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Skeletal muscle fiber traits are fundamental to meat production and the meat
quality of agricultural animals. The rich genetic resources and diverse phenotypic
expression of muscle traits in agricultural animal species provide invaluable
materials for investigating the genetic and molecular regulatory mechanisms
underlying myofiber development and characteristics, optimizing breeding
strategies, and developing models for human muscle-related diseases. This
review presents an integrative perspective on the genetic and epigenetic
regulation of skeletal muscle fiber development, incorporating evolutionary,
genomic, epigenomic, and multi-omics insights. We focus on genetic
architecture and causative or candidate genes for muscle fiber traits, as
revealed by genome-wide association studies (GWAS) and selective sweep
signatures, underscoring their adaptive significance and potential for selective
breeding. The role of epigenetic mechanisms, such as DNA methylation, histone
modifications, and non-coding RNAs, in linking genetic variation and phenotypic
expression is also discussed. By synthesizing multi-omic data, we provide a
comprehensive understanding of the molecular networks driving muscle fiber
growth and differentiation. This review aims to consolidate current knowledge
and offer actionable insights to advance research, breeding strategies, and
applications in agricultural and biomedical fields.
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1 Introduction

Despite ongoing efforts, hunger and food insecurity persist, with billions of individuals
lacking access to nutritious, safe, and adequate food (UNICEF, 2024). With the global
population projected to reach 9.7 billion by 2050 (UN 2015), the demand for food is
anticipated to surge. Agricultural animals are pivotal in global food production (Davis and
White, 2020), with meat serving as a crucial dietary protein source. By 2033, poultry meat is
expected to constitute 43% of protein intake from all meat sources, trailed by pork, beef, and
mutton. Moreover, meat is a vital provider of essential nutrients, including vitamins and
minerals (Gehring, 2023). According to the Organization for Economic Cooperation and
Development (Oecd, 2024)/Food and Agriculture Organization of the United Nations
(FAO) (Oecd, 2024), it is projected that by the year 2033, there will be a global increase in
the consumption of poultry, pork, beef, and sheep meat by 16%, 8%, 11%, and 16%,
respectively. Furthermore, per capita meat consumption is anticipated to rise by 2%. This
escalating demand, combined with heightened consumer expectations regarding meat
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quality, underscores the imperative to enhance the production
efficiency of agricultural animals.

Skeletal muscle, which constitutes approximately 40% of an
animal’s body weight (Erimbetov et al., 2019), is pivotal to meat
production and performs essential functions in metabolism,
movement, and energy storage. The development of skeletal
muscle is governed by intricate interactions between genetic
factors, such as regulatory genes and non-coding RNA, and
environmental influences. These interactions determine critical
muscle fiber traits, including number, diameter, and type, directly
affecting meat yield and quality. Through natural selection and
selective breeding, agricultural animals have acquired distinct
characteristics that set them apart from humans and
conventional model organisms. Their genetic diversity and
economic importance make them valuable subjects for muscle
development research. Notably, swine have emerged as
prominent models for human medical research due to their
genetic and physiological resemblances with humans, thereby
propelling advancements in the domains of genetics,
developmental biology, disease mechanisms, and
xenotransplantation (Prather, 2013; Fang et al., 2024; Meyerholz
et al., 2024; Peterson et al., 2024). Therefore, a comprehensive
understanding of the genetic and regulatory mechanisms
underlying skeletal muscle growth is imperative for enhancing
meat production, optimizing breeding strategies, and contributing
to advancements in medical science.

Recent advances in molecular biology techniques and high-
throughput sequencing technologies have significantly expanded
our knowledge of the genetic and epigenetic frameworks underlying
muscle fiber traits in agricultural animals. This review provides a
comprehensive overview of how genetic and epigenetic factors
contribute to skeletal muscle growth and myofiber characteristics
in agricultural animals from evolutionary, genomic, epigenomic,
and multi-omics perspectives.

2 Muscle morphological diversity in
agricultural animals and its impact on
meat productivity and quality

Agricultural animals exhibit substantial genetic diversity, shaped
by natural evolution and intensive artificial selection (Andersson,
2001; Koshkina et al., 2023). This diversity is vital for expressing
economically significant and adaptive traits, as well as
understanding molecular mechanisms behind muscle growth and
development (Zhong et al., 2020). Unlike genetically uniform model
organisms like mice, livestock and poultry display significant
variation within and across breeds (Jiang et al., 2019; Jiang et al.,
2018). For example, Chinese local pig breeds exhibit superior traits
such as high fertility and excellent meat quality (Huang et al., 2020),
while poultry and cattle breeds reflect diverse genetic and
phenotypic outcomes from domestication and targeted breeding
(Makarova et al., 2019; Wang et al., 2020; Bennett et al., 2008;
García-Ruiz et al., 2016). In cattle, small effective population sizes
due to rigorous selection enhance the detection of recessive
deleterious mutations, which are less prevalent than in natural
populations due to purification mechanisms (Kemper et al., 2012;
Eyre-Walker, 2010). This genetic diversity not only underpins

agricultural advancements but also offers valuable insights for
human biomedical research.

