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Background: Research has demonstrated that the homeostasis of mitochondria
and programmed cell death (PCD) are intimately linked to chronic obstructive
pulmonary disease (COPD). Consequently, identifying biomarkers of COPD from
mitochondria-related genes (MRGs) and programmed cell death-related genes
(PCD-RGs) is of paramount importance.

Methods: Differentially expressed genes (DEGs) from the GSE42057 dataset and
COPD-related genes (COPD-RGs) via weighted gene co-expression network
analysis (WGCNA) were intersected with MRGs and PCD-RGs to select
candidates. Machine learning identified biomarkers, validated across
GSE42057 and GSE94916 datasets. Pathway enrichment, immune infiltration,
and drug prediction analyses were performed.

Results: Eight candidate genes were derived from intersecting DEGs, COPD-RGs,
MRGs, and PCD-RGs. Five biomarkers (BCL2, CCR7, FAM162A, FOXO1, RPS3)
were identified, showing consistent dysregulation in COPD. These biomarkers
activated the “ribosome” pathway. CCR7 and FOXO1 correlated positively with
naïve B cells, while BCL2 negatively correlated with M0 macrophages.
BCL2 exhibited strong binding to dolastatin 10, beauvericin, and micellar
paclitaxel. RT-qPCR confirmed biomarker expression.

Conclusion: BCL2, CCR7, FAM162A, FOXO1, and RPS3 are biomarkers for COPD,
providing a new breakthrough point for the treatment of this disease.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic and frequently
progressive lung disorder that exhibits high morbidity and mortality rates (Lareau et al.,
2019). It is characterized by persistent airflow limitation and respiratory symptoms,
including dyspnea, cough, and sputum production. Despite being preventable and
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treatable, COPD poses a significant health, economic, and social
burden. According to the 2018 China Pulmonary Health Study,
there are nearly 100 million COPD patients in China. Despite the
ongoing introduction of combination therapy involving inhaled
corticosteroids for COPD treatment, the control rate and
mortality of the disease continue to increase significantly, and its
pathogenesis remains incompletely understood (Xu et al., 2023;
Baltazar-Garcia et al., 2024; De Miguel-Diez et al., 2024).

Mitochondria are well-established organelles that maintain
cellular bioenergetics by producing ATP. Although oxidative
phosphorylation may be their most important function,
mitochondria are also integral for the synthesis of metabolic
precursors, calcium regulation, the production of reactive oxygen
species, immune signaling, and apoptosis. Mitochondria-dependent
pathways may represent a promising therapeutic target for
alleviating human diseases (Harrington et al., 2023). Over the
past decade, accumulating experimental evidence has
demonstrated that mitochondrial dysfunction plays a pivotal role
in the pathogenesis of chronic lung diseases, such as COPD (Ryter
et al., 2018; Roque et al., 2020; Mora et al., 2017). However, the
specific mechanisms and detectable molecular targets of
mitochondrial dysfunction in COPD remain unclear. High-
throughput sequencing data can be utilized to construct and
validate clinical prediction models for COPD using
bioinformatics methods, offering a new reference for its clinical
diagnosis and treatment (Pokharel et al., 2024; Liu et al., 2024).

Programmed cell death (PCD) occurs as part of normal
physiologic processes, including organ development and
epithelial renewal. It also occurs in cells that cannot mitigate
stressors threatening tissue homeostasis (Bedoui et al., 2020;
Tower, 2015). Dysregulated PCD has been implicated in human
diseases (Sauler et al., 2019; Mizumura et al., 2014). Excessive PCD
results in tissue injury and destruction, while the dysregulateion of
PCD is associated with mutagenesis, impaired immunity, and
autoimmune disease (Camilli et al., 2021). The regulation of cell
death is particularly critical in the lung, an organ required to
maintain a delicate network of epithelial-endothelial interfaces for
effective gas exchange of CO2 for O2, all while being exposed to
environmental stressors such as pathogens and aerosolized toxins.
Multiple studies have demonstrated increased apoptosis in the
lungs of patients with COPD (Sauler et al., 2019). Numerous
studies have established that mitochondria play a pivotal role in
the process of apoptotic cell death. Numerous studies have
demonstrated that mitochondria play a pivotal role in apoptotic
cell death. This study aims to contribute to the clinical diagnosis
and treatment of COPD by identifying biomarkers associated with
mitochondrial dysfunction and programmed cell death in
patients with COPD.

