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Long noncoding RNAs (lncRNAs) regulate physiological processes via
interactions with macromolecules such as miRNAs, proteins, and genes,
forming disease-associated regulatory networks. However, predicting lncRNA-
disease associations remains challenging due to network complexity and isolated
entities. Here, we propose MVIGCN, a graph convolutional network (GCN)-based
method integrating multimodal data to predict these associations. Our
framework constructs a heterogeneous network combining disease
semantics, lncRNA similarity, and miRNA-lncRNA-disease interactions to
address isolation issues. By modeling topological features and multiscale
relationships through deep learning with attention mechanisms, MVIGCN
prioritizes critical nodes and edges, enhancing prediction accuracy. Cross-
validation demonstrated improved reliability over single-view methods,
highlighting its potential to identify disease-related lncRNA biomarkers. This
work advances network-based computational strategies for decoding lncRNA
functions in disease biology and provides a scalable tool for prioritizing
therapeutic targets.
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1 Introduction

Recently, the rapid evolution of artificial intelligence has led to the widespread
implementation of deep learning algorithms across various fields, such as computer
vision, recommendation systems, and interdisciplinary areas such as bioinformatics
(Guzman-Pando et al., 2024; Piroozmand et al., 2020; Zhou et al., 2023). In contrast to
conventional machine learning techniques, deep learning frameworks are capable of
constructing complex information propagation architectures that facilitate the effective
interpretation of diverse data types, demonstrating superior learning and representation
abilities. In the domain of relation prediction between lncRNAs and diseases, deep learning
methodologies have been shown to surpass conventional approaches by more accurately
extracting intricate and nuanced features. Recently, many deep learning-based methods,
including autoencoders (AEs), CNNs, graph convolutional networks (GCNs), and GANs,
have been extensively utilized for predicting relationships between lncRNAs and diseases
(Jin et al., 2021; Ha et al., 2020; Chen et al., 2021).
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Wu et al. introduced an algorithm termed GAMCLDA, which is
based on the principles of graph encoder matrix completion (Wu
et al., 2020). This model effectively incorporates a wide range of
biological data. The initial feature vectors for lncRNAs and diseases
are derived from association data linking lncRNAs to diseases,
genes, and microRNAs (miRNAs). A multilayer perceptron
(MLP) is subsequently employed to reduce the dimensionality of
these initial input features. To obtain the relevant structural
characteristics of the lncRNA‒disease association network, a
GCN is utilized, yielding feature vectors for both diseases and
lncRNAs. The inner product of these two vectors serves as the
predictive value for lncRNA‒disease associations. This approach
constitutes a supervised deep learning model, with its efficacy largely
contingent on the formulation of the loss function. To address the
imbalance in two kinds of samples in lncRNA‒disease associations,
the authors incorporate a learnable weight parameter into the
loss function.

Zhao et al. also proposed an algorithm called MHRWR based on
RWR. This method first constructs a three-layer heterogeneous
network of lncRNA-disease-gene, then uses random walk to
extract network structural features, and finally predicts
associations (Zhao et al., 2021). In addition, Lu et al. also
proposed a method called SIMCLDA based on inductive matrix
completion (Lu et al., 2018). This method uses the association
vectors of lncRNA diseases to calculate the GIP similarity
between vectors, calculates the functional similarity of diseases
based on the association data of disease genes, and then
constructs the feature vectors. PCA was then used to reduce the
lncRNA and disease feature vector dimensions. Finally, the
incidence matrix was reconstructed based on the induction
matrix. In order to make full use of the structural information
between lncRNAs disease association matrices, Lu et al. proposed a
lncRNAs disease association prediction algorithm called GMCLDA
(Lu et al., 2020). The algorithm first calculated the semantic
similarity of diseases, the GIP similarity of lncRNAs and diseases,
and the gene sequence similarity of lncRNAs. Then, the K-nearest
neighbor (KNN) algorithm based on the sequence similarity of
lncRNAs updates its correlation matrix, and finally, matrix
completion is used to reconstruct its correlation matrix.

Xuan et al. constructed a lncRNA‒disease association prediction
model that employs a two-way CNN with an attention mechanism,
referred to as cnnlda (Xuan et al., 2019a). This network integrates
various data types, including similarity data for lncRNAs and
diseases, lncRNA‒disease association data, and their relationships
with miRNAs. The model is bifurcated into two components: the
first component utilizes a CNN to extract characteristics directly
from node pairs, and the second component acknowledges that
different components of node pair features among lncRNAs,
miRNAs, and disease nodes contribute variably to association
prediction. This component assigns weight values to distinct
types of association features and feature components prior to the
convolutional layer.

Additionally, Xuan et al. constructed a CNN-based method
named ldapred (Xuan et al., 2019b). This method initially
constructs feature vectors for diseases and lncRNAs on the basis
of the functional similarity matrix of lncRNAs, the semantic
association matrix of diseases, and the functional similarity
matrix of miRNAs. These feature vectors are then linked and

input into a wide CNN to predict the output value. To effectively
capture the topological information within the network, this method
employs the concept of information dissemination, which uses
second-order similarity matrices and association matrices for
lncRNAs, diseases, and miRNAs during the computation of
initial features. Furthermore, the method incorporates a two-way
convolutional neural network to enhance model performance.

