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The growing availability of spatial transcriptomics data offers key resources for
annotating query datasets using reference datasets. However, batch effects,
unbalanced reference annotations, and tissue heterogeneity pose significant
challenges to alignment analysis. Here, we present stGuide, an attention-
based supervised graph learning model designed for cross-slice alignment
and efficient label transfer from reference to query datasets. stGuide leverages
supervised representations guided by reference annotations to map query slices
into a shared embedding space using an attention-based mechanism. It then
assigns spot-level labels by incorporating information from the nearest neighbors
in the learned representation. Using human dorsolateral prefrontal cortex and
breast cancer datasets, stGuide demonstrates its capabilities by (i) producing
category-guided, low-dimensional features with well-mixed slices; (ii)
transferring labels effectively across heterogeneous tissues; and (iii)
uncovering relationships between clusters. Comparisons with state-of-the-art
methods demonstrate that stGuide consistently outperforms existing
approaches, positioning it as a robust and versatile tool for spatial
transcriptomics analysis.

KEYWORDS

spatial transcriptomics, attention-based transfer learning, graph learning, batch effects,
label transfer

Introduction

Spatial transcriptomics (ST), which provides spatial molecular profiling, has been
widely employed to unravel the complex architecture and cellular mechanisms of tissues,
particularly in tumors (Arora et al., 2023; Zuo et al., 2022; Zuo et al., 2024). With the
expanding repository of research knowledge from ST data across various tissues (Marx,
2021; Wu et al., 2022; Andersson et al., 2021; Wu et al., 2023), a pressing computational
challenge emerges: can we utilize suitable reference datasets to annotate new query datasets,
thus reducing the need for manual intervention? Mapping a query dataset to a shared
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embedded reference atlas often faces challenges from batch effects
caused by variations in experimental protocols, and inter-tissue
heterogeneity.

Several computational approaches have been developed for label
transfer from large-scale single-cell RNA sequencing (scRNA-seq)
datasets (Lotfollahi et al., 2022; Kang et al., 2021; Hao et al., 2021;
Song et al., 2021; Deng et al., 2023). Yet, these approaches often
neglect the spatial context, which is crucial for a comprehensive
understanding of tissue heterogeneity (Brbić et al., 2022). Recently, a
few methods tailored for label transfer in ST data have emerged.
Notably, Seurat (Hao et al., 2021), which employs an anchor-based
strategy, can be adapted for ST data analysis but was primarily
designed for scRNA-seq data. Similarly, STELLAR (Brbić et al.,

2022) leverages a graph convolutional neural network to capture
spatial and molecular similarities in cell representations, using an
adaptive margin mechanism to regulate learning speed. However, it
faces challenges with class imbalance, leading to suboptimal
predictions for cell categories with few cells.

Transfer learning (TL) models have emerged as a powerful
framework for integrating multi-source scRNA-seq data (Hu
et al., 2020; Xu K. et al., 2024). Among these, attention
transfer, a key TL technique, facilitates the transfer of
knowledge from a reference dataset (teacher) to a query
dataset (student) in a low-dimensional representation, thereby
enhancing the query dataset’s performance (Zuo et al., 2022; Tan
et al., 2022; Tjandra et al., 2017; Gong et al., 2013). This approach

FIGURE 1
Overview of stGuide. (a) Given multiple ST datasets with three-layer profiles: gene expression (X) in both query and reference, spatial locations (S),
and annotations in the reference data (Y), stGuide annotates query spot labels based on the reference annotations. A composed graph is constructed
using k-nearest neighbors (KNN) for spatial locations and mutual nearest neighbors (MNN) for transcriptomics within and across slices. (b) stGuide
extracts reference spot representations (zr ) by aggregating information from spatially and transcriptomic similar spots, guided by spot annotations.
(c) stGuide learns shared representations for the reference (zr ′) and query (zq) datasets by aggregating messages from spatially and transcriptomic similar
spots, aligning zr ′ with the feature space of zr to enable label transfer. (d) The representations of query (zq) and reference (zr ) datasets are used for label
transfer and pseudo-time analysis.
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is particularly well-suited for addressing challenges in the
integrative analysis of ST data. In this context, cell
representations are learned through supervised models using
the reference data. Knowledge is then transferred to the query
data by aligning these supervised representations with the
unsupervised representation obtained from the joint analysis
of both reference and query datasets. This ensures robust
cross-dataset integration and accurate label transfer.

Here, we propose stGuide, a model designed for cross-slice
integration and alignment, enabling efficient and accurate label
transfer for query datasets. To address the challenges of
unbalanced categories in reference datasets, stGuide utilizes
supervised representations derived from reference annotations to
guide the unsupervised representations of both reference and query
datasets through attention transfer. Through this approach, stGuide
model (i) generates categories-guided, low-dimensional features
with evenly mixed slices; (ii) effectively transfers labels from
reference to query datasets across diverse heterogeneous tissues;
and (iii) infers the relationships between clusters. Through
comparative experiments, we show that stGuide outperforms
existing methods, providing its robustness and versatility in
spatial transcriptomics analysis.