In this study, we employed transcriptome data analysis,
Weighted Gene Co-expression Network Analysis (WGCNA),
machine learning, and other methodologies. A nomogram model,
based on these biomarkers, was constructed and validated to serve as
a predictive tool for COPD incidence. The exploration of biomarker-
based Gene Set Enrichment Analysis (GSEA) and GeneMANIA,
along with the construction of regulatory networks such as
competing endogenous RNA (ceRNA), holds significant potential
for further elucidating the pathogenesis of COPD.

2 Materials and methods

2.1 Data source

The GSE42057 (training dataset) and GSE94916 (validation
dataset) datasets were retrieved from the Gene Expression
Ontology database (GEO, http://www.ncbi.nlm.nih.gov/geo/)
(Song et al., 2024). The GSE42057 dataset (GPL570) contained
94 peripheral blood samples of chronic obstructive pulmonary
disease (COPD) patients and 42 peripheral blood samples from
healthy controls (controls) (Bahr et al., 2013; Bowler et al., 2015;
Cruickshank-Quinn et al., 2018; Bowler et al., 2013). Peripheral
blood samples from six COPD patients and six healthy controls
(controls) were screened in the GSE94916 dataset (GPL20844). In all
2,030 mitochondrial-related genes (MRGs) obtained from the
MitoCarta 3.0 database (https://www.broadinstitute.org/mito)
(Zhang L. et al., 2024). A total of 1,548 programmed cell death-
related genes (PCD-RGs) were retrieved from the literature (Qin
et al., 2023).

2.2 Selection of candidate genes

Based on the GSE42057 dataset, differentially expressed genes
(DEGs) in COPD and control were screened via the ‘limma’ (version
3.46.0) (Ritchie et al., 2015) under the screening criteria of p < 0.05
(Liu et al., 2022). At the same time, the GSE42057 dataset was
analyzed for weighted gene co-expression network analysis
(WGCNA) (Zhang and Horvath, 2005) with the aim of obtaining
key modules related to COPD. The steps to do this were to remove
outlier samples in the GSE42057 dataset through cluster analysis.
Next, the soft threshold (β) was determined by setting the scale-free
R2 to be greater than 0.85 and the average connectivity tended to be
0. Then, similarly expressed genes were incorporated into the same
gene modules by a dynamic tree-cutting method (minModuleSize =
30, mergeCutHeight = 0.4). Subsequently, the modules most
significantly associated with COPD were screened as key modules
based on the correlation coefficients (|cor| > 0.3, p < 0.05), and the
genes in them were recorded as COPD-related genes (COPD-RGs).
Ultimately, the intersection of DEGs, COPD-RGs, 2,030 MRGs, and
1,548 PCD-RGs was obtained and partially recorded as candidate
genes for COPD.

2.3 Biological function analysis of candidate
genes and construction of their protein-
protein interaction (PPI) networks

The candidate genes were subjected to Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis (p < 0.05) using the ‘clusterProfiler’ (version 4.4.4) (Yu et al.,
2012). Meanwhile, the interaction information of the candidate
genes at the protein level was obtained with the help of the
search tool for recurring instances of neighbouring genes
(STRING, https://string-db.org/) (Liu et al., 2021), and the PPI
network was constructed (low confidene = 0.15) (Garcia-Jimenez
et al., 2010).
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2.4 Identification of biomarkers for COPD

In order to obtain the characteristic genes of COPD, the
candidate genes were subjected to least absolute shrinkage and
selection operator (LASSO) analysis by the ‘glmnet’ (version
4.1–6) (Yang L. et al., 2022) based on the optimal coefficients
and lambda values. Meanwhile, Support Vector Machine
Recursive Feature Elimination (SVM-RFE) was used to determine
the best screening variables by eliminating the feature vectors
generated by SVM (Sanz et al., 2018). In addition, the Boruta
algorithm was used to calculate the characteristics of the
candidate genes, and the most important characteristic genes
were screened by sorting them according to their characteristics
(Zhou et al., 2023). Based on the above three machine learning
algorithms, the intersecting genes obtained from three machine
learning algorithms were deemed as the biomarkers for COPD.
Finally, based on the GSE42057 and GSE94916 datasets, the
expression levels of the biomarkers were detected and validated
between COPD and controls.

2.5 Construction of a nomogram model
for COPD

In order to evaluate the use of biomarkers for predicting the
probability of COPD, it was necessary to construct a nomogram
model based on biomarkers in the GSE42057 dataset. Furthermore,
calibration curves (Austin et al., 2020), decision curve analysis
(DCA) (Vickers and Holland, 2021), and clinical impact curve
(CIC) were used to demonstrate the validity of the nomogram
for the prediction of COPD patients.