Graph convolutional networks (GCNs) represent an important
method for extracting structural features from graph data (Wang
et al., 2024). In recent years, GCNs have found extensive
applications in various domains, including node prediction,
graph embedding representation, and graph classification. In the
field of bioinformatics, GCNs are frequently employed for link
prediction, because the regulatory relationships among
biomacromolecules are often represented as structured graphs.

Xuan et al. introduced a disease association prediction model
that integrates GCN and CNN techniques (Xuan et al., 2019c),
termed GCNLDA. This method constructs heterogeneous graphs
representing miRNA and lncRNA diseases, utilizing a GCN to
extract topological features from these graphs to derive feature
vectors for the nodes. A simple neural network is subsequently
employed to predict the correlations between diseases and increases.
Additionally, the model leverages a CNN to capture the
characteristics of node pairs for correlation prediction, fusing the
prediction scores through a weighted approach.

Furthermore, acknowledging the varying contributions of
distinct subgraphs within heterogeneous graphs to the prediction
process, Zhao et al. proposed a meta-path-based disease association
prediction model for lncRNAs, referred to as Heated (Zhao et al.,
2022). This model segments the lncRNA‒disease heterogeneous
network into five subgraphs: disease‒lncRNA‒disease, lncRNA‒
disease, lncRNA‒disease‒lncRNA, lncRNA‒disease‒lncRNA, and
lncRNA‒disease. Feature vectors are derived from these five
subgraphs via a graph attention network (GAT) (Dai et al.,
2022), and weighted values are utilized to integrate the feature
vectors corresponding to different lncRNAs and diseases. The
model concludes by employing a neural network matrix
completion algorithm to predict the association matrix.

Moreover, several researchers have achieved enhanced
prediction outcomes by integrating machine learning models
with deep learning frameworks. Jihwan Ha et al. provided a
framework based on deep neural networks for predicting
miRNA-disease associations (NCMD) known as Neural
Collaborative Filtering based on node2vec. NCMD leverages
node2vec to learn low-dimensional vector representations of
miRNAs and diseases. It utilizes a deep learning framework that
combines the linear capability of generalized matrix factorization
with the nonlinear capability of multilayer perceptrons (Ha and
Park, 2023). By applying a recommendation algorithm with miRNA
and disease similarity constraints, JihwanHa et al. proposed a simple
yet effective computational framework (SMAP) to identify
associations between miRNAs and diseases. It measures
comprehensive and accurate similarity values based on miRNA
functional similarity, disease semantic similarity, and Gaussian
Interaction Profile Kernel similarity. SMAP not only utilizes
known miRNA-disease associations to construct a matrix
factorization model but also incorporates the integrated similarity
between miRNAs and diseases (Ha, 2023). Sheng et al. constructed
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an association prediction model named VADLP (Sheng et al., 2021),
which constructs a heterogeneous network encompassing lncRNAs,
diseases, and miRNAs. VADLP extracts network topology features
of node pairs through a random walk algorithm and derives
distribution features on the basis of a CNN encoder and
variational autoencoder. These features are then adaptively fused
to predict lncRNA‒disease relationships. Wu et al. introduced a
prediction method based on random forests, termed GEAR (Wu
et al., 2021). This model initially acquires feature representations of
network nodes from the lncRNA–disease–miRNA heterogeneous
network via a graph autoencoder, subsequently concatenating
lncRNA and disease features to form node pair features. A
random forest is then employed to investigate the potential
associations between lncRNAs and disease. LAN et al.
constructed a lncRNA‒disease relation prediction model utilizing
a graph attention network, referred to as GANLDA (Lan et al.,
2022). This approach inputs association vectors of increases,
diseases, and genes, applies the principal component analysis
(PCA) method (Zhang and Castelló, 2017) for dimensionality
reduction, and utilizes the GAT to extract potential disease
vectors, predicting correlations through a multilayer perceptron.

These studies collectively demonstrate the trend of combining
graph-based structural analysis (GCN, GAT, random walks) with
deep learning techniques (CNN, MLP, matrix completion) and
multi-modal data fusion (functional similarities, semantic
associations, sequence data). They increasingly focus on
addressing data imbalance, enhancing feature representation
through attention mechanisms, and improving prediction
accuracy by exploiting heterogeneous network topologies and
multi-source biological data integration.This paper proposes a
graph convolutional network (GCN)-based method for predicting
lncRNA-disease associations, grounded in the regulatory networks
of biomolecules and diseases. Given that microRNAs (miRNAs) and
long non-coding RNAs (lncRNAs) often cooperatively regulate gene
expression, we construct a heterogeneous lncRNA-miRNA-disease
interaction network. Furthermore, to address the issue of isolated
diseases and lncRNAs lacking contextual relationships, we integrate
disease semantic similarity networks and lncRNA similarity
networks into the heterogeneous framework. Our contribution is
a novel lncRNA-disease association prediction model called
MVIGCN, which combines multi-view data sources with graph
deep learning enhanced by attention mechanisms. This approach
synergizes structural features extracted from the heterogeneous
network with attention-weighted feature fusion, enabling more
accurate and interpretable predictions of lncRNA-disease
correlations.

2 Methods

The framework of the MVIGCN model has been introduced.
Next, the details of the model, calculation methods, and loss
functions are introduced one by one.