Results

Overview of stGuide

stGuide introduces an attention-transfer-based supervised
graph representation learning model to map query dataset onto
reference dataset, enabling label transfer and establishing the
relations between different clusters (Figures 1a–d). To address
class unbalance, stGuide transfers knowledge from supervised
reference representations to unsupervised joint representations of
both reference and query slices, ensuring balanced and accurate label
propagation.

In the supervised learning module of the reference slices
(Figure 1b), stGuide learns representations by capturing spatial
and transcriptomics similarities both within and across slices,
supervised by known annotations. stGuide employs a graph
attention encoder (GAE) to transform X1 and A1 (the
composed graph G1) into zr, where zr represents batch-
corrected features that capture the biological variations inherent
in the annotations. The composed graph is constructed by
integrating spatial nearest neighbors within each slice and
feature-similar neighbors across slices. In the transferring
learning module (Figure 1c), stGuide learns cell representations
for both reference (zr′) and query slices (zq) by capturing spatial
and transcriptomics similarities within and across slices. The
distance between the supervised reference representations (zr)
and zr′ is minimized using attention transfer as an additional
loss. Subsequently, the labels of query slices are transferred by
identifying their k-nearest neighbors in the reference slices, based
on the similarity between zr′ and zq. Additionally, the diffusion
pseudotime (DPT) algorithm (Haghverdi et al., 2016) is applied to
infer pseudo-time relations between clusters within the learned
representations (Figure 1d).

stGuide facilitates label transfer across
slices, tissues, and different label quantities

To comprehensively assess the performance of stGuide, we
analyzed 12 human dorsolateral prefrontal cortex (DLPFC) slices
from three donors, obtained using the 10× Visium platform
(Maynard et al., 2021). Each slice was annotated with four or six
layers and white matter (WM), serving as the ground truth for
evaluating label transfer accuracy. We compared stGuide against
Seurat and STELLAR, using accuracy, adjusted rand index (ARI)
(Zuo and Chen, 2020), and normalized mutual information (NMI)
(Zuo et al., 2021) to evaluate the performance of label transfer
between the ground truth and transferred labels. We used four slices
151673-151676 from one donor to train stGuide, Seurat, and
STELLAR and then transferred labels to one slice from two
independent donors (using slices 151,509 and 151,672 as
examples), as well as to multiple slices (151,507-151510)
simultaneously.

In summary (Figures 2a–c), we found that (1) the labels
transferred by stGuide are consistently more accurate than those
transferred by Seurat and STELLAR, regardless of whether the
transfer was applied to a single slice, multiple slices, or datasets
with varying numbers of category labels. This indicates stGuide’s
superior generalizability and adaptability across different data
configurations; (2) the predicted labels by stGuide show a higher
level of concordance with ground truth, particularly in
distinguishing layers 2 and 4, as evidenced by achieving the
highest ARI and NMI scores; and (3) in the specific case of label
transfer on slice 151672, which was annotated with WM and layers
3-6, both stGuide and STELLAR are able to identify layer 2 within
the annotated region of layer 3. This outcome not only aligns with
our previous findings (Zuo et al., 2024) but also highlights stGuide’s
ability to discern subtle distinctions within complex tissue
structures, further validating its efficacy in label transfer tasks.

Overall, stGuide effectively transfers labels from the reference
tissue to the query tissue by transferring knowledge within the low-
dimensional representation space.

stGuide infers pseudo-time analysis

One interesting feature of stGuide is its ability to elucidate the
relationships between different clusters. To explore this, we applied
the DPT algorithm (Haghverdi et al., 2016) to infer pseudo-time
trajectories within the low-dimensional features generated by Seurat,
STELLAR, and stGuide. Upon comparison, we observed that the
pseudo-time inferred by stGuide across different layers, following
the progression WM → Layer6 → Layer5 → Layer4 → Layer3 →
Layer2 → Layer1, aligns more well with the trajectory of
chronological order (Zuo et al., 2022; Maynard et al., 2021) than
those inferred by Seurat and STELLAR. This consistency is evident
across various scenarios, including single-slice analyses, multiple-
slice integrations, and datasets with different numbers of category
labels (Figures 3a,b).

In summary, stGuide demonstrates robust performance in
capturing the developmental hierarchy of tissue layers, while also
maintaining temporal coherence within the spatial transcriptomic
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landscape, thereby ensuring accurate and consistent label transfer
across various datasets and conditions.

stGuide transfers annotation across
cancer slices

We further demonstrated the ability of stGuide to transfer
labels across two cancer slices, BAS1 and BAS2, derived from the
same heterogeneous breast cancer tissue and publicly available
from 10X Genomics. These slices were annotated into 13 tumor
regions (Zuo et al., 2024). Using BAS1 for training, we compared

the label transfer performance of Seurat, STELLAR, and
stGuide on BAS2.

