase the risk of congenital cardiac disease
through ciliopathies affecting active cilia, such as laterality
defects. (Ta-Shma et al., 2018; Perrot and Rickert-Sperling, 2024).
Notably, in 2022, Jiang et al. discovered that high expression of the
MNS1 gene is involved in the metabolism of bile acids, fatty acids,

FIGURE 9
Single gene GSEA. (A–H) GSEA results of MNS1 in the DCM dataset GSE57338. (I–P) GSEA results of HERC6 in the DCM dataset GSE57338.
Abbreviations: GSEA, Gene set enrichment analysis.
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FIGURE 10
Immune cell infiltration and correlation analysis. (A) Bar graph of the percentage of 20 kinds of immune cells in each sample in GSE57338. (B) Box
plot showing the comparison of 20 kinds of immune cells between DCM and control groups. (C) The correlation map represents the association of the
immune cells with MNS1 and HERC6. Abbreviations: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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and heme, which in turn influences the progression of heart failure
(HF) and demonstrates significant diagnostic efficacy for HF (Jiang
et al., 2022). In 2023, Duan et al. further supported the role of
MNS1 in the early diagnosis of HF (Duan et al., 2023). Additionally,
MNS1 has been shown to be highly expressed in patients with
ischemic cardiomyopathy (Zheng et al., 2023). Collectively, these
findings suggest that MNS1 may play a significant regulatory role in
cardiac diseases; however, its specific relationship with DCM
remains unclear. GSEA analysis suggests that MNS1 is implicated
in the regulation of cardiac conduction, myocardial contraction,
oxidative phosphorylation, and the inhibition of immune and
inflammatory processes. In this study, MNS1 expression
was significantly elevated in patients with DCM compared to
healthy controls. Additionally, MNS1 showed a strong positive
correlation with resting mast cells, CD8 T cells, and naive B cells,
while displaying a negative correlation with monocytes and
neutrophils. These findings imply that MNS1 may contribute to
the pathogenesis of DCM through modulation of these immune cell

populations; nonetheless, further research is necessary to validate
these findings.

Members of the HERC subfamily, as ubiquitin E3 ligases, are
distinguished by the presence of a HECT domain and one or more
RCC1-like domains (RLDs) serving as regulatory elements. The
subfamily can be further categorized into two subclasses: large
HERC (comprising HERC1 and HERC2) and small HERC
(containing HERC3 through HERC6) (Rotin and Kumar, 2009).
As a member of the HERC family, HERC6 is significantly expressed
in testicular tissue and fetal brain, and it is also expressed in cardiac
tissue, where it is involved in various cellular activities, including cell
proliferation, cell migration, and neurodevelopment (Zhang et al.,
2024). Recent studies on systemic lupus erythematosus have
revealed the key role of HERC6 in apoptosis and inflammation
regulation (Cao et al., 2022). HERC6 is a pivotal effector of
vertebrate innate immunity with substantial antiviral efficacy
(Paparisto et al., 2018; Paparisto, 2023). Nonetheless, its function
in cardiovascular disease remains inadequately defined,

FIGURE 11
Expression profiles of model genes in single cells. (A) Cellular subtypes of dilated cardiomyopathy. (B,C) Bubble plot and scatter plots of the
expression of the 2 module genes.
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necessitating further studies to understand its precise effects and
processes in DCM (Zhong et al., 2024). The single-gene GSEA
analysis of HERC6 in this study indicates that this gene may
participate in the regulation of the disease in DCM patients by
inhibiting the activation of myeloid cells and neutrophils involved in
immune responses, negatively regulating inflammatory responses,
and promoting biological processes such as cardiac contraction and
oxidative phosphorylation. In terms of immune infiltration analysis,
HERC6 exhibited a positive correlation with mast cells resting and a
negative correlation with the infiltration of monocytes and
neutrophils. Building on the aforementioned points, we
hypothesize that HERC6 may serve a dual function in regulating
immune responses. Firstly, it could modulate the behavior of mast
cells and other immune cells, thereby limiting immune activation
and minimizing harmful inflammatory reactions. Such regulation
may be essential for protecting the heart from immune-induced
injury. Secondly, HERC6 may suppress immune and inflammatory
pathways by promoting the ubiquitination and degradation of
specific pro-inflammatory cytokines or their receptors.Through
these mechanisms, HERC6 could serve as a critical modulator in
maintaining immune homeostasis and preventing excessive
inflammation. Furthermore, the expression of HERC6 may be
linked to oxidative phosphorylation in heart contractile function
and energy metabolism, indicating its potential significance in
sustaining cardiac function. Nonetheless, these conjectures
necessitate additional experimental verification to elucidate the
precise mechanism of HERC6’s involvement in DCM. Future
research should concentrate on the functional validation of
HERC6 in heart disorders and assess its viability as a
therapeutic target.