2.6 Gene set enrichment analysis (GSEA) of
biomarkers

In the GSE42057 dataset, correlation coefficient between
biomarkers and other gene were calculated and ranked in
descending order. The biomarkers were then subjected to GSEA
(Duan et al., 2023) using the ‘clusterProfiler’. The reference gene set
was the background gene set ‘c2. cp.kegg_legacy.v2023.2.
Hs.symbols.gmt’ from the Molecular Signatures Database
(MSigDB) (Guo et al., 2023) (p < 0.05).

2.7 Construction of gene interaction
network and regulatory network

GeneMANIA (http://genemania.org/) was used to explore
interactions between biomarkers and other functionally similar
genes and to construct co-expression networks between them. In
order to investigate the regulatory mechanisms of biomarkers at the
molecular level, the miRnet database (http://mirdb.org) (Wong and
Wang, 2015) and ‘multiMiR’ (org = ‘hsa’, table = ‘validated’)
(version 1.16.0) (Hosseinpour et al., 2023) were used to predict
the upstream miRNAs corresponding to biomarkers, respectively.
And miRNAs were then obtained by taking the intersection of the
predictions from the above two results. After that, the upstream

lncRNAs (clipExpNum >5) of the miRNAs were predicted using the
Starbase database (https://starbase.sysu.edu.cn/) (Liu J. et al., 2023).
Moreover, circRNAs targeting miRNAs were also predicted using
the circbank database (http://www.circbank.cn/) (Su et al., 2023).
Based on this, a lncRNA-miRNA-mRNA-cirRNA regulatory
network was constructed using the ‘Cytoscape’ (version 3.8.2)
(Shannon et al., 2003).

2.8 Immune infiltration analysis

The relative proportions of 22 immune cells per sample in the
COPD and controls of the GSE42057 dataset were calculated by the
Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) algorithm (Tao et al., 2023). Then, the
differences between COPD and controls of these immune cells were
compared by Wilcoxon’s test (p < 0.05). Next, Spearman’s
correlation analysis was used to examine the relationship between
significantly differentially immune cells and biomarkers (|cor| > 0.3,
p < 0.05) (Yang F. et al., 2022).

2.9 Association of biomarkers with COPD
and potential drug prediction

Furthermore, inference score between biomarkers and COPD
were evaluated in the comparative toxicogenomics database (CTD,
http://ctdbase.org) (Davis et al., 2023) with the aim of exploring
the correlation between biomarkers and COPD. Meanwhile, the
Drug-Gene Interaction database (DGIdb, http://dgidb.org/)
(Zhang Y. et al., 2024) online database was used to predict the
targeted drugs associated with the biomarkers, and the targeting
relationships between the biomarkers and drugs were
demonstrated using ‘Cytoscape’. More investigation into their
molecular docking was required to comprehend the molecular
interactions between drugs and biomarkers. First, the PDB files of
biomarkers were downloaded from Universal Protein (UniProt,
https://beta.uniprot.org) (Ostberg et al., 2024). Then, the 2D
structure of the drug was converted into a 3D structure using
the ‘pybel’ (version 3.0) (O’Boyle et al., 2008). And it was also
possible to download the 3D structure of the drug from the
PubChem (https://pubchem.ncbi.nlm.nih.gov/) (Huang et al.,
2024). Next, they were prepared and pre-processed for drug
and biomarker protein structures using ‘AutoDock’ (version 1.5.
6) (Zhang et al., 2022). Immediately after that, they were
molecularly docked using ‘AutoDock Vina’ (version 1.2.3)
(Zhang J. C. et al., 2024). Finally, the results of molecular
docking were visualized with the help of ‘Pymol’ (version 2.2.0)
(Lv et al., 2024).

2.10 Expression analysis of biomarkers

For validating the expression of biomarkers, reverse
transcription quantitative polymerase chain reaction (RT-qPCR)
was employed on 10 COPD and 10 control PBMC samples in Shanxi
Provincial People’s Hospital, China. This study was approved by the
Medical Ethics Committee of Shanxi Provincial People’s Hospital
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FIGURE 1
Eight candidate genes were obtained (A) In the dataset GSE42057, a volcano plot of the differences in sequencing data of peripheral blood from
healthy donors and COPD patients. (B) Heat map display of genes with significant differences in the dataset GSE42057. (C) Cluster analysis of all samples
in the dataset, presenting the outlier sample GSM1031656. In theWGCNA analysis, R2 value screening (D) and genemodule classification (E). (F)Heatmap
of the gene module. (G) Differential analysis and the intersection Venn diagram of COPD-related gene modules.
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FIGURE 2
Exploration of potential biological functions and signaling pathways of candidate genes (A) A display diagram of the significance pathways in GO
enrichment analysis. (B) A display diagram of the significance pathways of KEGG enrichment analysis. (C) The protein-protein interaction map of the
genes we screened.
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(No. 487). All patients had signed an informed consent form. The
amplification conditions for RT-qPCR were 40 cycles with 1 min at
95°C, 20 s at 95°C, 20 s at 55°C, and 30 s at 72°C. The qPCR primers
were listed in Supplementary Table S1 with GAPDH as reference
gene. The relative expression levels of biomarkers were calculated
using the 2-△△CT method.