By comparison, we found that (1) stGuide accurately predicts
labels for ~80% of spots across the 13 regions in BAS2,
outperforming Seurat (~70%) and STELLAR (~70%). Moreover,
stGuide successfully identifies all 13 regions, whereas STELLAR
misclassified regions such as c11, c12, and c13 as c8, as well as c6 and
c7 were misidentified as c5. Additionally, regions c1 and c2 were
misclassified as c3. Seurat performed worse, failing to detect regions
c1, c2, c6, c7, c9, and c11 (Figures 4a–d); and (2) stGuide
outperforms both Seurat and STELLAR, achieving an ARI of
0.70 and an NMI of 0.75. Specifically, its NMI exceeds that of

FIGURE 2
stGuide enables label transfer across slices, tissues, and varying numbers in the human DLPFC dataset. (a,b) Four slices (151673-151676) from one
donor, annotated with seven layers, were used to train Seurat, STELLAR, and stGuide. The trained models were then applied to transfer labels to slices
from independent donors, 151509 and 151672 (a), as well as multiple slices (151507-151510) (b). (c) Bar plot showing accuracy, ARI, and NMI for label
transfer by the three methods (Seurat, STELLAR, and stGuide) compared to the ground truth on slices from independent donors, 151509 and
151672 (a), as well as multiple slices (151507-151510) (b).
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STELLAR and Seurat by 0.02 and 0.16, respectively, while its ARI is
higher by 0.11 and 0.14. The poor performance of Seurat and
STELLAR in the breast cancer datasets is likely due to the
following: Seurat relies only on gene expression data without
integrating spatial context, limiting its ability to capture tumor
heterogeneity. STELLAR struggles with class imbalance, resulting
in suboptimal predictions for cell categories with fewer cells.

stGuide identifies novel cell states missed by
competing methods

To further clarify that stGuide can establish relationships
between tumor samples across heterogeneous patients, we applied
it to analyze two triple-negative breast cancer slices, CID44971 and
CID4465 26. The slices were annotated into five histological regions:
normal ductal, invasive cancer (IC), stromal and adipose,
lymphocyte aggregations, and ductal carcinoma in situ (DCIS)
(Figure 5a). Slice CID44971 was used to train Seurat, STELLAR,
and stGuide, and the labels from slice CID44971 were transferred to
slice CID4465 for comparison.

Through comparison, we observed that (i) the features learned
by Seurat and stGuide exhibited better mixing across slices
compared to STELLAR (Figure 5b); and (ii) Seurat misclassified
some spots in the IC region as DCIS, while STELLAR inaccurately
predicts the entire slice as IC. In contrast, stGuide successfully
identifies distinct regions, such as stromal and adipose, and even
uncovered regions unannotated in CID4465, including lymphocyte

aggregations, which were not identified in prior research (Wu et al.,
2021), (Figure 5c).

To verify these findings, we calculated the differential genes for
each region on slice CID44971 and examined their expression levels
on slice CID4465. The results showed that marker genes of the
normal ductal region (MUC1, SOX9, and KRT18), stromal and
adipose regions (CCDC80, ADIRF, and PDK4), lymphocyte
aggregations (CXCR4, CCL5, and CD3D), and IC region (MMP7,
SPP1, and TGFBI) were over-expressed in the corresponding regions
predicted by stGuide (Figure 5d). These findings highlighted
stGuide’s ability to accurately detect and delineate both
annotated and previously annotated regions across heterogeneous
tumor samples.

Discussion

stGuide is a graph-based transfer learning model designed for
label transfer and trajectory inference in ST, effectively addressing
challenges including batch effects, category imbalance, and inter-
tissue heterogeneity. Specifically, stGuide (1) leverages a shared
graph encoder to map reference dataset into a category-informed
embedding, while utilizing slice-specific decoders to reconstruct
graph and feature profiles, where the embedding is supervised by
the reference annotations; and (2) maps both query and reference
datasets into a shared embedding using a similar graph structure,
with slice-specific decoders for graph and feature reconstruction.
The reference embedding is learned through attention-guided

FIGURE 3
stGuide infers pseudo-time of different layers in the human dorsolateral prefrontal cortex. (a) Scatter plot of the two-dimensional UMAP extracted
from the representations by Seurat, STELLAR, and stGuide, on slices 151509 and 151672. (b) Scatter plot of the two-dimensional UMAP extracted from the
representations by Seurat, STELLAR, and stGuide, on multiple slices (151507-151510). For each method of (a,b), the colors of the left and right panels
indicate different layers and pseudo-time. Noted that the spatial adjacency and chronological order among these layers are WM→ Layer6→ Layer5
→ Layer4 → Layer3 → Layer2 → Layer1 (Zuo et al., 2022; Maynard et al., 2021).
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supervision from reference annotations. Through two-step training,
stGuide enables the generation of category-guided, low-dimensional
features with evenly mixed slices, effective label transfer across
heterogeneous tissues, and the identification of relationships
between clusters.