To advance novel diagnostic tools and therapeutic approaches
for CKD-associated DCM, a comprehensive investigation of
MNS1 and HERC6 expression patterns and functional roles is
essential. Given their potential significance, these molecular
markers are emerging as promising diagnostic and therapeutic
targets. To validate their clinical utility, we constructed a
diagnostic nomogram and evaluated its performance using an
external dataset. The nomogram’s diagnostic accuracy was
rigorously assessed through multiple analytical methods,
including ROC curve analysis, decision curve analysis, and
calibration curve analysis, which collectively demonstrated its
efficacy in identifying patients with CKD-associated DCM.

In addressing CKD-associated DCM, we have employed the
CMAP database to evaluate various small molecule drugs with
possible therapeutic benefits. Among them, Droxinotat, a histone
deacetylase inhibitor, was developed by Reed et al. (Schimmer et al.,
2006; Mawji et al., 2007; Wood et al., 2010), and the compound was
able to effectively inhibit the enzymatic activities of HDAC3,
HDAC6, and HDAC8, and showed significant anticancer
potential (Kerr et al., 2012). HDAC3 is a crucial regulator of
cardiomyocyte proliferation during heart development (Reichert
et al., 2012). Furthermore, a study using a mouse model of
dilated cardiomyopathy highlighted the cardioprotective efficacy
of HDAC6 inhibitors, suggesting their potential as a therapeutic
approach for cardiomyopathy and various forms of heart failure
(Yang et al., 2022). Additionally, HDAC8 inhibitors have been
shown to reduce ventricular hypertrophy and fibrosis, as well as
alleviate symptoms of heart failure (Zhao et al., 2021; 2022). These

findings support the feasibility of Droxinotat as a potential
therapeutic agent for CKD-associated DCM. In addition to
Droxinotat, Anisomycin, a selective activator of the p38 MAPK
pathway, has demonstrated cardioprotective properties (Zhao et al.,
2001). Another promising compound is Withaferin A (WFA), a
bioactive withanolide extracted from the medicinal plant Withania
somnifera. WFA exhibits antitumor and immunomodulatory
activities against various cancer cells (Yan et al., 2018). At low
doses, WFA exerts cardioprotective effects by upregulating the anti-
apoptotic mitochondrial pathway in an AMPK-dependent manner
(Guo et al., 2019). An experimental study on Withaferin A revealed
its ability to reduce type I collagen expression in vitro and impede
the progression of cardiac fibrosis in vivo (Challa et al., 2012).
Furthermore, WFA offers renal protection by reducing
inflammation and macrophage signaling in obstructed kidneys, as
well as inhibiting the development of fibrosis and TGF-β signaling
(Peddakkulappagari et al., 2019). Collectively, these drugs hold
significant potential for addressing CKD-related DCM, providing
novel insights for the advancement of future therapeutic
strategies.To further validate the therapeutic potential of these
candidate compounds in the context of CKD-associated DCM,
we plan to conduct follow-up experimental studies. These will
include in vitro assays using co-culture systems of
cardiomyocytes and renal epithelial cells to assess the
compounds’ effects on fibrosis, inflammation, and apoptosis-
related pathways. Additionally, we aim to establish in vivo
models of CKD-induced cardiomyopathy to evaluate the efficacy
and safety profiles of Droxinostat, Withaferin A, and other top-
ranked candidates. These studies will provide essential functional
evidence to support their clinical translational potential.

This study, despite its contributions, has several limitations that
warrant consideration. Firstly, CKD is a broad term encompassing a
wide range of conditions, and this study did not investigate specific
types of CKD, which may limit the applicability of the findings to
particular subtypes. Secondly, although machine learning and
WGCNA are widely used analytical methods, their results can
vary significantly depending on the dataset employed, potentially
affecting the consistency and reliability of the outcomes. Finally, to
improve the applicability of our findings to clinical practice, it is
essential to conduct both in vivo and in vitro validation studies.

5 Summary

In our study, we evaluated the transcriptomic data of patients
with CKD and DCM to identify DEGs and key module genes shared
by both diseases. Subsequent analyses included functional
enrichment, WGCNA, connectivity map analysis, immune cell
infiltration, and single-cell sequencing. Our findings suggest the
presence of a potential comorbidity mechanism between CKD and
DCM, possibly mediated by model genes. This research contributes
to understanding the molecular mechanisms underlying
CKD and DCM.

In conclusion, this study proposes a potential diagnostic and
assessment approach for patients with CKD-associated DCM. By
exploring the intersection of CKD and DCM, we suggest that future
screening for CKD-associated DCM could involve detecting
immune or inflammatory factors, as well as employing genetic
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testing or emerging advanced technologies for precise diagnosis (Liu
et al., 2023a; Baysoy et al., 2024; Fan et al., 2024).Furthermore, we
propose the possibility of targeted therapy for patients with CKD
and DCM based on the gene loci identified in this study. However,
these theoretical insights require further validation through
clinical trials.
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