MVIGCN model is a neural network model of codec structure,
as shown in Figure 1, which mainly includes two parts: encoder part
and decoder part. In this paper, the encoder was used to extract
biological network features, eliminate data noise, and reduce feature
dimensions, and the decoder was used to predict lncRNA disease

association. The encoder is divided into two parts in the model, as
shown in Figure 1. The node embedding vectors of two different
graphs were learned separately. Specifically, the upper part of the
encoder was learned by the node features of the graph convolutional
neural network layer, and the lower part also used the node features
of the graph convolutional neural network layer to learn the node
features. The decoder part predicts the lncRNA disease association
probability based on the latent features of the nodes.

2.1 Initial eigenvector construction

In this work, first, on the basis of the lncRNA‒miRNA association
matrix, a three-layer heterogeneity map of lncRNA‒miRNA–disease
(net1) was established by the lncRNA, disease similarity matrix, and
lncRNA disease relation matrix, and the lncRNA disease relation
graph (net2) was constructed. According to the hypothesis that
“functionally similar lncRNAs tend to be related to diseases with
similar phenotypes,” the MVIGCN model predicts associations by
extracting the association features and similarity features of diseases
and lncRNAs in the network. In the coding phase, the MVIGCN
model selects lncRNAs, disease similarity features, and correlation
features as its initial coding vector.

Figure 2 shows the construction method of the initial input
eigenvectors of l1 and d2. The initial input feature of l1 is
featurel1 � [LS(1, : ); LD(1, : )], where LS(1, : ) is the first line of
the lncRNA similarity matrix LS and LD(1, : ) is the first line of the
disease association matrix LD. The initial input characteristic
featured2 � [LDT(2, : );DS(2, : )] of d2, where LDT(2, : ) is the
second line of the LD transposition matrix and DS(2, : ) is the second
line of the disease similarity matrix. On the basis of the above method,
the initial characteristic matrix F1 ∈ R(nl+nd)×(nl+nd) of lncRNAs and
diseases is obtained. As shown in Equation 1, the definitions of a
characteristic matrix F1 and offset matrix A2 of net2 are the same. The
range of F1 ∈ R652×652. Each line vector of F1 represents the
characteristic vector of the lncRNA or disease. For example,
F1(1, : ) is the characteristic vector of l1, and F1(241, : ) is the
characteristic vector of d1.

F1 � A2 � LS LD
LDT DS

[ ] (1)

2.2 Graph convolution neural networks

The conventional convolutional neural network (GNN) has
demonstrated considerable efficacy in image processing and
various other domains, effectively capturing informative features
by extracting structured data, such as images and text (Sarıgül et al.,
2019). However, unstructured data are prevalent across numerous
fields, including social relationship mapping, citation analysis, and
chemical molecular structure representation. Traditional
convolutional operations require that data be translation
invariant, a criterion that unstructured data often fail to satisfy.
In this context, the degree of each node within a graph and the
interconnections among nodes exhibit significant variability. To
address these challenges, (Bianchi et al., 2022) introduced the
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graph convolutional network (GCN), a deep learning algorithm
designed for graph data that employs convolutional operations
tailored to graph structures. The GCN typically uses the graph as
input to derive the eigenvectors of individual nodes by integrating
the eigenvectors of neighbouring nodes as well as the topological
information of the graph. Recently, GCNs have been applied
extensively in areas such as text classification, recommendation
systems (Kejani et al., 2020), and relationship extraction.

The methodologies associated with GCNs can markedly
improve the performance of web-based predictive tasks, including
drug‒disease correlation prediction, user‒item correlation
prediction, and miRNA‒disease correlation prediction. The GCN
is capable of aggregating information from adjacent nodes, resulting
in similar eigenvectors for these nodes. By stacking multiple layers of
the CNN, the model is able to learn higher-order associations among
nodes, therefore capturing the topological characteristics of
the graph.

Next, we use the lncRNA disease association network (net2) as
an example to explain how to calculate the GCN. Assume that A2 is
the offset matrix of net2, that net2 contains N l lncRNAs and N d
diseases, and that X is the node eigenvector on net2. The Laplacian
symmetric normalization matrix L2 of Figure net2 is defined as
shown in Equation 2:

L2 � D−1/2
2 A2D

−1/2
2 (2)

where D2 is the degree matrix of graph net2, which describes the
degree of each node, and D2 is a diagonal matrix. The values of the
diagonal elements are defined as shown in Equation 3:

D2[ ]ij � ∑
j

A2[ ]ij (3)

The eigendecomposition of the L2 matrix is carried out as shown
in Equation 4:

L2 � U2Λ2U
T
2 (4)

whereU2 is the corresponding characteristic vector matrix, Λ2 is the
eigenvalue matrix, which is defined as Λ2 � diag(λ1, λ2, λ3, ..., , λN),
λi is its eigenvalue, and N � Nl +Nd. The GFT of the graph signal
X(t−1) in Figure net2 is transformed into a new graph semaphore
X(t) via the following formula:

X t( ) � U2Λ2U
T
2X

t−1( ) (5)
where Λ2 is regarded as the graph signal filter. In Equation 5, the
graph semaphore X(t−1) is converted to the graph domain signal
X′(t−1) � UT