Benchmark comparisons on the human DLPFC dataset
revealed that stGuide consistently outperforms other methods
in label transfer accuracy, regardless of whether the transfer
involved a single slice, multiple slices, or datasets with varying
numbers of category labels. Additionally, the pseudo-time inferred

by DPT from stGuide’s representations aligned more closely with
known chronological trajectories, highlighting its ability to capture
biologically meaningful features. Evaluations on human breast
cancer samples demonstrated stGuide’s unique strengths in
cross-slice label transfer and uncovering niches in the query
dataset based on histological annotations (Wu et al., 2021).
Moreover, we further demonstrated the effectiveness of stGuide
on datasets with cellular and subcellular resolution, demonstrating
its adaptability across varying spatial scales. stGuide achieved
superior performance compared to existing methods, further

FIGURE 4
stGuide enables label transfer across heterogeneous slices in the human Luminal B breast cancer sample. (a) Spatial plot showing the 13 tumor
regions in the BAS1 and BAS2 slices. (b) UMAP embeddings of latent features generated by Seurat, STELLAR, and stGuide, with the top panels colored by
slices and bottom panels colored by tumor regions. (c) Spatial plots illustrating label transfer results from Seurat, STELLAR, and stGuide, compared against
manual annotations. (d) Bar plot displaying the accuracy, ARI, and NMI for label transfer achieved by the three methods (Seurat, STELLAR, and
stGuide) relative to the manual annotation.
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FIGURE 5
stGuide enables label transfer across human triple-negative breast cancer patients (CID44971 and CID4465). (a) H&E-stained plots showing the
annotations of five histological regions on slices CID44971 and CID4465, with each color representing one region. (b) UMAP embeddings generated by
Seurat, STELLAR, and stGuide. The top panel is colored by slice, while the bottompanel is colored by histological annotations. (d) Spatial clusters identified
by Seurat, STELLAR, and stGuide, with annotations provided for comparison. (d) Spatial distribution of gene expression levels for marker gene in
different regions: normal ductal region (MUC1, SOX9, and KRT18), stromal and adipose regions (CCDC80, ADIRF, and PDK4), lymphocyte aggregations
(CXCR4, CCL5, and CD3D), and IC region (MMP7, SPP1, and TGFBI).
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confirming its robustness across spatial resolutions
(Supplementary Figure S3).

In future studies, we aim to expand our work in two key
directions: (1) leveraging the wealth of cell-state information in
histological images (Zuo et al., 2022) and the rapid advancements in
foundational models for computational biology and pathology (Lu
et al., 2024; Xu H. et al., 2024; Cui et al., 2024), we will develop
sophisticated algorithms to seamlessly integrate histological images
into cross-slice spatial transcriptomics analysis. This integration will
be achieved by using deep learning models (such as convolutional
neural networks or vision Transformers) to extract local image
features corresponding to each spot, while employing attention
mechanisms (such as multi-head attention or graph attention
networks) to dynamically fuse image features with transcriptomic
features. The resulting joint representation will enhance the
resolution and interpretability of cell-state mapping, particularly
compensating for the limited spatial resolution of transcriptomic
data in complex tissues (e.g., tumors or brain tissues); (2) as diverse
datasets expand (Xu Z. et al., 2024; Zhang et al., 2021; Zhang et al.,
2024) and graph models advance (Mao et al., 2022), we will optimize
stGuide to efficiently handle large-scale datasets through three
approaches: improving the computational efficiency of graph
attention mechanisms, introducing distributed computing
frameworks, and developing incremental learning methods. These
enhancements will improve the tool’s generalizability and
adaptability across various biological and pathological contexts,
ultimately establishing stGuide as a core platform for spatial
transcriptomics analysis. This advancement will provide powerful
technical support for understanding complex biological systems and
advancing precision medicine research.

Methods

stGuide model

stGuide integrates multi-slice gene expression data
(X � (x1, . . . , xK+L), xi ∈ Rm×ni ), spatial location data
(S� (s1, . . . , sK+L), si ∈ Rni×2), and reference slices annotations
(Y � (y1, . . . , yK), yi � yi,1, . . . , yi,ni{ } ∈ Rni×1, yi,j ∈ 1, . . . ,Ka{ }) for
cross-slice alignment and label transfer using an attention-based
supervised graph model. Here, K and L are the number of reference
and query slices, andm, ni, andKa represent the common features, spots
in the ith slice, and categories in the ith slice, respectively. Specifically,
stGuide learns supervised representation from reference slices using
known annotations, maps query slices into the same embedding space
via an attention map, and predicts spot labels by leveraging nearest
neighbors in representation (Figures 1a–d).

Supervised representation learning from the
reference dataset

stGuide extracts spot features (zr ∈ Rd×n) from the reference
dataset by integrating spatial and transcriptomic information from
similar spots both within individual slices and across multiple slices,
guided by annotations, where d and n are dimension size and the
number of spots, respectively (Figure 1b). Specifically,

Construction of composed graph
We constructed a composed graph (G1 � (V1, E1)) to create

links between spots across multi-slices, utilizing gene expression and
spatial location data. Intra-slice edges were established by calculating
the Euclidean distance between spots, maintaining an average of five
nearest neighbors using the k-nearest neighbors. Inter-slice edges,
connecting spot pairs from different slices, were identified as mutual
nearest neighbors (MNN) based on feature similarity, with a default
of five nearest neighbors, employing the MNN method (Haghverdi
et al., 2018) (Figure 1a).

Encoding features by supervised graph
learning model

We learned supervised features zr through a shared GAE by
combining gene expression data of the reference dataset with an
adjacency matrix A1 (representing the composed graph G1). To
ensure accurate representation, we employed K slice-specific
BatchNorm decoders to reconstruct each slice’s gene expression
data and adjacency matrix. This process was guided by annotations
Y, ensuring that spots belonging to the same groups were jointly
embedded together, thereby enhancing the biological coherence of
the representations.