Given the challenges associated with direct human disease
studies, including the limitations in available samples,
environmental constraints, and ethical considerations, the use of
animal models is imperative for elucidating disease mechanisms.
Agricultural animals like pigs, cows, and sheep surpass traditional
models like mice due to their closer physiological and genetic
alignment with humans (Muroya, 2022; Petersen, 2023). Pigs, in
particular, are considered to be significant candidates for
xenotransplantation, vaccine development, and modeling human
development, owing to their anatomical and genomic similarities
(Abdoli et al., 2018; Lunney et al., 2021). For instance, porcine
models of Duchenne muscular dystrophy (DMD) replicate human
clinical features more effectively than mice, with studies
demonstrating gene restoration and phenotypic parallels
(Perleberg et al., 2018; Yu et al., 2016). These advantages
highlight the critical role of agricultural animals in
biomedical research.

Beyond their biomedical value, the genetic and phenotypic traits
of agricultural animals are pivotal for enhancing meat production
and quality. Myofiber characteristics, including their number, size,
type, and metabolism, play a fundamental role in determining meat
yield and quality (Lefaucheur, 2010; Joo et al., 2013). A
comprehensive understanding of these traits is imperative for the
optimization of breeding and management practices, thereby
ensuring the fulfillment of consumer demand for meat products
of superior quality (Godfray et al., 2018; Kopler et al., 2023).

Myofiber traits vary due to factors like breed, sex, physiological
stage, nutrition, and environment. For instance, Chinese local pig
breeds show higher levels of type I, IIa, and IIx myofibers compared
to foreign breeds (Kahane et al., 2001), while Turkish sheep
demonstrate a link between fiber diameter and tenderness (Şirin
et al., 2017). Dairy cows possess more oxidized fibers than beef cattle,
reflecting metabolic differences (Schreurs et al., 2008), and ducks
have higher myofiber counts but smaller fiber sizes than chickens
(Kim et al., 2008). Generally, pigs and poultry favor fast-twitch fibers
for rapid growth, whereas cattle and sheep rely on slow-twitch fibers
for endurance, showcasing species-specific adaptations.

These muscle fiber traits directly impact meat quality and
production efficiency, influencing attributes like color, pH, and
tenderness (Ismail and Joo, 2017). Type I fibers’ myoglobin
content affects color and flavor (Buckingham and Rigby, 2014;
Matarneh et al., 2021; Mashima et al., 2019), while glycolytic
fibers correlate with shear force (Kim et al., 2016; Park et al.,
2024). Genetic analyses reveal strong links between fiber density
and quality indicators such as eye muscle area and color (Larzul
et al., 1997; Choi and Kim, 2009). Myofiber number drives postnatal
growth and feed efficiency (Wigmore and Stickland, 1983), yet
selection for traits like increased muscle mass can reduce fiber
counts, risking quality declines (Felício et al., 2013). Balancing
fiber number and size is thus essential for optimal meat
production (Callaghan et al., 2020; Li et al., 2015). In general, a
higher number of muscle fibers combined with an appropriately
sized muscle fiber cross-sectional area can improve the final lean
meat productivity and ensure normal meat quality, while increasing
the number and area ratio of type I and IIA muscle fibers and
reducing the number and area ratio of type IIB muscle fibers to
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achieve a balance between meat quality and yield. A deeper grasp of
the genetic and biological underpinnings of these traits can steer
breeding programs toward improved meat quality and efficiency.

3 Genetic signals of selection in muscle
mass and fiber traits

Agricultural animals, subjected to prolonged natural selection
and artificial breeding, have exhibited marked adaptive alterations in
morphology, physiology, and behavior. These phenotypic
modifications represent the genome’s response to environmental
challenges and human intervention, offering a distinct research
opportunity to explore how genetic variation influences
phenotypic diversity. With recent advancements in genomics
technology, scientists have been able to pinpoint genetic selection
signals linked to key economic traits, facilitating a deeper
understanding of the molecular underpinnings of muscle growth
and development.