2.11 Statistical analysis

The R programming language (version 4.2.2) was used for all
analyses, and the Wilcoxon’s test was employed to evaluate the data
from various groups. A p-value of less than 0.05 was deemed to be
statistically significant, unless otherwise noted.

3 Results

3.1 A total of eight candidate genes
were obtained

The expression of 480 DEGs was upregulated, and 111 DEGs
were downregulated out of 1,591 DEGs obtained in the
GSE42057 dataset. The distribution of these DEGs was visualised
by volcano and heatmap (Figures 1A, B). Cluster analysis of all
samples in the GSE42057 dataset showed that the GSE42057 dataset
could continue to be used for subsequent analyses after removing the
outlier sample GSM1031656 (Figure 1C). When R2 reaches 0.85 and
the average connectivity tends to zero, β was 7 (Figure 1D). Then, a
total of 16 co-expressed gene modules with different colors were
screened (Figure 1E). Among them, the MEmagenta module with
the most significant correlation with the COPD was served as a key
module (cor = 0.31, p < 0.05), and it contained 247 COPD-RGs
(Figure 1F). Based on the above results, the intersections of
1,591 DEGs, 247 COPD-RGs, 2,030 MRGs, and 1,548 PCD-RGs
were taken to obtain a total of eight candidate genes (BAG3, BCL2,
CCR7, FAM162A, FOXO1, RPS3, SLC39A8, and
HINT1) (Figure 1G).

3.2 Exploration of potential biological
functions and signalling pathways of
candidate genes

GO results showed that the candidate genes were annotated for
552 biological processes (BPs), 15 cellular components (CCs), and
45 molecular functions (MFs). The BPs in which candidate genes
significantly enriched contained ‘response to oxidative stress”,
“response to reactive oxygen species”,” regulation of stress-
activated. MAPK cascade’, and ‘regulation of mitochondrion
organization’ and so on (p = 0.005). The CC items which were
involved by candidate genes comprising ‘pore complex’, ‘chaperone
complex’, and ‘aggresome’ and so on (p < 0.02). In regard to MFs,
candidate genes were mainly involved in the ‘heat shock protein
binding’, ‘protein phosphatase binding’, ‘protein phosphatase 2 A
binding’, and ‘iron ion transmembrane transporter activity’ and so
on (p = 0.005) (Figure 2A). The signaling pathways where KEGG
results showed significant enrichment of candidate genes were

‘prostate cancer’, ‘pathways in cancer’, ‘amyotrophic lateral
sclerosis (ALS)’, and ‘colorectal cancer’ (p < 0.05) (Figure 2B).
Protein interactions were demonstrated in the PPI network with
eight protein nodes and eight edges. Among them, the protein level
interactions between FOXO1 and BAG3, BCL2 and CCR7 were
closer (Figure 2C).

3.3 BCL2, CCR7, FAM162A, FOXO1, and
RPS3 identified as biomarkers of COPD

BAG3, BCL2, CCR7, FAM162A, FOXO1, and RPS3 were
selected as characteristic genes when the minimum value of
lambda was 0.03 in the LASSO analysis (Figures 3A, B).
Meanwhile, the SVM-RFE algorithm identified the five most
important characteristic genes (RPS3, FOXO1, CCR7,
FAM162A, and BCL2) (Figure 3C). The Boruta algorithm
filtered out six characteristic genes (BCL2, CCR7, FAM162A,
FOXO1, RPS3, and HINT1) (Figure 3D). Immediately after, the
intersection of results from LASSO, SVM-RFE and Boruta
algorithms yielded BCL2, CCR7, FAM162A, FOXO1, and
RPS3 as biomarkers for COPD (Figure 3E). Additionally,
these five biomarkers were significantly downregulated in
COPD based on the GSE94916 dataset. And their expression
trends were consistent with the GSE42057 dataset
(Figures 3F,G).

3.4 The nomogram model was capable of
predicting the incidence of COPD

The nomogram model was constructed based on BCL2, CCR7,
FAM162A, FOXO1, and RPS3, which was effective in predicting the
incidence of COPD patients (Figure 4A). The results of the
calibration curve showed that the predicted with actual
probabilities of the model was closed to Y = X, which indicated a
good calibration of the model (Figure 4B). And the DCA results
showed that the net benefit of the model was higher than that of the
biomarkers, which further proved that the model has a good
prospect for clinical application (Figure 4C). The clinical validity
of the model was further demonstrated by the CIC results which
showed that the number of high-risk individuals and the number of
true positives were consistent when the threshold probability
exceeds 60% (Figure 4D).