2X
(t−1). After a filter is applied to the graph domain, the

graph domain signal is inversely converted to the graph signal
through U2X′(t−1). In Equation 5, filter Λ2 is parameterized. After
the parameters are introduced, the optimal filter can be learned in a
supervised way. On the basis of the parameterized filter, the GFT can
adjust the importance of each spectral domain in graph signal
conversion. Hence, the filter is modified to ABC, and Equation 5
is rewritten as shown in Equation 6:

X t( ) � U2 ΘΛ2( )UT
2X

t−1( ) (6)

Nevertheless, Equation 6 has two significant limitations. First, in
the context of large networks, the computation of the eigenvector

FIGURE 1
Diagram of the MVIGCN model structure.
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and eigenvalue matrices is resource intensive. Second, the
representation of each node by a singular scalar feature is
inadequate for capturing the intricate and nuanced relationships
among nodes. To address the first issue, Zhang et al. employed the
first-order Chebyshev polynomial to approximate the filter (Zhang
et al., 2024), subsequently reformulating Equation 6 as shown in
Equation 7:

X t( ) � ~D
−1/2
2

~A2
~D
−1/2
2 X t−1( )Θ1 (7)

To enable nodes to retain their characteristics during feature
propagation, the method adds node self-connected edges in net2
and its corresponding adjacency matrix ~A2 � A2 + I2, where I2
refers to the identity matrix and ~D2 represents the degree matrix
[ ~D2]ii � ∑j[ ~A2]ij of nodes. Θ1 is the first term of Θ and a scalar
parameter. In this way, the eigendecomposition of net2 is not
needed, and the filter parameter size is reduced, thus accelerating
the training process. The second problem can be solved by
expanding the scalar graph signal X to the vector signal
X � RN*fm. In addition, the vector filter parameter Θ is
expanded to the parameter matrix Wc ∈ Rfm*F, which

represents that there are F filters and fm input channel filter
matrices. The final spectral convolution is calculated as shown in
Equation 8:

X t( ) � ~D
−1/2
2

~A2
~D
−1/2
2 X t−1( )Wt−1

c (8)

Equation 8 is a feedforward linear neural network. To enhance
the expression property of the model, the nonlinear activation
function and offset matrix are introduced in this paper. The
graph convolution calculation method in this paper is as shown
in Equation 9:

X t( ) � relu ~D
−1/2
2

~A2
~D
−1/2
2 X t−1( )Wt−1

c + Bt−1
c( ) (9)

where Bt−1
2 ∈ RN*F refers to the offset matrix, relu(·) represents the

nonlinear activation function, and X(0) in this paper is the initial
feature vector.

As shown in Figure 3, this paper uses a GCN to extract the
features of net1 and net2, uses F1 as the input, and uses a GCN to
extract the features of net1 and net2. Assume that the feature vector
matrices of the two output nodes are Hnet1

1 and Hnet2
1 .

FIGURE 2
LncRNA and initial input eigenvectors of diseases.
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2.3 Graph attention network

Recently, attention mechanism-based deep learning models have
received extensive attention. The attention mechanism is often applied
in sequence tasks, which allows models to focus on key parts of the
input. For example, in a machine reading task based on a recursive
neural network (RNN), the model employs an attention mechanism to
extract the key features of sentences and improve their sentence
representation learning ability. Chan TH et al. applied the attention
mechanism to graph node-embedded learning and then calculated a
reasonable feature representation of nodes. This model is referred to as
the GAT (Chan et al., 2024). The GAT, which can be considered an
extension of the GCN, assigns different weights to neighbours through
the self-attention layer and combines the features of neighbours. This
operation can filter the noise in the network, concentrate on the more
important correlation, and then extract the graph structure features
effectively. Recently, the GAT has attracted widespread attention in the
fields of node classification, social impact analysis, and
recommendation systems because of its powerful graph feature
extraction capability. net2 is used as an example to explain how to
calculate the GAT proposed by Liu et al. (Qiu et al., 2024).

Given a node, the GAT needs to calculate the importance of its
neighbours. Using node i as an example, first, the attention score of
its neighbour is calculated. Equation 10 expresses the attention score
of node j on node i:

e2ij � Wthj( )T tan h Wthi + b( )( ) (10)

In the formula, hi and hj represent the characteristic
representations of node i and node j, respectively, and Wt and b
refer to the trainable weight matrix and offset matrix, respectively.
Second, the attention score is standardized and is shown in
Equation 11:

α2ij �
exp e2ij( )∑k∈N2

i
exp e2ik( ) (11)

where N2
i refers to the neighbour number of node i in net2. Last,

different weight values are used to merge the features of neighbours.
The eigenvector of final node i is expressed as shown in Equation 12:

h′i � σ ∑
j∈N2

i

α2ij · hj⎛⎜⎜⎝ ⎞⎟⎟⎠ (12)

where σ represents the activation function, such as ReLU.
As shown in Figure 3, after the GCN layer, the MVIGCN model

introduces the above GAT layer to update the node feature
representation. The GAT uses Hnet1

1 and Hnet2
1 as inputs, and on

the basis of the above calculation method, the corresponding
potential feature matrices Hnet1

2 and Hnet2
2 are obtained. To

extract the complex associations between nodes, the GCN layer is
added to the model after the GAT, and the potential eigenvector
matricesHnet1

3 ∈ RN×l1 andHnet2
3 ∈ RN×l2 of nodes net1 and net2 are

obtained. The encoder calculation formula is as shown in Equations
13, 14:

Hnet1
3 � GCN GAT GCN F1( )( )( ) (13)

Hnet2
3 � GCN GAT GCN F1( )( )( ) (14)

The two potential eigenvector matrices are spliced to obtain the
encoder output Y ∈ RN×(l1+l2), and the calculation formula is as
shown in Equation 15:

Y � Yl

Yd
[ ] � Hnet1

3 Hnet2
3[ ] (15)

where Yl ∈ RN l×(l1+l2) and Yd ∈ RN d×(l1+l2) are potential vectors of
lncRNAs and diseases, respectively.