(i)Encoder: the specific encoder structure of GAE consists of
multiple stacked multi-head graph attention layers (GAT). Each
layer is defined as follows (Equations 1, 2):

hl+1i � ELU
1
Q
∑Q
q�1

∑
j∈Ni

aqijW
qhlj⎛⎝ ⎞⎠ (1)

aqij �
exp LeakyReLU aq( )T Wqhli

					Wqhlj[ ]( )( )
∑o∈Ni

exp LeakyReLU aq( )T Wqhli
				Wqhlo[ ]( )( ) (2)

where Q denotes the number of attention heads, with a default value
of 3, determined based on our experiment results (Supplementary
Figure S2). The multi-head attention mechanism enables model
performance by capturing stable and expressive spot representations
from both spatially and omics-similar neighbors, thereby improving
label transfer accuracy; Ni represents the neighboring nodes of the
spot i, while hlj indicates the input features of the node j in the lth
GAT layer; Wq is the linear transformation weight matrix for input
features in the qth attention head; and aqij refers to the normalized
attention coefficients computed by the qth attention head using
SoftMax activation. The encoder consists of two layers of GAT
layers, with the first- and second-layers having dimensions of
512 and 10, respectively;

(ii) Decoder of gene expression: the one-layer linear decoder
specific to the ith slice, along with BatchNorm, is used to
reconstruct ith gene expression data (Xi′) from the latent
feature zir (Chang et al., 2022) (Equations 3, 4):

X′
i � γi ×

hij − μi�����
σ2i + ϵ

√ + βi (3)

hij � Wzi
r + b (4)

where the dimension of hi· matches Xi, μi, and σ2i are the mean and
variance of spots in the ith slice, γi and βi handle slice-specific scaling
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and shifting parameters, and ϵ is a constant. The loss function is
summarized as follows (Equation 5):

LG
r � 1

n
∑n
i�1

Xi′ −Xi

				 				2 (5)

(iii) Decoder of adjacency matrix: an inner product between the
embedding zir is used to reconstruct the adjacency matrix
(A1′ � sigmoid(zirzirT)), and the corresponding loss
function is summarized as follows (Equation 6):

LA
r � 1

n × n
∑n
i�1
∑n
j�1

aij
r × log aij

r′( ) + 1 − aij
r( ) × log 1 − aij

r′( )( )
(6)

where aijr and aijr′ represent the elements in the ith row and jth
column of the adjacency matrices A1 and A1

′, respectively.

(iv) Classifier: To incorporate group information into low-
dimensional features, we extended the GAE model to
predict spot classes Y′ � softmax(Wzr), guided by the
annotation. The loss function is described as follows
(Equation 7):

Lc � 1
S
∑S
i�1

−∑Ka

i�1
yi log yi′( )⎛⎝ ⎞⎠ (7)

where S denotes the number of spots in the reference dataset, Ka

represents the number of classes, and yi and yi′ are the label vectors
for spot vi from the ground truth and predicted outputs, respectively.

In summary, the loss function of the supervised graph learning
module is defined as (Equation 8):

Lpre � LA
r + αLG

r + βLc (8)

where α and β are used to control the weight of each term, both set to
10, as this configuration yielded the best performance in our
evaluation experiments (Supplementary Figure S1).

Knowledge-guided transfer learning from
reference to query dataset

stGuide employs a shared graph encoder to learn spot features
for the query dataset (zq ∈ Rd×u) and the reference dataset
(zr′ ∈ Rd×n), ensuring zr′ is aligned with the supervised features
zr using an attention map as additional loss, thereby enabling label
transfer within the representation space, where u represents the
number of spots in the query dataset (Figure 1c). Specifically,

(i) Unsupervised graph modeling: We used the same structure
for the unsupervised graph encoder and decoder in the
supervised representation learning module to learn spot
features. This process involved integrating gene expression
data from both the reference and query datasets using an
adjacency matrix A2 (the composed graph G2). To
reconstruct each slice’s gene expression data and adjacency
matrix, we employed K + L slice-specific BatchNorm
decoders. As a result, the loss functions for reconstructing

gene expression and the adjacency matrix are consistent with
Formulas 5, 6, referred to as LG

q+r and LA
q+r, respectively.

(ii) Knowledge-guided transfer learning: To map zr′ into the
same feature space as zr, we introduced a penalty loss
function to minimize the difference between zr′ and zr for
the corresponding spots in the reference dataset (Equation 9):

LTL � 1
K
∑K
i�1

zi
r − zi

r′
				 				2 (9)

where K represents the number of slices in the reference dataset.
Overall, the loss function of the knowledge-guided transfer

learning module is summarized as (Equation 10):

Lq+r � LA
q+r + ηLG

q+r + θLTL (10)

where η and θ are used to control the weight of each term, both set to
10, as this configuration yielded the best performance in our
evaluation experiments (Supplementary Figure S1).