3.5 Functional annotation of five biomarkers

GSEA results showed that the signaling pathways co-enriched
by these five biomarkers were ‘Ribosome’, ‘Lysosome’, ‘Leishmania
Infection’, ‘Endocytosis’, and ‘Epithelial Cell Signaling In’ and so
on. Among them, BCL2 enriched ‘Ribosome’ and ‘Rna
Degradation’ were significantly upregulated and other signaling
pathways were significantly downregulated (Figure 5A). Only
‘Ribosome’ of the signaling pathways enriched in CCR7 was
significantly upregulated (Figure 5B). Similarly, Ribosome’ was
significantly upregulated in FAM162A, FOXO1, and RPS3
(Figures 5C–E).
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FIGURE 3
BCL2, CCR7, FAM162A, FOXO1, and RPS3 identified as biomarkers of COPD (A) Cross-validation curve of LASSO regression. The X-axis represents
the logarithm of the penalty coefficient, log Λ, and the Y-axis represents the likelihood deviation. The smaller the Y-axis, the better the fitting effect of the
equation. (B) LASSO regression coefficient path diagram. We included seven variables. That is, each curve represents the change trajectory of each
independent variable coefficient. The vertical coordinate is the value of the coefficient, and the lower horizontal coordinate is log(λ). (C) The error
rate curve based on the 5-fold cross-validation of the SVM-RFE algorithm. (D) A box plot in which the Z-Scores calculated by the machine learning
Feature Selection algorithmBoruta are sorted in the order of the original variables. (E) The intersection Venn diagram of three analytical methods. The five
genes of the intersection results were differentially expressed in healthy individuals and COPD patients in the GSE94916 dataset (F) and the GSE42057
dataset (G).
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3.6 Functional associations of biomarkers
and their potential molecular regulation

The GeneMANIA results showed that there were various
relationships between biomarkers and other genes such as co-
expression, the same location, physical interactions, genetic
interactions, sharing protein structural domains, or participating
in the same pathway. Among the biological functions shared by

these five biomarkers were ‘positive regulation of mitochondrion
organization’, ‘establishment of protein localization to
mitochondrial membrane’, and ‘protein insertion into
mitochondrial membrane’. The same biological functions and
roles were also observed between BCL2 and BCL2L11, SFN,
BMF, BBC3, BID, BAD, YWHAZ, YWHAG, and BAX,
respectively (Figure 6A). Furthermore, the results from miRnet
and multiMiR prediction were intersected and a total of

FIGURE 4
The nomogram model was capable of predicted the incidence of COPD (A) The nomogram model was constructed based on BCL2, CCR7,
FAM162A, FOX01 and RPS3. (B) The calibration curves for the nomogram. The x-axis represents the nomogram-predicted probability and y-axis
represents the actual probability of invasive adenocarcinoma. (C) Decision curve analysis (DCA) evaluating the clinical utility of predictive models. The
decision curve illustrates the net benefit across a range of threshold probabilities for model. The x-axis represents the threshold probability—the risk
level at which a patient would opt for intervention. The y-axis shows the net benefit, calculated by weighting the true positives against false positives. (D)
Clinical impact curve (CIC) of the predictive model. The clinical impact curve shows the number of individuals classified as high risk by the prediction
model at each threshold probability (red curve), and among them, the number of true positives (blue curve).
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FIGURE 5
Function of BCL2, CCR7, FAM162A, FOXO1, and RPS3 In the dataset GSE42057, we analyzed the top ten pathway maps based on the differences of
the screened genes BCL2 (A), CCR7 (B), FAM162A (C), FOXO1 (D), and RPS3 (E) through GSEA analysis.
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10 miRNAs were obtained. Subsequently, a total of 151 target
lncRNAs and 180 target circRNAs were predicted based on the
10 miRNAs, respectively. Based on this, a ceRNA regulatory
network for COPD was constructed (Figure 6B). Among them,
the miRNAs shared by these five biomarkers were hsa-let-7a-2-3p,
hsa-let-7c-3p, hsa-let-7i-5p, hsa-let-7f-5p, hsa-let-7a-5p, hsa-let-7g-

3p, hsa-let-7e-5p, hsa-let-7c-5p, hsa-let-7g-5p, and hsa-let-7b-
5p. Of these, hsa-let-7e-5p predicted the most lncRNAs and RNAs.