Leif Andersson et al. (Rubin et al., 2010) employed massively
parallel sequencing to discern advantageous alleles and candidate
mutations that have significantly influenced chicken domestication.
Notably, a selective sweep in broiler chickens aligns with genes
including IGF1 and TBC1D1, which are implicated in growth,
appetite, and metabolic regulation. In addition, Tan et al. (2024)
found that the SOX6 gene has a key regulatory role in broiler breast
muscle traits and adaptation to artificial selection. These insights
elucidate the genetic underpinnings of rapid muscle growth in
contemporary broiler breeds. Zhou et al. (2018) pinpointed two
mutations in Pekin duck genes linked to white feathers, augmented
body size, and enhanced feed-conversion efficiency through a
comparative genomic analysis across diverse duck breeds. One
mutation in the MITF gene correlates with white feather
coloration, while another distinct mutation might induce
sustained expression of the IGF2BP1 gene postnatally in Pekin
ducks, thereby augmenting meat yield. Skeletal muscle consists of
multiple heterogeneous cell populations whose interactions are
critical for the maintenance of muscle homeostasis. Xu et al.
(2023) analyzed neonatal skeletal muscle cell populations from
wild boar, Duroc, and Laiwu pigs using single-cell RNA
sequencing (scRNA-seq) to investigate the effects of artificial
selection on muscle cell profiles. It was found that compared to
wild boar, domestic pigs had significantly more fiber adipose-
forming progenitor (FAP) cells and fewer myoblasts, while the
proliferation rate of myogenic progenitor cells was higher,
suggesting a greater muscle growth potential in domestic pigs. In
addition, cross-species comparisons identified 186 shared active
transcription factors, as well as some (e.g., CREB3L1, TGIF1,
NFIC, and CEBPZ) gene regulatory networks that have been
shown for the first time to have a potential role in muscle
development. These results provide new perspectives for
understanding the effects of artificial selection on the spectrum of
muscle-resident cells. Furthermore, Liu et al. (2024) unveiled
epigenetic mechanisms that account for disparities in muscle
growth between eastern and western pig breeds. Their analyses
suggest that artificial selection impacts DNA methylation and gene
regulation, subsequently affecting muscle growth and meat quality.
The research highlighted pivotal genes such as GHSR and BDH1 in

modulating skeletal muscle development and meat production.
Specifically, the GHSR gene fosters myoblast proliferation but
impedes their differentiation and fusion. A C>T mutation in its
intronic region exerts an allelic genetic effect of 4.22 kg on carcass
weight at 240 days of age. Concurrently, an insertion acts as a
potential enhancer regulating the BDH1 gene in eastern pigs,
causing variances in myofiber proliferation and differentiation
across breeds. BDH1 is a crucial rate-limiting enzyme in ketone
metabolism and ATP synthesis. The insertion-triggered elevated
expression of BDH1 may be instrumental in myofiber proliferation
and differentiation.

Research into genomic selection signals in agricultural animals
has unveiled numerous critical genes and mutations associated with
muscle growth and development. These insights not only elucidate
the role of genetic variations in shaping phenotypic diversity but also
offer a scientific foundation for enhancing agricultural animal
breeds and boosting the efficiency of meat production.

4 Genetic architecture of
myofiber traits

Heritability, a significant concept in animal breeding, quantifies
the proportion of phenotypic variation in a trait attributable to
genetic factors (Visscher et al., 2008). Concerning myofiber traits in
agricultural animals, heritability estimation serves as a critical metric
for evaluating the potential of these traits for genetic selection. A
comprehensive understanding of myofiber trait heritability can
inform the development of more scientifically rigorous and
effective breeding strategies, thereby enhancing meat yield and
quality. In recent years, advancements in quantitative genetics
and genomic technologies have led to increasingly precise
estimates of myofiber trait heritability, thereby providing crucial
reference points for genetic improvement programs.

Heritability estimates for muscle fiber traits demonstrate
considerable variation across different agricultural animal species.
For instance, a study (Li H. et al., 2024) on Gushi chickens reported
low heritability for both leg muscle fiber density and diameter
(ranging from 0 to 0.2), with moderate heritability observed for
intramuscular fat (0.35). On the other hand, heritability estimates
for fiber traits in Kashmiri Merino sheep varied between 0.189 and
0.300 (Ahmad et al., 2022), suggesting some potential for genetic
selection within these traits. In the case of Large White pigs (Larzul
et al., 1997), myofiber traits exhibited moderate to high heritabilities,
such as a heritability of 0.46 for type I fiber percentage and up to
0.58 for type IIB fiber percentage.

Further studies showed that myofiber traits also have large
genetic variation across breeds and populations. Yan et al. (2024)
conducted an analysis of the muscle fiber types and meat quality
traits in 318 pigs from four distinct Shanxia Changhei pig
populations. They discovered that the heritability range for meat
quality traits spanned from 0.06 (pH at 24 h) to 0.47 (shearing force),
while the heritability for muscle fiber types varied between 0.04 and
0.4. Notably, the highest heritability was observed for total fiber
density (0.40), whereas the lowest was for the percentage of type IIA
fibers (0.04). These findings align with those of previous studies (Lee
et al., 2022), which reported heritability values ranging from 0.13 to
0.55. Furthermore, Huang et al. (Huang et al., 2022) determined that
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the heritability of muscle fiber number is approximately 0.3–0.54,
considered moderate, and noted a coefficient of variation as high as
18.64% for the total number of muscle fibers. In a study involving the
White Duroc × Erhualian F2 resource population, Li W. et al. (2009)
observed a substantial 3.6-fold difference between the minimum and
maximum values of the total number of muscle fibers. These
estimates imply that pigs and broilers, with moderate to high
heritability, are prime candidates for selection to improve
myofiber traits, potentially enhancing meat quality and yield
efficiently. Conversely, the lower heritability in sheep suggests
that selection may yield slower progress, requiring alternative
strategies like crossbreeding to capitalize on hybrid vigor. The
variability across studies underscores how species, population
structure, and genetic background shape trait inheritance,
necessitating customized breeding approaches.