After model training, the learned features for the query (zq) and
reference datasets (zr′) are used for downstream analysis
(Figure 1d). For each query spot, stGuide computes the cosine
similarity between its embedding and all reference embeddings.
The label of the reference spot with the highest
similarity—indicating the closest spot in the latent space—is
assigned to the query spot. This approach ensures interpretable
and biologically meaningful label transfer based on the learned
embedding space (Figure 1d).

Datasets and preprocessing

In this study, we analyzed publicly available ST datasets,
including human brain, breast cancer, and mouse brain samples.
Specifically, (1) the human DLPFC dataset contains 12 slices from
three independent donors, each with four adjacent slices. Each slice
was manually annotated into four (or six layers) and white matter
(WM) to evaluate label prediction accuracy; (2) the human Luminal
B breast cancer dataset includes two slices (BAS1 and BAS2) from
the same tissue, containing 3,798 and 3,987 spots, respectively.
Pathologists annotated 13 tumor regions on each slice by
analyzing H&E images; (3) the human triple-negative breast
cancer (TNBC) dataset contains two slices (CID44971 and
CID4465) from different patients, with 1,162 and 1,211 spots,
respectively; (4) the mouse hypothalamus dataset includes two
slices (MERFISH_Data26 and MERFISH_Data27), containing
5,557 and 5,926 spots, respectively. Based on annotation
information, the dataset was divided into 8 regions; (5) the
mouse medial prefrontal cortex dataset includes two slices
(STARmap_31 and STARmap_32), with 1,049 and 1,053 spots,
respectively. Based on annotation information, the dataset was
divided into 4 regions (Li et al., 2022).

For each slice, we followed the standard scanpy workflow (Wolf
et al., 2018), including normalization and log transformation of raw
gene expression. Subsequently, we selected the top 5,000 highly
variable genes (HVGs) per slice. The intersection of HVGs across all
slices was considered as common genes, and their horizontal
concatenation across all spots from multiple slices formed the
input data X.
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Visualization

We employed the “tl.umap” function from the scanpy package
(Wolf et al., 2018) to map the shared low-dimensional features into a
two-dimensional UMAP space, visualized the spatial embeddings of
different spatial domains using the “pl.umap” function, and inferred
the pseudo-time through “tl.dpt” function. We also used the
“pl.spatial” function to visualize the clustering and gene
expression distribution at the spatial level for each slice.

Evaluation of label transfer

We evaluated label transfer performance using three metrics:
accuracy, adjusted rand index (Zuo and Chen, 2020), and
normalized mutual information (Zuo et al., 2021). Accuracy
reflects the proportion of correctly predicted spots in the query
dataset and is defined as follows (Equations 11, 12):

P i( ) � 1, y′
i � yi

0, y′
i ≠ yi

{ (11)

Accuracy � ∑n
1P i( )
n

(12)

where yi and y′
i represent the true and predicted label information

for each spot, respectively.
ARI measures pairwise consistency between predicted and true

labels, defined as follows (Equations 13, 14):

RI � TP + TN

TP + FP + TN + FN
(13)

ARI � RI − E RI[ ]
max RI( ) − E RI[ ] (14)

where TP represents pairs in the same cluster in both true and
predicted labels, TN denotes pairs in different clusters in both
labelings, FP indicates pairs that are split in true labels but
merged in predicted labels, FN refers to pairs that are merged in
true labels but split in predicted labels, and E[RI] is the expected
value of RI under random clustering.

NMI quantifies mutual dependence between the prediction and
true label based on information theory (Equation 15):

NMI � 2 · I Y, Y′( )
H Y( ) +H Y′( ) (15)

where I(Y, Y′) is the mutual information between true labels Y and
predicted labels Y′, and H(·) denotes entropy. The NMI metric
ranges from 0 to 1, with values closer to 1 indicating stronger
statistical dependence between predicted labels and true labels.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

YX: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Validation, Visualization,
Writing – original draft. HD: Writing – review and editing,
Data curation, Investigation, Resources, Supervision, Validation.
JF: Writing – review and editing, Investigation, Supervision,
Validation. KX: Writing – review and editing, Investigation,
Supervision, Validation. QW: Writing – review and editing,
Investigation, Supervision, Validation. PG: Writing – review
and editing, Investigation, Supervision, Validation. CZ:
Writing – review and editing, Formal Analysis, Funding
acquisition, Investigation, Methodology, Resources, Supervision,
Validation.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by the National Natural Science Foundation of China
(Nos.32300523 and 62132015), and Open Project of Shanghai
Collaborative Innovation Center of Endoscopy Fudan
University.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2025.1566675/
full#supplementary-material

Frontiers in Genetics frontiersin.org10

Xu et al. 10.3389/fgene.2025.1566675

https://www.frontiersin.org/articles/10.3389/fgene.2025.1566675/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2025.1566675/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1566675


References

Andersson, A., Larsson, L., Stenbeck, L., Salmén, F., Ehinger, A., Wu, S. Z., et al.
(2021). Spatial deconvolution of HER2-positive breast cancer delineates tumor-
associated cell type interactions. Nat. Commun. 12, 6012. doi:10.1038/s41467-021-
26271-2

Arora, R., Cao, C., Kumar, M., Sinha, S., Chanda, A., McNeil, R., et al. (2023). Spatial
transcriptomics reveals distinct and conserved tumor core and edge architectures that
predict survival and targeted therapy response. Nat. Commun. 14, 5029. doi:10.1038/
s41467-023-40271-4

Brbić, M., Cao, K., Hickey, J. W., Tan, Y., Snyder, M. P., Nolan, G. P., et al. (2022).
Annotation of spatially resolved single-cell data with STELLAR. Nat. Methods 19,
1411–1418. doi:10.1038/s41592-022-01651-8

Chang, W. G., You, T., Seo, S., Kwak, S., and Han, B. (2022). in 2019 IEEE/CVF
conference on computer vision and pattern recognition (CVPR), 7346–7354.

Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., Duan, N., et al. (2024). scGPT: toward
building a foundation model for single-cell multi-omics using generative AI. Nat.
Methods 21, 1470–1480. doi:10.1038/s41592-024-02201-0

Deng, T., Chen, S., Zhang, Y., Xu, Y., Feng, D., Wu, H., et al. (2023). A cofunctional
grouping-based approach for non-redundant feature gene selection in unannotated
single-cell RNA-seq analysis. Briefings Bioinforma. 24, bbad042. doi:10.1093/bib/
bbad042

Gong, Y., Jia, Y., Leung, T., Toshev, A., and Ioffe, S. J. a. e. (2013). Deep convolutional
ranking for multilabel image annotation. arXiv:1312.4894. Available online at: https://
ui.adsabs.harvard.edu/abs/2013arXiv1312.4894G.

Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F., and Theis, F. J. (2016). Diffusion
pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848. doi:10.
1038/nmeth.3971

Haghverdi, L., Lun, A. T. L., Morgan, M. D., and Marioni, J. C. (2018). Batch effects in
single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Nat. Biotechnol. 36, 421–427. doi:10.1038/nbt.4091

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., 3rd, Zheng, S., Butler, A., et al.
(2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.
doi:10.1016/j.cell.2021.04.048

Hu, J., Li, X., Hu, G., Lyu, Y., Susztak, K., and Li, M. (2020). Iterative transfer learning
with neural network for clustering and cell type classification in single-cell RNA-seq
analysis. Nat. Mach. Intell. 2, 607–618. doi:10.1038/s42256-020-00233-7

Kang, J. B., Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., et al. (2021).
Efficient and precise single-cell reference atlas mapping with Symphony.Nat. Commun.
12, 5890. doi:10.1038/s41467-021-25957-x

Li, B., Zhang, W., Guo, C., Xu, H., Li, L., Fang, M., et al. (2022). Benchmarking spatial
and single-cell transcriptomics integration methods for transcript distribution
prediction and cell type deconvolution. Nat. Methods 19, 662–670. doi:10.1038/
s41592-022-01480-9

Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M.,
Wagenstetter, M., et al. (2022). Mapping single-cell data to reference atlases by
transfer learning. Nat. Biotechnol. 40, 121–130. doi:10.1038/s41587-021-01001-7

Lu, M. Y., Chen, B., Williamson, D. F. K., Chen, R. J., Zhao, M., Chow, A. K., et al.
(2024). A multimodal generative AI copilot for human pathology. Nature 634, 466–473.
doi:10.1038/s41586-024-07618-3

Mao, H., et al. (2022). in Forty-first international conference on machine learning.

Marx, V. (2021). Method of the Year: spatially resolved transcriptomics. Nat. Methods
18, 9–14. doi:10.1038/s41592-020-01033-y

Maynard, K. R., Collado-Torres, L., Weber, L. M., Uytingco, C., Barry, B. K., Williams,
S. R., et al. (2021). Transcriptome-scale spatial gene expression in the human
dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436. doi:10.1038/s41593-020-
00787-0

Song, Q., Su, J., and Zhang, W. (2021). scGCN is a graph convolutional networks
algorithm for knowledge transfer in single cell omics. Nat. Commun. 12, 3826. doi:10.
1038/s41467-021-24172-y

Tan, C., Sun, F., Kong, T., Fang, B., and Zhang, W. (2022). Icassp 2019 - 2019 IEEE
international conference on acoustics, speech and signal processing (ICASSP), 1154–1158.

Tjandra, A., Sakti, S., and Nakamura, S. (2017). IEEE automatic speech recognition
and understanding workshop (ASRU), 309–315.

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15–5. doi:10.1186/s13059-017-1382-0

Wu, L., Yan, J., Bai, Y., Chen, F., Zou, X., Xu, J., et al. (2023). An invasive zone in
human liver cancer identified by Stereo-seq promotes hepatocyte–tumor cell crosstalk,
local immunosuppression and tumor progression. Cell Res. 33, 585–603. doi:10.1038/
s41422-023-00831-1

Wu, S. Z., Al-Eryani, G., Roden, D. L., Junankar, S., Harvey, K., Andersson, A., et al.
(2021). A single-cell and spatially resolved atlas of human breast cancers.Nat. Genet. 53,
1334–1347. doi:10.1038/s41588-021-00911-1

Wu, Y., Yang, S., Ma, J., Chen, Z., Song, G., Rao, D., et al. (2022). Spatiotemporal
immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer
Discov. 12, 134–153. doi:10.1158/2159-8290.CD-21-0316