3.7 M0 macrophages, neutrophils and naive
B cells were significantly different in COPD
and controls

The proportion of immune cell distribution was different for
individual samples in the GSE42057 dataset (Figure 7A). Among
them, M0 macrophages and neutrophils were significantly
upregulated in COPD, while naive B cells were significantly
downregulated in COPD (Figure 7B). Further correlation results
showed that CCR7 and FOXO1 were significantly positively
correlated with naive B cells, whereas BCL2 was significantly
negatively correlated with M0 macrophages (Figure 7C).

3.8 Standard binding capacity between the
biomarkers and drugs

Among the results of the inference scores between biomarkers
and COPD, BCL2, CCR7, and FOXO1 showed the strongest
association with COPD (Figure 8A). In addition, the drug
prediction results showed that the biomarkers predicted a total of
86 drugs for COPD treatment (Figure 8B). Among them, RPS3 had
the strongest binding to ataluren (affinity = −6.5), and
cycloheximide (affinity = −6.4), respectively. FOXO1 only binds
most strongly to epirubicin (affinity = −7.5). In contrast,
BCL2 showed strongest bonding capability to dolastatin 10
(affinity = −11.5), beauvericin (affinity = −8.5), and micellar
paclitaxel (affinity = −11.5) (Table 1). In addition, the 3D map
between biomarkers and drugs visualized the binding sites between
them (Supplementary Figure S1).

3.9 All biomarkers were significantly
downregulated in COPD

By RT-qPCR, five biomarkers, BCL2, CCR7, FAM162A,
FOXO1, and RPS3, were notably downregulated in COPD and
expression trends were consistent with GSE94916 and
GSE42057 datasets (Figure 9).

4 Discussion

Chronic Obstructive Pulmonary Disease (COPD) is a condition
characterized by chronic inflammation, leading to irreversible
airway remodeling and disruption of airspace. This results in
chronic bronchitis and emphysema. COPD is projected to
become the third leading cause of death worldwide by 2030, yet
effective treatments remain elusive (Mathers and Loncar, 2006;
Racanelli and Choi, 2021). Smoking exposure is a major risk
factor for COPD development, with subsequent imbalances in
oxidative stress, inflammation, and growth factor signaling
contributing to dysregulation and/or death of epithelial,
endothelial, and immune cell compartments in the lung

FIGURE 6
Functional associations of biomarkers and their potential
molecular regulation (A) Gene interaction networks of the five
candidate genes generated by GeneMANIA. The interaction network
illustrates the functional associations among the five input genes
and their related genes, just as predicted by GeneMANIA. Nodes
represent genes, and the colored lines (edges) indicate different types
of predicted interactions, including co-expression, physical
interactions, co-localization, and shared protein domains. (B)
Construction of the ceRNA network based on miRNet and multiMiR
prediction results. The ceRNA (competing endogenous RNA) network
was constructed using five candidate mRNAs and their associated
miRNAs predicted by miRNet and multiMiR databases.

Frontiers in Genetics frontiersin.org10

Yang et al. 10.3389/fgene.2025.1567173

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1567173


FIGURE 7
M0 macrophages, neutrophils and naive B cells were significantly different in COPD and controls (A) Heatmap of immune cell proportions in
peripheral blood samples from COPD patients and healthy controls estimated by CIBERSORT. The heatmap displays the relative proportions of 22
immune cell types inferred by the CIBERSORT algorithm in each sample. Columns represent individual peripheral blood samples from the COPD group
and normal control group, while rows indicate distinct immune cell subtypes. (B) Bar plot of differential immune cell proportions between COPD
patients and healthy controls based on CIBERSORT analysis. Each bar represents the mean proportion of a specific immune cell subtype in each group,
with error bars indicating standard error of the mean (SEM). Asterisks denote statistically significant differences between groups (*P < 0.05, **P < 0.01,
***P < 0.001), determined by theWilcoxon rank-sum test. (C)Correlation heatmap between five candidate genes and immune cell proportions estimated

(Continued )
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(Christenson et al., 2022). Programmed Cell Death (PCD) pathways
are genetically encoded programs that maintain tissue homeostasis
following cellular stress or injury. However, PCD can also represent
an abnormal response in the pathogenesis of tissue damage, leading
to harmful consequences in human diseases (Ashkenazi and
Salvesen, 2014). Apoptosis, a typical form of PCD, involves
caspase activation associated with chromatin condensation, cell
shrinkage, DNA fragmentation, and eventual mitochondrial
dysfunction. This study aims to identify potential and significant
disease targets and biomarkers of COPD by investigating its classic
pathogenesis and constructing a nomogram model based on these
biomarkers for verification and further exploration of COPD
pathogenesis.