The majority of myofiber traits in agricultural animals are
controlled by multiple quantitative trait loci (QTL). There have
been, and continue to be, successful attempts to localize QTL

affecting myofiber traits (Wimmers et al., 2006; Guo et al., 2019).
Table 1 provides a summary of the QTLs that impact the muscle
fiber traits of pigs, cattle, sheep, and chickens as listed in the Animal
QTLdb database. To date, there have been 12 documented QTLs
that affect the total number of muscle fibers in pigs (https://www.
animalgenome.org/cgi-bin/QTLdb/index, last updated on August
25, 2024). Further, we analyzed the biological pathway enrichment
of these QTL-associated genes in Table 1 and found that they were
significantly enriched in pathways related to muscle growth and
development, as shown in Figure 1. In addition, Huang et al. (2022)
conducted a genome-wide association study (GWAS) for nine
myofiber traits using whole-genome sequence data from a
heterogeneous population of eight breed crosses. Sixty-seven
quantitative trait loci (QTL) for these traits were revealed, several
loci were found to be significantly associated with the myofiber
number phenotype, and some key candidate genes were identified.
These results have facilitated the process of resolving the genetics of
myofiber traits. However, despite the success of GWAS in

TABLE 1 Current status of QTL research on muscle fiber traits in pig, cattle, sheep, and chicken.

Species Myofiber Traits QTL
Numbers

Associated genes References

Pig Total muscle fiber number 12 BHMT, MYOD1, KNDC1,
MIR133B

Wimmers et al. (2006), Guo et al. (2019), Lee et al. (2012), Li et al.
(2009b), Lee et al. (2013)

Number of muscle fibers per
unit area

23 BHMT, MYOD1, hpo-5, KATNB1,
WDFY4, KNDC1

Wimmers et al. (2006), Guo et al. (2019), Lee et al. (2012), Li et al.
(2009b), Zhang et al. (2020)

Diameter of muscle fibers 11 hpo-5, WDR47, SLC44A5 Wimmers et al. (2006), Zhang et al. (2020)

Diameter of type I muscle
fibers

9 Wimmers et al. (2006), Estellé et al. (2008)

Diameter of type IIa muscle
fibers

7 Wimmers et al. (2006), Estellé et al. (2008)

Diameter of type IIb muscle
fibers

8 hpo-5 Wimmers et al. (2006), Estellé et al. (2008), Reiner et al. (2002)

Cross-sectional area of muscle
fibers

3 MYOD1 Lee et al. (2012)

Cross-sectional area of type I
muscle fibers

1 Li et al. (2009b)

Cross-sectional area of type IIa
muscle fibers

7 Li et al. (2009b)

Cross-sectional area of type IIb
muscle fibers

4 Li et al. (2009b)

Cattle Muscle fiber diameter 3 HGD Zhou et al. (2010)

Muscle fiber area 1 MSTN Allais et al. (2010)

Chicken Muscle fiber cross-sectional
area

2 FTO Jia et al. (2012)

Muscle fiber density 8 HMGCR, LPIN2, LPIN1, IL15,
TGFB3, PRKAG3

Lv et al. (2012), Wei et al. (2012), Chen et al. (2013), Li et al.
(2013), Huang et al. (2015)

Muscle fiber diameter 10 LPIN2, LPIN1, TGFB2, IL15,
TGFB3, PRDM16

Lv et al. (2012), Chen et al. (2013), Li et al. (2013), Huang et al.
(2015), Han et al. (2012), Zhang et al. (2013)

Muscle fiber number 2 FIGF, AKT3 Chen et al. (2013)

Sheep Muscle density 12 Matika et al. (2016)

Total muscle area 4 Matika et al. (2016)

Note. https://www.animalgenome.org/cgi-bin/QTLdb/index,last updated on August 25,2024.
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identifying multiple loci, the heritability explained by these loci is
usually lower than the total heritability estimate, a phenomenon
known as “missing heritability” (Eichler et al., 2010; Trerotola et al.,
2015). This discrepancy may stem from undetected factors such as
epistatic interactions, rare variants, or epigenetic modifications.
Current genomic tools, while powerful, struggle to capture these
complexities, limiting the resolution of trait genetics. Addressing
this requires advanced approaches like whole-genome sequencing,
multi-omics integration, and the utilization of extensive, diverse
datasets to elucidate the comprehensive genetic underpinnings of
myofiber traits.

Overall, muscle fiber traits in agricultural animals show different
levels of estimated heritability, which highlights their potential
application value in future genetic improvement programs,
especially in improving meat quality and yield. However, the
effective application of these traits in breeding practices requires
a deep understanding of the species-specific genetic structure, as
heritability and its trait expression can vary significantly among
different livestock species. In addition, it is crucial to use advanced
genomic technologies to develop breeding strategies tailored to these
genetic differences to optimize meat production sustainably and
efficiently.