Xu, H., Usuyama, N., Bagga, J., Zhang, S., Rao, R., Naumann, T., et al. (2024b). A
whole-slide foundation model for digital pathology from real-world data. Nature 630,
181–188. doi:10.1038/s41586-024-07441-w

Xu, K., Lu, Y., Hou, S., Liu, K., Du, Y., Huang, M., et al. (2024a). Detecting anomalous
anatomic regions in spatial transcriptomics with STANDS. Nat. Commun. 15, 8223.
doi:10.1038/s41467-024-52445-9

Xu, Z., Wang, W., Yang, T., Li, L., Ma, X., Chen, J., et al. (2024c). STOmicsDB: a
comprehensive database for spatial transcriptomics data sharing, analysis and
visualization. Nucleic Acids Res. 52, D1053–D1061. doi:10.1093/nar/gkad933

Zhang, Y., Zuo, C., Li, Y., Liu, L., Yang, B., Xia, J., et al. (2024). Single-cell
characterization of infiltrating T cells identifies novel targets for gallbladder cancer
immunotherapy. Cancer Lett. 586, 216675. doi:10.1016/j.canlet.2024.216675

Zhang, Y., Zuo, C., Liu, L., Hu, Y., Yang, B., Qiu, S., et al. (2021). Single-cell RNA-
sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB
pathway-mutated gallbladder cancer. J. Hepatology 75, 1128–1141. doi:10.1016/j.jhep.
2021.06.023

Zuo, C., and Chen, L. (2020). Deep-joint-learning analysis model of single cell
transcriptome and open chromatin accessibility data. Briefings Bioinforma. 22,
bbaa287. doi:10.1093/bib/bbaa287

Zuo, C., Dai, H., and Chen, L. (2021). Deep cross-omics cycle attention model for
joint analysis of single-cell multi-omics data. Bioinformatics 37, 4091–4099. doi:10.
1093/bioinformatics/btab403

Zuo, C., Xia, J., and Chen, L. (2024). Dissecting tumor microenvironment from
spatially resolved transcriptomics data by heterogeneous graph learning.Nat. Commun.
15, 5057. doi:10.1038/s41467-024-49171-7

Zuo, C., Zhang, Y., Cao, C., Feng, J., Jiao, M., and Chen, L. (2022). Elucidating tumor
heterogeneity from spatially resolved transcriptomics data by multi-view graph
collaborative learning. Nat. Commun. 13, 5962. doi:10.1038/s41467-022-33619-9

Frontiers in Genetics frontiersin.org11

Xu et al. 10.3389/fgene.2025.1566675

https://doi.org/10.1038/s41467-021-26271-2
https://doi.org/10.1038/s41467-021-26271-2
https://doi.org/10.1038/s41467-023-40271-4
https://doi.org/10.1038/s41467-023-40271-4
https://doi.org/10.1038/s41592-022-01651-8
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1093/bib/bbad042
https://doi.org/10.1093/bib/bbad042
https://ui.adsabs.harvard.edu/abs/2013arXiv1312.4894G
https://ui.adsabs.harvard.edu/abs/2013arXiv1312.4894G
https://doi.org/10.1038/nmeth.3971
https://doi.org/10.1038/nmeth.3971
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s42256-020-00233-7
https://doi.org/10.1038/s41467-021-25957-x
https://doi.org/10.1038/s41592-022-01480-9
https://doi.org/10.1038/s41592-022-01480-9
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41586-024-07618-3
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1038/s41593-020-00787-0
https://doi.org/10.1038/s41593-020-00787-0
https://doi.org/10.1038/s41467-021-24172-y
https://doi.org/10.1038/s41467-021-24172-y
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41422-023-00831-1
https://doi.org/10.1038/s41422-023-00831-1
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.1158/2159-8290.CD-21-0316
https://doi.org/10.1038/s41586-024-07441-w
https://doi.org/10.1038/s41467-024-52445-9
https://doi.org/10.1093/nar/gkad933
https://doi.org/10.1016/j.canlet.2024.216675
https://doi.org/10.1016/j.jhep.2021.06.023
https://doi.org/10.1016/j.jhep.2021.06.023
https://doi.org/10.1093/bib/bbaa287
https://doi.org/10.1093/bioinformatics/btab403
https://doi.org/10.1093/bioinformatics/btab403
https://doi.org/10.1038/s41467-024-49171-7
https://doi.org/10.1038/s41467-022-33619-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1566675

	stGuide advances label transfer in spatial transcriptomics through attention-based supervised graph representation learning
	Introduction
	Results
	Overview of stGuide
	stGuide facilitates label transfer across slices, tissues, and different label quantities
	stGuide infers pseudo-time analysis
	stGuide transfers annotation across cancer slices
	stGuide identifies novel cell states missed by competing methods

	Discussion
	Methods
	stGuide model
	Supervised representation learning from the reference dataset
	Construction of composed graph
	Encoding features by supervised graph learning model

	Knowledge-guided transfer learning from reference to query dataset
	Datasets and preprocessing
	Visualization
	Evaluation of label transfer

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