FIGURE 3
ROC curve and P-R curve of MVIGCN model and comparison model.
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2.4 Bilinear decoder

The MVIGCN model uses a bilinear decoder to reconstruct
the association. The calculation formula is as shown in
Equations 16, 17:

LD′ � YlWl YdWd( )T (16)
LREC � ∑

i,j( )∈P∪N
Θ LDij

′ , LDij( ) (17)

where LD′ ∈ RN l×N d is the probability matrix of such associations
predicted by the decoder. For each element in LD′, the greater the
value of LDij

′ is, the stronger the association between lncRNA i
and disease j, and the weaker the correlation otherwise.
Wd ∈ R(l1+l2)×r and Wl ∈ R(l1+l2)×r are trainable parameters used
to map the learned potential features back to the initial feature space
of the lncRNA and disease, LREC is the loss function of the
reconstruction error, and Θ(·) is the loss function of the
classification, such as the mean square error (MSE loss). P and
N refer to two kinds of sample training sets.

In association prediction model training, known associations
are usually regarded as positive samples, whereas unknown
associations are regarded as negative samples. However, in
most cases, the relationship between lncRNAs and disease is
unknown. The number of positive samples in training is far
greater than the number of negative samples in training, and the
data of positive samples and negative samples are extremely
unbalanced. The model tends to predict all the correlation
values as 0 so that a lower loss value can be obtained.
However, the model cannot effectively distinguish positive
samples. A cost-sensitive neural network was applied to
address this issue (Zhang et al., 2019). The cost-sensitive loss
function has been widely used in unbalanced learning. The
modified reconstruction error loss function is as shown in
Equation 18:

LREC � α ΩP LD′ − LD( )���� ����2F + 1 − α( ) ΩN LD′ − LD( )���� ����2F (18)

where ΩP ∈ 0, 1{ }N l×N d is the positive sample mask matrix of the
lncRNA disease association data, ΩN ∈ 0, 1{ }N l×N d is the negative
sample mask matrix, and α is the positive and negative sample
balance parameter. In this work, a greater weight is allocated to the
loss of positive samples, and a smaller weight is allocated to the loss
of negative samples. The calculation method is as shown in
Equation 19:

α � ∑ijΩP,ij∑ij ΩP,ij +ΩN,ij( ) (19)

In the training of a deep learning model, it is usually assumed
that the training and test sets have the same distribution and that the
model is trained in the training set space. However, sometimes, the
distributions of the two sets are not the same. If the model is
overfitted on the training set, its performance on the test set will be
reduced. To increase the generalizability, regularization terms are
usually added to the loss function. The parameters Wd,Wc,Wt and
B in the MVIGCN model affect the model generalizability.
Therefore, the loss of the regularization term is defined as shown
in Equation 20:

LΩ � Wd‖ ‖2 + Wc‖ ‖2 + Wt‖ ‖2 + B‖ ‖2 (20)

Therefore, the total loss LTotal can be determined as shown in
Equation 21, where γ is a weight factor:

LTotal � LREC + γLΩ (21)
This research employs the Adam optimizer to train the

MVIGCN model.

3 Results

3.1 Performance assessment of the
MVIGCN model

This study employs a 50 percent cross-validation methodology
to assess the properties of the model. The dataset, comprising both
types of samples, is randomly partitioned into five subsets. One
subset is designated as the test set, while the remaining subsets are
designated as the training set. The model is trained on the training
set, and its performance is subsequently evaluated on the test set.
The evaluation outcomes from the test set are then aggregated to
form a comprehensive dataset, and the predictive results are
analyzed using various evaluation metrics, such as the TPR (true
positive rate), FPR (false positive rate), Precision (precision), and
Recall (recall rate) (Chen et al., 2021). The parameters involved in
the model are set as follows: Δ is the semantic decay factor, which is
set to 0.5; γd is the hyperparameter controlling the kernel width, set
to 1; γ′l is the normalized kernel bandwidth adjustment factor, set to
1; DCOS is the cosine similarity matrix between 412 diseases, with
elements ranging from 0 to 1; α1 and α2 represent the weight values
of the Gaussian interaction kernel similarity and cosine similarity
values of lncRNA, respectively; β1 and β2 represent the weight values
of the two types of similarities for diseases; α1, α2, β1, and β2 are set
to 0.1, 0.9, 0.2, and 0.8, respectively.

Furthermore, this research compares the proposed model
against several existing models, including GAMCLDA (Mishra
et al., 2020), which is predicated on graph convolutional neural
networks and matrix decomposition; GANLDA (Li et al., 2021),
which uses a graph attention network; MHRWR (Zhao et al., 2021),
which is based on random walk principles; and SIMCLDA (Lu et al.,

TABLE 1 Experimental results of MVIGCN model and comparison model.