5 The molecular regulatory network
underlying skeletal muscle fiber
development and phenotypes

Muscle fibers, the fundamental units of muscle, determine
muscle mass through their number and size. The development of

skeletal muscle fibers is a complex, multi-step process that is tightly
coordinated. This process can be divided into three stages: primary
myogenesis, occurring during the embryonic period, where primary
muscle fibers are generated; secondary myogenesis, taking place
during the fetal period, marked by the formation of secondary
muscle fibers around the primary fibers; and the maturation of
muscle fibers post-birth. The total number of muscle fibers in an
individual is primarily determined by the primary fibers, with
secondary fibers forming additional muscle fibers based on the
framework established by the primary ones (Gros et al., 2004).
Figure 2 provides a summary of the myogenesis time for major
agricultural animals such as pigs, cattle, sheep, and chickens. The
two waves of muscle fiber formation during pregnancy dictate the
overall number of muscle fibers (Wigmore and Stickland, 1983;
Stickland and Handel, 1986), significantly influencing the growth
rate and degree of postnatal skeletal muscle development (Dwyer
et al., 1993). It is widely accepted that the total number of muscle
fibers is fixed at birth, with the postnatal process primarily involving
muscle fiber hypertrophy and maturation (Grefte et al., 2007).
However, this view has been challenged by Bérard et al. (2011),
who found that the total fiber number (TFN) in pig muscles is not
entirely fixed at birth. Instead, they observed a postnatal increase in
TFN, potentially attributed to the elongation of existing muscle
fibers and the formation of tertiary fibers, primarily occurring within
3 weeks after birth. Similarly, a study (Li et al., 2015) using the Cre-
loxP system to track muscle fiber formation in various skeletal
muscles of mice during development revealed that the TFN in the
longissimus dorsi, gastrocnemius, and rectus femoris muscles is
established before birth. In contrast, the anterior tibial muscle and
extensor digitorum longus exhibited different developmental

FIGURE 1
Enrichment analysis of biological pathways in quantitative trait loci (QTL)-associated genes for muscle fiber traits in agricultural animals.
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patterns, with their fiber numbers continuing to increase during the
first week post-birth before stabilizing. These findings suggest that
the developmental dynamics of muscle fibers may vary significantly
across different muscles. Given that the development and growth of
skeletal muscle determine the yield and quality of meat, it is crucial
to systematically understand and study the regulatory mechanisms
of skeletal muscle development in agricultural animals.

The process of myogenesis is governed by a complex network of
gene expression regulation, primarily facilitated through the
meticulous control of intercellular signals and specific gene
expression. This intricate developmental process involves
multiple elements, with genetic factors playing a pivotal role.
These are regulated by numerous genes, signaling pathways
(Schiaffino et al., 2007), and transcription factors such as

FIGURE 2
The skeletal muscle developmental processes of pig, cattle, sheep, and chicken. Dpc: day postconception, E: Embryonic days, TFN: total
fiber number.

TABLE 2 Key genes and transcription factors regulating myofiber development.

Gene/
Factor

Regulatory Effect Mechanism References

Pax3/Pax7 Maintains satellite cell population Regulates self-renewal and activation of muscle stem cells Relaix et al. (2005)

MyoD Promotes myoblast determination Activates muscle-specific gene expression Rudnicki et al. (1993)

Myf5 Initiates myogenic program Specifies myoblast lineage Braun et al. (1992)

MRF4 Maintains myogenic lineage Regulates late-stage differentiation Zhang et al. (1995)

Myogenin Promotes myoblast differentiation Activates genes for terminal differentiation Hasty et al. (1993)

Myostatin Negative regulator of muscle growth Inhibits myoblast proliferation and differentiation McPherron et al. (1997), McPherron
and Lee (1997)

IGF-1 Promotes muscle growth Stimulates myoblast proliferation and differentiation Musarò et al. (2001)

Follistatin Promotes muscle growth Inhibits myostatin Lee and McPherron (2001)

FoxO1 Regulates muscle atrophy Interacts with the PI3K/Akt pathway Stitt et al. (2004)

MEF2 Terminal differentiation of myocytes Activates muscle-specific gene expression Olson et al. (1995), McKinsey et al.
(2002)

Six1/4 Proliferation and migration of muscle
progenitor cells

Works with Pax3/7 to regulate early myocyte development Grifone et al. (2005)

Myomaker Essential for myoblast fusion Acts as a membrane protein specifically required for the fusion of muscle
precursor cells into mature fibers

Millay et al. (2013)

Myomixer Promotes myoblast fusion Works in conjunction with Myomaker to enable myoblast membrane
fusion and skeletal muscle growth

Bi et al. (2017)
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Myogenic Regulatory Factors (MRFs) (Zanou and Gailly, 2013) and
Muscle Enhancer Factor 2 (MEF2) (Rullman et al., 2018), among
others. Table 2 provides a summary of key regulatory factors
involved in muscle fiber development. A multitude of genes
contribute to the growth and development of skeletal muscle,
interacting synergistically to form a complex regulatory network
that ensures the stability of skeletal muscle growth and development
(Braun and Gautel, 2011; Perry and Rudnick, 2000).

In recent years, candidate genes regulating myofiber
development have been continuously identified with the rapid
advancement of sequencing technology and the booming
development of multi-omics technology. These studies have
revealed the important effects of myofiber size and number on
muscle mass and yield and provided new perspectives on the
molecular regulatory mechanisms of myofiber development.