In this study, five molecules—BCL2, CCR7, FAM162A, FOXO1,
and RPS3—associated with the development of COPD were found
to be involved in apoptosis and mitochondrial function. Their
expression levels were significantly lower in epithelial sequencing
data from COPD patients compared to the control group,
demonstrating consistency. The B-cell lymphoma-2 gene (BCL2),
the first member of the BCL2 family and a key target in apoptosis
research, plays a dominant role in endogenous apoptosis and is
essential for maintaining the balance between cell survival and cell
death (Liu P. et al., 2023). Previous studies have clarified that
Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue
of COPD patients (Siganaki et al., 2010). RPS3 encodes a ribosomal
protein belonging to the S3P family, which has an extraribosomal
role as an endonuclease involved in repairing UV-induced DNA
damage (Wan and Lenardo, 2010). Recent research has revealed that
this gene interacts with the NF-κB p65 subunit, enhancing its DNA-
binding activity and thereby contributing to the inflammation
observed in COPD (Dong et al., 2018). FAM162A, located in the
cytosol and mitochondria, is involved in several processes, including
the activation of cysteine-type endopeptidase activity, which plays a
role in cell apoptosis, response to hypoxia, and the release of
cytochrome c from mitochondria (Schuhmann et al., 2024).
FOXO1, or forkhead box O1, is a transcription factor expressed
in various cell types. FOXO1 regulates cell proliferation, apoptosis,
metabolism, stress, and other cellular activities by responding to
internal and external signals, such as the activation of the PI3K/AKT
signaling pathway (Xin et al., 2018). The protein encoded by the
CCR7 gene activates CC chemokine receptors and participates in
multiple processes, including the positive regulation of immune
responses and leukocyte chemotaxis (Salem et al., 2021). Studies
have shown that the expression level of CCR7 is downregulated
during cuproptosis, suggesting that cuproptosis may be an
important factor in altering CCR7 expression (Korbecki et al.,
2020). Moreover, some articles have shown that CCR7 is low in
COPD and can be used as a prognostic factor (Pan et al., 2023). PRD
has long been implicated in lung remodeling and tissue destruction
in COPD, particularly in emphysema. All the molecules mentioned
inhibit PRD and mitochondrial dysfunction and are significantly

underexpressed in COPD pathogenesis, indicating a disorder in the
orderly PRD of epithelial cells.

The GSEA analysis of five biomarkers revealed that the co-
enriched signaling pathways are “Ribosome,” “Lysosome,”
“Endocytosis,” and “Epithelial Cell Signaling In.” These
pathways all demonstrate processes closely related to the
development of COPD. The “Ribosome” pathway has been
associated with programmed cell death in several recent studies.
Research indicates that ribosome stasis can trigger PRD (Tong
et al., 2022). In response to DNA damage, specific genes inhibit the
ribosome’s protein synthesis function, leading to ribosome stasis.
This stagnation further initiates an apoptosis mechanism
independent of the tumor protein p53 (Boon et al., 2024). The
“Lysosome” signaling pathway has also been implicated in PRD
across multiple studies. Apoptosis signaling pathways can be
categorized into exogenous pathways (death receptor pathway)
and endogenous pathways (mitochondrial pathway) (Tong et al.,
2022). Both pathways converge at the downstream effector
Caspase, which directly causes the degradation of vital proteins
and activates nuclease during the execution phase of apoptosis,
ultimately leading to cell death. Notably, the lysosomal pathway
can induce apoptosis independently of the Caspase pathway under
certain conditions.

The aberrant immune microenvironment in COPD patients is a
significant etiological factor. Dysfunction of the adaptive immune
system serves as a critical physiological basis for recurrent infections
throughout the disease progression. Smoking and exposure to
respiratory pathogens result in inflammatory cell infiltration,
characterized by an increase in neutrophils and macrophages but
a decrease in lymphocytes. Additionally, B cells exhibit impaired
immunoglobulin secretion, leading to compromised adaptive
immune function (Kheradmand et al., 2023; Hogg and Timens,
2009; Polverino, 2022). Our analysis revealed that the expression of
BCL2, CCR7, FOXO1, and RPS3 is positively correlated with B-cell
infiltration and negatively correlated with the M0 phase of
macrophages and neutrophils. This finding suggests a
relationship between these genes and the immune
microenvironment of COPD, though the underlying mechanisms
require further investigation.