AUC AUPR F1-score MCC

MVIGCN 0.9684 0.8095 0.7663 0.7640

MVIGCN-net1 0.9519 0.7242 0.6781 0.6712

MVIGCN-net2 0.9687 0.7217 0.6525 0.6487

GAMCLDA 0.8761 0.3526 0.1525 0.2083

GANLDA 0.9226 0.4779 0.2797 0.3652

MHRWR 0.8933 0.2217 0.3106 0.3193

SIMCLDA 0.8763 0.2016 0.1103 0.1688

BMI; body mass index. Age and BMI, are means with range presented in parentheses.

*The results of this paper and the better performance of other methods are highlighted in

bold.
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2018), which is founded on matrix completion. To further
substantiate the impact of the multiview characteristics on the
association prediction model, the study incorporates relevant
ablation experiments. The MVIGCN-net1 model uses only the
lncRNA‒miRNA–disease heterogeneous network for prediction,
whereas the MVIGCN-net2 model relies on the association
network. The ablation experimental model employs the same
graph deep learning network architecture as the MVIGCN to
learn lncRNA‒disease associations. The results from both the
comparative analysis and the ablation experiments are presented
in Table 1. Additionally, ROC and PR curves are generated to show
the differences in predictive performance among the models.

As shown in Table 1 and Figure 3, the MVIGCN model
presented in this study outperforms the four other correlation
prediction models. Furthermore, the results of the experiment
underscore the importance of the multiview approach utilized by
the MVIGCN model. The data indicate that the AUC value for the
MVIGCN model is 0.96843, which markedly exceeds the values of
GANLDA (0.92255), MHRWR (0.89328), SIMCLDA (0.87633), and
GAMCLDA (0.87633). In terms of the recall and accuracy rates, the
recall rate serves as an indicator of the capacity of the model to
predict positive samples, whereas the accuracy rate reflects the
reliability of the model in predicting these samples. An effective
model typically maximizes both the number of accurately predicted
positive samples and the accuracy of those predictions; however,
these two metrics cannot be optimized simultaneously. The AUPR
and score serve as comprehensive metrics for evaluating both
parameters concurrently. The AUPR value for the MVIGCN
model is 0.80954, significantly surpassing the values of GANLDA
(0.47794), GAMCLDA (0.35256), MHRWR (0.22172), and
SIMCLDA (0.20158). Additionally, the score of the MVIGCN
model is considerably higher than those of the other four
models, indicating its robust performance on imbalanced
datasets. With respect to the MCC evaluation index, the
MVIGCN model outperforms all other models, highlighting its
substantial advantages in predicting these associations.

In the ablation experiment, the MVIGCN model exhibited
notable performance enhancements compared with MVIGCN-
net1 and MVIGCN-net2, with the multiview fusion model
demonstrating superior results across the AUC, AUPR, MCC,
and other metrics. As depicted in Figure 1, the AUC value for
the MVIGCNmodel is 0.9684, showing no significant improvement
relative to MVIGCN-net1 (0.9519) and MVIGCN-net2 (0.9687).
However, for the other metrics, the AUPR values for MVIGCN-net1
and MVIGCN-net2 are 0.7242 and 0.7217, respectively, while their
scores are 0.6781 and 0.6525, and their MCC scores are 0.6712 and
0.6487, respectively, which are inferior to the performance of the
MVIGCN model. These findings indicate that the constructed
prediction model, which is based on multiple related data
sources, plays a key role in improving the predictive efficacy
of the model and addressing the challenges posed by
imbalanced samples.The ablation experiments demonstrate
that:Feature alignment and cross-view attention are critical
for leveraging multi-view heterogeneity.Graph convolutional
layers are indispensable for modeling biological network
topology.Noisy views can be mitigated through learned
attention, highlighting the model’s robustness.This analysis
not only validates the MVIGCN’s design but also provides

actionable insights for improving similar architectures in
complex graph-based tasks.

The recall rate serves as an indicator of the capacity of a model to
predict potential correlations and is a critical metric in secondary
classification tasks. Importantly, the recall rate can fluctuate
significantly across different probability thresholds. Moreover,
establishing a consistent and appropriate threshold for calculating
the recall rate across various correlation prediction models
complicates the effective assessment of predictive performance
differences among these models. Consequently, this study
employs varying thresholds to compute the recall rate for the
models being considered. The methodology involves designating
the first k long noncoding RNAs (lncRNAs) associated with each
disease as positive samples, while the remaining samples are
classified as negative samples, facilitating the calculation of the
overall recall rate. The findings are shown in Figure 4. The
results indicate that the MVIGCN model is consistently superior
to the other models across different values of k. When k is 30, 90,
150, and 210, the MVIGCN model achieves predicted recall rates of
71.15%, 89.54%, 96.55%, and 98.96%, respectively. In comparison,
the MHRWR model yields top-k recall rates of 32.22%, 52.76%,
80.42%, and 99.00%; the GANLDA model yields recall rates of
47.87%, 76.94%, 94.55%, and 98.89%; the SIMACLDA model
presents rates of 41.49%, 74.34%, 94.59%, and 99.90%; and the
GAMCLDA model achieves top-k recall rates of 44.61%, 79.09%,
91.99%, and 97.74%. These experimental results indicate that the
MVIGCN model is better able to identify associations between
potential lncRNAs and diseases than the other models evaluated.