The diameter of myofibers directly affects muscle mass. Wang
et al. (2024) compared gene expression differences between
oxidative and glycolytic muscles in bulls by transcriptome
sequencing and identified 23 candidate genes (e.g., RYR1,
DUSP13, and MYH14) that are related to myofiber diameter.
Functional studies of these genes can help to reveal the molecular
basis of the differences in fiber size between oxidative and glycolytic
muscles. Yu et al. (2024) further constructed a transcriptome profile
of skeletal muscle from 27 developmental stages from embryo to
adulthood in long white pigs and identified 11 candidate genes (e.g.,
CHAC1, RTN4IP1, and SESN1), which may play a key role in the
myofiber type switching and muscle volume expansion.

An increase in myofiber number is essential to enhance muscle
production. A study (Nesvadbova and Borilova, 2018) in Landrace
pigs identified several genes (e.g., STMN1, ACVR1, GSK3B, IKBKB,
and ITGA) associated with increased myofiber number and
regulation of late-stage muscle production. In mice, Myogenin,
Klf5, and Tead4 were found to synergistically activate the
transcription of genes in developing muscle (Dos Santos et al.,
2023), whereas, in mature muscle fibers, the high expression of
the transcription factor Maf revealed its important regulatory role in
myofiber maturation. Maf was identified as a key factor in myofiber
maturation by ChIP-seq experiments and analysis of Maf
knockout mice.

Gene editing technology has shown considerable promise in
furthering our comprehension of gene function and regulatory
mechanisms. Chen et al. (2024) constructed for the first time
“double muscle” sheep with double gene editing of MSTN and
FGF5 and revealed the molecular mechanism by which double
gene editing regulates myofiber proliferation through activating
the MEK-ERK pathway. The study showed that the activation of
FOSL1 could promote cell proliferation by accelerating the cell cycle
transition from the G0/G1 phase to the S phase and inhibit the
differentiation of skeletal muscle satellite cells by suppressing the
expression of Myod1. In addition, MSTN and FGF5 editing further
mediated myofiber proliferation by inhibiting CaMKII-dependent
myotube fusion. This study not only revealed the complex
regulatory network of myofiber development but also bred a new
breed of sheep that combines high meat yield, low fat deposition,
and high-quality fine wool.

Recent advances in the molecular regulation of muscle fiber
development from the above studies provide important
opportunities for enhancing muscle growth and meat production

in agricultural animals. The identification of species-specific
regulatory mechanisms highlights the importance of studying
these processes directly in agricultural animals rather than
relying solely on model organism findings.

To systematically summarize the findings in recent years, we
have compiled a selection of new candidate genes related to muscle
development in agricultural animals (Table 3) and mapped the
interaction network of candidate genes related to muscle
development in pigs and cattle (Figure 3). For example, YY1 is a
transcription factor involved in the regulation of a variety of
biological processes, including skeletal muscle development and
differentiation (Chen et al., 2019). PPARGC1A is a key
transcriptional co-activator that plays an important role in the
regulation of energy metabolism and myofiber type
transformation in skeletal muscle (Ma et al., 2022). The
collaborative impact of these two genes may play an important
role in myofiber differentiation, type composition, and muscle
regeneration, which may provide some theoretical basis and
practical guidance for further studies in the future.

6 Epigenetic regulation of myogenesis

In recent years, the rapid development of epigenetics has
provided significant breakthroughs in the study of muscle
development and its regulatory mechanisms in agricultural
animals. Epigenetic regulation affects gene expression by not
altering the DNA sequence, and the main mechanisms include
DNA methylation, histone modification, and non-coding RNAs,
which play a key role in the growth and development of muscle
fibers (Gao et al., 2017; Cao et al., 2018; Shi et al., 2015).

DNA methylation is one of the core mechanisms of epigenetic
regulation, whichmodulates gene expression through adding methyl
to the cytosine of DNA (usually occurs at CpG islands) (Baik et al.,
2014; Park et al., 2018). The hypomethylated state is usually
associated with gene transcriptional activity, whereas
hypermethylation leads to gene silencing or expression inhibition
(Moore et al., 2013; Besselink et al., 2023). For instance, differential
methylation of the cofilin-1 gene was confirmed to be closely related
to the changes in myofiber formation, which has a direct impact on
livestock meat quality (Sun et al., 2022). Moreover, studies (Carrió
et al., 2016; Laker and Ryall, 2016) showed that myogenic stem cells
exhibited an increase in DNA methylation during the proliferation
stage, while the differentiation stage was accompanied by
demethylation of specific gene regions, such as the enhancer
region, which can activate the expression of key myogenic genes
such as MyoD and Myf5 (Carrio et al., 2015; Brunk et al., 1996).