Circular RNAs (circRNAs) are a class of non-coding RNAs that
are widely present in eukaryotes and exhibit high stability and
conservation due to their unique covalently closed circular
structures (Duan et al., 2020). Previous studies have
demonstrated that circRNAs play roles in the onset and
progression of COPD through various mechanisms. Zhang Jun
et al. employed gene ontology enrichment analysis, revealing that
circRNAs may influence COPD development primarily by affecting
cellular processes and molecular binding (Demedts et al., 2006).
Additionally, circRNAs may regulate pathways such as non-
homologous end joining, iron death, and FoxO signaling, thereby
contributing to COPD pathogenesis (Kosmider et al., 2019; Yoshida

FIGURE 7 (Continued)

by CIBERSORT. The heatmap illustrates the correlations between the expression levels of five selected genes and the relative abundances of
immune cell types inferred by the CIBERSORT algorithm. Each dot represents a gene–cell type pair. The color and numeric value indicate the strength
and direction of the correlation (Spearman’s r), while the dot size reflects statistical significance, represented as -log10(P value). Larger dots denote more
statistically significant associations.
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FIGURE 8
Standard binding capacity between the biomarkers and drugs (A) Bar plot of inferred association scores between five candidate genes and COPD.
The bar chart illustrates the inference scores of five candidate genes in relation to COPD. The inference score on the x-axis reflects the strength of the
predicted association, as derived from integrated databases or computational inference models. The y-axis lists the five candidate genes. (B) Drug–gene
interaction network for three candidate genes based on the DGIdb database. The network illustrates predicted or known interactions between three
candidate genes and their corresponding drugs, as identified through the Drug–Gene Interaction Database (DGIdb).
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et al., 2019). Duan et al. constructed networks including the circRNA
target pathway, circRNA-miRNA-mRNA (ceRNA network), and
functional ceRNA regulatory modules using microarray analysis,
real-time quantitative PCR, and functional assays. They identified
hsa-circRNA-0008672 as involved in NOD-like receptor signaling

pathways, natural killer cell-mediated cytotoxicity, and Th17 cell
differentiation, suggesting that circRNAs might impact the immune
balance and contribute to COPD development (Duan et al., 2020).
As a possible downstream of the biomarkers we identified, further
investigation may be needed.

TABLE 1 Molecular docking results

Gene Drug COMPOUND
CID

Molecular docking binding energy (Kcal/mol)

RPS3(PDBID:1WH9) EXALUREN 71461382 -4.22

RPS3(PDBID:1WH9) ATALUREN 11219835 -6.5

RPS3(PDBID:1WH9) CYCLOHEXIMIDE 6197 -6.4

FOXO1(PDBID:8A65) EPIRUBICIN 41867 -7.5

FOXO1(PDBID:8A65) CYCLOPHOSPHAMIDE ANHYDROUS 2907 -4.1

FOXO1(PDBID:8A65) FLUOROURACIL 3385 -4.2

BCL2(PDBID:2W3L) OBLIMERSEN 118984457 15.71

BCL2(PDBID:2W3L) DOLASTATIN 10 9810929 -11.5

BCL2(PDBID:2W3L) BEAUVERICIN 3007984 -8.5

BCL2(PDBID:2W3L) MICELLAR PACLITAXEL 49881022 -11.5

FIGURE 9
BCL2, CCR7, FAM162A, FOXO1, and RPS3, were down-regulated in COPD by RT-PCRQuantitative PCR analysis of five candidate genes in peripheral
blood samples of patients with chronic obstructive pulmonary disease and healthy controls, including BCL2 (A), CCR7 (B), FAM162A (C), FOXO1 (D), and
RPS3 (E). The bar plot displays the relative expression levels of five candidate genes, normalized to GAPDH, in the control group and the COPD group. The
y-axis represents relative gene expression levels (compared to GAPDH), and the x-axis shows the two groups. Each bar represents the mean ±
standard error of the mean (SEM) for each gene. Statistical significance between groups was assessed using an unpaired two-tailed t-test. P values are
indicated as follows: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***).
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Our study identified BCL2, CCR7, FAM162A, FOXO1, and
RPS3 as potential biomarkers for COPD, offering new insights
into the treatment of this condition. However, at present, the
verification of these findings in the external queue is insufficient.
Only microarray-based sequencing data has been used, and the
verification process needs to be further expanded. We have also
comprehensively elucidated the mechanisms underlying these
biomarkers and their roles in COPD formation, clarifying the
pathogenesis of COPD through its enrichment pathways,
immune microenvironment, circular RNA interactions, and other
relevant aspects. This comprehensive understanding aims to
improve clinical detection and treatment strategies for COPD.

5 Conclusion

In summary, BCL2, CCR7, FAM162A, FOXO1, and RPS3 are
biomarkers for COPD, providing a new breakthrough point for the
treatment of this disease.
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