3.2 Case study

To investigate the capacity of the MVIGCN model to recognize
the associations between lncRNAs and diseases in detail, this study
designed relevant case study experiments. Within the dataset, all
known associations are classified as positive samples, whereas all
unknown relationships are treated as candidate associations. The
analysis of these candidate associations ascertain whether the model
can successfully identify previously unknown associations. This
study focuses on several prevalent diseases, including breast
cancer, liver cancer, and kidney cancer, as subjects for case
studies. The methodological approach is as follows: initially, the
model predicts all unknown associations. For example, under
conditions of breast cancer, the correlation scores between
candidate lncRNAs and breast cancer are ranked from highest to
lowest. The top 20 lncRNAs were then validated against relevant
databases and studies, which demonstrated that the candidate
lncRNA‒disease associations predicted by the model provide
valuable insights for guiding biological wet laboratory experiments.

The lncRNA–disease relationship data utilized in this research
are sourced from LncRNADisease and Lnc2Cancer, as detailed in
the supplement document, encompassing 2,697 relationships
among 240 lncRNAs and 412 diseases. The remaining
96,183 unknown relations are considered candidate samples. In
the process of validating candidate associations, this study sought
relevant experimental evidence from Lnc2Cancer 3.0 and MNDR
v3.1. In instances where pertinent data are not available in these
three databases, the study then uses the National Center for
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Biotechnology Information (NCBI) database to obtain the results.
Three diseases—breast cancer, lung cancer, and cervical
cancer—were selected as the focus of the case studies. The
subsequent sections analyse and present the findings from the
case studies pertaining to these three diseases.

Breast cancer is the most prevalent malignancy among women and
poses a significant threat to their health and wellbeing. Even when sex is
not considered, breast cancer remains the secondmost common type of
cancer following lung cancer; however, owing to its better prognosis, it
ranks fifth in terms of the key cause of cancer-related mortality. In less
developed regions, breast cancer is a typical cancer, with incidence rates
significantly exceeding those in developed areas. Recent research has
highlighted the critical role of lncRNAs in the onset and development of
various diseases. For example, Zhang et al. (2024) reported that
LINC00963 is related to the metastasis and development of breast
cancer cells. Silencing LINC00963 expression has been shown to inhibit
breast cancer progression. Furthermore, Zhang et al. (2024)
demonstrated that knockout of the ACK1 gene diminishes the
capacity of LINC00963 to promote breast tumour growth. These
findings indicate that LINC00963 inhibits ACK1 activity by
downregulating miR-324-3p expression, facilitating the development
andmetastasis of breast cancer. Consequently, LINC00963may serve as
a promising therapeutic target for breast cancer therapy.

Table 2 shows the results of the association verification for the
top 20 candidate lncRNAs identified by the MVICGN model in the
context of breast cancer. The findings indicate that 17 out of the
20 candidate lncRNAs have been validated by existing databases.
Notably, SNHG1 has been identified as a significant regulator that
facilitates tumorigenesis, and its expression levels are markedly
elevated in breast cancer cells. Research conducted by Xiong
et al. demonstrated that SNHG1 suppresses the expression of
associated normal mRNAs and proteins in breast cancer cells

FIGURE 4
Top-k recall rate of MVIGCN model and comparison model.

TABLE 2 Validation results of MVIGCN in predicting the top 20 candidate
lncRNAs in breast cancer.

Rank lncRNA The verification results

1 MIR17HG PMID: 25680407

2 BANCR Lnc2Cancer 3.0, MNDR v3.1

3 TUG1 Lnc2Cancer 3.0, MNDR v3.1

4 DANCR Lnc2Cancer 3.0, MNDR v3.1

5 HNF1A-AS1 PMID: 32319789

6 SNHG1 Lnc2Cancer 3.0, MNDR v3.1

7 HULU Lnc2Cancer 3.0, MNDR v3.1

8 PCAT1 Lnc2Cancer 3.0, MNDR v3.1

9 NPTN-IT1 MNDR v3.1

10 LINC00261 PMID: 32440206

11 PRNCR1 Lnc2Cancer 3.0, MNDR v3.1

12 MYCNOS Unknown

13 GHET1 Lnc2Cancer 3.0, MNDR v3.1

14 WT1-AS Lnc2Cancer 3.0, MNDR v3.1

15 CRNDE Lnc2Cancer 3.0、 LncRNADisease v2、
MNDR v3.1

16 MIR7-3HG Unknown

17 HAND2-AS1 Lnc2Cancer 3.0, MNDR v3.1

18 LINC00473 Lnc2Cancer 3.0, MNDR v3.1

19 C1QTNF9B-
AS1

Unknown

20 SCHLAP1 PMID: 34268927
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through its interaction with miR-573 and simultaneously promotes the
expression of relevant cyclins (Xiong et al., 2020). These observations
imply that SNHG1 can be considered a promising target for
intervention and prognostic assessment in breast cancer.

Lung cancer represents the most prevalent and lethal form of
cancer worldwide. Among its various types, NSCLC constitutes the
majority, accounting for 85% of newly diagnosed lung cancer patients.
This subtype is highly resistant to chemotherapy, resulting in poor
prognoses for affected patients after treatment. LncRNAs are key
regulators of the pathogenesis and progression of lung cancer.
Research conducted by Tong et al. has demonstrated that the
lncRNA CASC11 and the gene CDK1 are markedly overexpressed
in lung cancer tissues, whereas microRNA-302 levels are decreased in
these tissues. Experimental evidence suggests that CASC11 facilitates
the progression of lung cancer by interacting with microRNA-302,
increasing the expression of CDK1 (Tong et al., 2019).