Histone modification is another important means of epigenetic
regulation (Zhao et al., 2007; Mikkelsen et al., 2007), which
dynamically adjusts the open state of chromatin and gene
expression activity through acetylation, methylation,
ubiquitination, and other modifications of histone tails (Zhao
and Shilatifard, 2019; Roma-Rodrigues et al., 2020). For example,
H3K27me3 and H3K4me3, as key epigenetic markers in muscle
development (Tan et al., 2021; Yang Y. et al., 2021), are respectively
related to gene silencing and activation; histone acetyltransferase
(HAT) (He et al., 2021; Yucel et al., 2019) and histone deacetylase
(HDAC) (Cohen et al., 2015) play a key role in regulating muscle
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stem cell activation and myofiber type determination. Research has
found that Taf1 regulates Pax3 protein through monoubiquitination
(Boutet et al., 2010), thereby affecting the differentiation of skeletal
muscle progenitor cells. The dynamic changes of these modifications

determine the fate of skeletal muscle cells and the final phenotype of
muscle development (Wang and Ibeagha-Awemu, 2021).

Non-coding RNAs, including miRNAs, lncRNAs, and
circRNAs, play a pivotal role in muscle growth and development

TABLE 3 New candidate genes related to muscle development in agricultural animals.

Species Gene Effect References

Pig CHAC1, RTN4IP1, SESN1, CHCHD3, CLNS1A, MYH2,
ACTC1, ACTG2, ACTN2

muscle fiber type Huang et al. (2022), Yu et al. (2024), Li et al. (2024b)

STMN1, ACVR1, GSK3B, IKBKB, ZBTB5, MYH13, ITGA myofiber number Huang et al. (2022), Nesvadbova and Borilova (2018)

EGR1, RHOB, ITGA7, SDC2, SDC4, AHCTF1, CEBPD, MAX,
ANGTPL4, Pbx1, Znf423, Mylk, Myo5a, Mylk4, Mylk2, SAV1,

CACNA1H, PRKCG, FGFR4, JAK3, SCN4A, ATP2A1,
CREB3L1, TGIF1, NFIC, CEBPZ, RASGRP1, TRPC1, CEBP,
TFAP4, NHLH1, SP1, PVALB, THRSP, ASNS, CARNS1,

G0S2, ACBD7, TMEM220

muscle development Xu et al. (2023), Cai et al. (2023a), Yi et al. (2024), Zhang et al.
(2019), Lan et al. (2024), Bai et al. (2023), Xiao et al. (2024), Hao

et al. (2024), Xu et al. (2022), Miao et al. (2021)

Cattle RYR1, DUSP13, MYH14 myofiber diameter Wang et al. (2024)

MAFF, ZNF384, KLF6, HMGA2, MSC, FOXP3, ESRRA,
BACH1, ATF4, Sp1, YY1, ANKRD2, ANKRD1, BTG2,

LMOD3

muscle development Cai et al. (2023b), Cheng et al. (2023), Li et al. (2023)

Pig Cattle
Sheep

PPARGC1A, EPAS1, CXCR4, APOA1 skeletal muscle
maturation and
hypertrophy

Mohammadinejad et al. (2022)

EGFR, VEGFA, CDH1, CAV1, CEBPB, KLF15, RELA,
ZNF143, ZBTB48, REST

muscle development Nejad et al. (2024)

Sheep Ythdf2, FOXO3, PRKAG3, MYOZ2, ANKRD1, PDE3A muscle development Deng et al. (2024), Deniskova et al. (2024), Li et al. (2024c)

Chicken ACTC1, MUSTN1, ITGB3, DNAJC27, ETV4, C7orf50,
FKBP1B, G3BP1, IGF2BP1, KCNH6, LOC416263, SCARA5,

SMIM5, TBL1XR1, TMEM182

muscle development Li et al. (2024a), Gu et al. (2024)

Duck TASP1 myofiber diameter Liu et al. (2021)

FIGURE 3
The network of candidate genes linked to muscle development in farm animals, specifically pigs (A) and cattle (B).
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in agricultural animals (Huang et al., 2021; Cesana et al., 2011;
Ouyang et al., 2018; Luo et al., 2013). The advent of high-throughput
sequencing technology has facilitated the identification of numerous
non-coding RNAs as key regulators of myofiber development.
MiRNAs, for example, inhibit the expression of target genes by
binding to their mRNA, thereby affecting the proliferation and
differentiation of myoblasts and satellite cells. A precise study has
revealed a strong correlation between the eQTL mutation site of
miR-4331-5p and pig muscle fiber types (Zhong et al., 2023).
LncRNAs not only influence gene expression by regulating
miRNA or directly acting on gene promoters but can also encode
functional short peptides to regulate muscle development. For
instance (Dou et al., 2020), MyHC-IIA/X-AS, a lncRNA
specifically expressed in skeletal muscle, regulates miR-130b
through a competitive endogenous RNA (ceRNA) mechanism to
maintain fast-twitch muscle fiber phenotypes. CircRNAs, owing to
their stability and abundance, occupy a significant position in
skeletal muscle (Yang Z. et al., 2021). For instance, circMEF2As
has been demonstrated in studies in chickens and mice to promote
satellite cell differentiation and skeletal muscle formation via the
ceRNAmechanism (Shen et al., 2023). Figure 4 provides a summary

of the key non-coding RNAs identified in recent years that regulate
muscle development in agricultural animals, offering new molecular
targets for livestock muscle trait improvement.

Intricate interactions frequently occur between various
epigenetic mechanisms. For instance, non-coding RNAs can
affect chromatin states by regulating DNA methylation enzymes
or histone modification enzymes, and the synergy between DNA
methylation and histone modification further refines the gene
expression regulatory network. During muscle development,
epigenetic mechanisms dynamically regulate gene expression to
adapt to the developmental needs of different stages. For
example, the synergy between DNA methylation and chromatin
accessibility (ATAC-seq) regulates the expression of genes related to
muscle hypertrophy and fiber transition in the growth process of Hu
sheep skeletal muscle (Cao et al., 2023). Furthermore, research
indicates that some epigenetic markers not only play a role in
individual development but may also be affected by
environmental factors such as parental diet or environmental
exposure, thereby affecting the muscle development of offspring
through transgenerational transmission mechanisms (González-
Recio et al., 2015).

FIGURE 4
Non-coding RNAs affecting growth and development of muscle fibers in agricultural animals.
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Advanced technologies have accelerated progress in this field.
Single-cell multi-omics enables high-resolution analysis of
epigenetic heterogeneity within muscle tissues, precisely tracing
developmental changes (Chen et al., 2018). Integrating
spatiotemporal omics data (Fomchenko et al., 2020) reveals
unique epigenetic characteristics of different muscle cell
populations, providing new optimization strategies.

The epigenetic insights outlined above offer significant practical
applications for agricultural animal breeding and production systems.
Epigenetic markers could serve as powerful selection tools in breeding
programs, enabling the identification of animals predisposed to superior
muscle development and meat quality traits before phenotypic
expression. For example, specific DNA methylation patterns in the
cofilin-1 gene could be used as early biomarkers for selecting animals
with desirable myofiber characteristics. Nutritional intervention
strategies targeting epigenetic mechanisms represent another
promising application. Feed formulations could be designed to
influence histone modifications and DNA methylation patterns
during critical developmental windows, enhancing muscle growth
efficiency and quality. Additionally, the identified non-coding RNAs
could provide targets for novel biotechnological interventions in
livestock improvement. RNA-based therapeutics or gene editing
approaches targeting key regulatory non-coding RNAs might enable
precise modulation of muscle fiber types to meet specific market
demands for meat texture and quality. For the meat processing
industry, understanding epigenetic profiles could improve processing
protocols by predicting meat quality characteristics and enabling
customized handling of carcasses based on their epigenetic
signatures. This would reduce waste and increase value across the
production chain.

In conclusion, epigenetic research is incrementally unveiling the
intricate regulatory mechanisms underlying muscle development in
agricultural animals, providing both theoretical frameworks and
practical applications for precision breeding and meat quality
optimization. As technology advances, this field will continue to
drive unprecedented progress in muscle development research in
agricultural animals.

7 Summary and future perspectives

The regulatory mechanisms of muscle fiber growth and
development in agricultural animals represent critical research
areas with significant implications for meat quality, yield, and
economic outcomes. This review has systematically summarized
heritability estimates of muscle fiber traits in agricultural animals,
their effects on meat quality and yield, and the molecular and
epigenetic regulatory mechanisms governing these traits.

Despite considerable progress in recent years, a substantial gap
persists between muscle fiber research in agricultural animals
compared to humans or model organisms. A notable deficiency
is the absence of comprehensive, publicly accessible biobanks for
agricultural animals, limiting analyses of relationships among
phenotypes, genotypes, and environmental factors. This hinders a
deeper understanding of the genetic principles underlying muscle
fiber development. Additionally, while CRISPR-Cas9 technology
has revolutionized gene function research, the development of
CRISPR interference systems (CRISPRi) and other high-

throughput screening technologies remains inadequate for
agricultural animals, complicating the efficient identification of
key regulatory genes and functional modules. Furthermore, cross-
species comparative research on species-specific gene regulatory
networks is lacking, necessitating unified databases and
standardized analysis frameworks to enhance data integration.

We propose the establishment of standardized biobanks for
agricultural animals as the most critical initiative for advancing
muscle fiber research. This priority recommendation addresses a
fundamental infrastructure gap and would catalyze progress across
multiple research fronts. Launch a multi-institutional pilot biobank,
focusing on economically important species such as pigs and chickens.
The project will standardize the collection of genomic, transcriptomic,
and phenotypic data from different breeds. Seek funding from
agricultural research institutions, industry partners (e.g., meat
production companies), and international partners (e.g., FAO
partners). Ultimately, it creates an open-access database modeled
after the human biobank, providing standardized data formats,
detailed metadata, and an intuitive interface for researchers worldwide.

In summary, the exploration of muscle fiber growth and
development regulation in agricultural animals is experiencing
significant advancement. Bridging gaps in data and technology
will catalyze the integration of emerging technologies and
interdisciplinary collaborations, offering new insights into
regulatory mechanisms. This will enhance meat production
efficiency while contributing to global food security and
sustainable development objectives.
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