Table 3 presents the top 20 candidate lncRNAs associated with lung
cancer, as predicted by the MVIGCN model. The findings indicate that
17 out of the 20 candidate lncRNAs were corroborated by existing
databases. For example, the candidate lncRNAHULC has been shown in
various studies to be significantly elevated in the serum of lung cancer
patients, with its concentration increasing in correlation with cancer
progression. Research has indicated that the lncRNAHULC facilitates the
expression of SPHK1, which accelerates the proliferation of NSCLC cells
but inhibits their apoptosis. Furthermore, Jin et al. identified ZEB1-AS1 as

a candidate lncRNA, ZEB1-AS1, with clinical therapeutic and prognostic
significance for NSCLC patients (Jin et al., 2019). Investigations revealed
that ZEB1-AS1 contributes to carcinogenesis by downregulating the
expression of the ID1 gene in NSCLC cells. These results indicate that
ZEB1-AS1 is a promising therapeutic target for NSCLC. Notably, the
MVIGCN model also identified three previously unrecognized potential
lncRNAs—NALT1, MIR100HG, and PISRT1—offering avenues for
validation through biological wet experiments.

Cervical cancer ranks among the most prevalent gynaecological
malignancies, which justifies its selection as the focus of the third case
study. The findings are presented in Table 4. Among the top
20 candidate lncRNAs related to cervical cancer, 14 predictive
relationships were identified. For example, research conducted by
Zhu et al. revealed that the mRNA expression of the candidate
lncRNA CDKN2B-AS1 was significantly upregulated in cervical
cancer cells, whereas the expression of miR-181a-5p was notably
downregulated in cervical cancer cells. Subsequent experiments
demonstrated that CDKN2B-AS1 facilitates cervical cancer cell
proliferation but inhibits their senescence. This body of research
indicates that CDKN2B-AS1 has a key role in disease onset and
development through its interaction with miR-181a-5p. Additionally,
investigations by Shen et al. revealed that the expression level of the
candidate lncRNA MIR155HG was markedly elevated in cervical
cancer tissues compared with normal cervical tissues. Notably,
knockout of the MIR155HG gene resulted in the inhibition of

TABLE 3 Validation results of MVIGCN in predicting the top 20 candidate
lncRNA in lung cancer.

Rank lncRNA The verification results

1 HOTTIP Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

2 HULC Lnc2Cancer 3.0

3 TINCR Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

4 GHET1 Lnc2Cancer 3.0

5 NALT1 Unknown

6 TP53COR1 LncRNADisease v2、 MNDR v3.1

7 TUSC7 Lnc2Cancer 3.0、 MNDR v3.1

8 SPRY4-IT1 Lnc2Cancer 3.0、 LncRNADisease v2、 MNDR v3.1

9 MIR155HG PMID: 32432745

10 MIR100HG Unknown

11 ZFAS1 Lnc2Cancer 3.0

12 SOX2-OT LncRNADisease v2、 MNDR v3.1

13 CBR3-AS1 PMID: 32945466

14 KCNQ1OT1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

15 HOTAIRM1 Lnc2Cancer 3.0、 MNDR v3.1

16 PANDAR Lnc2Cancer 3.0、 MNDR v3.1

17 DANCR Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

18 PISRT1 Unknown

19 HOXA11-AS Lnc2Cancer 3.0

20 ZEB1-AS1 Lnc2Cancer 3.0

TABLE 4 Validation results of MVIGCN in predicting the top 20 candidate
lncRNA in cervical cancer.

Rank lncRNA The validation results

1 UCA1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

2 NEAT1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

3 LINC00961 Unknown

4 LSINCT5 Unknown

5 CDKN2B-AS1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

6 CCAT1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

7 TUG1 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

8 LUCAT1 Lnc2Cancer 3.0、 MNDR v3.1

9 MIR17HG PMID: 32920922

10 HNF1A-AS1 Lnc2Cancer 3.0、 MNDR v3.1

11 HOXA11-AS Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

12 HOTTIP Unknown

13 HYMAI PMID: 34120615

14 NPSR1-AS1 Unknown

15 LINCMD1 Unknown

16 LINC00271 Unknown

17 XIST Lnc2Cancer 3.0、MNDR v3.1

18 AFAP1-AS1 Lnc2Cancer 3.0、MNDR v3.1

19 SNHG12 Lnc2Cancer 3.0、 LncRNADisease v2 MNDR v3.1

20 MIR155HG PMID: 33262605
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cervical cancer cell proliferation, suggesting thatMIR155HG is involved
in the pathogenesis of cervical cancer and may serve as a valuable
therapeutic target (Shen et al., 2020).

4 Conclusion

This research presents the MVIGCN model to predict the
relationships between lncRNAs and diseases. Initially, we provide an
overview of the dataset utilized in this model. Subsequently, we detail the
methodology for constructing the lncRNA-related network, with various
approaches for calculating similarities between lncRNAs and diseases.
We elaborate on the construction of the input feature vector of the
model, the computationmethods employed in the graph CNN layer, the
GAT, the model decoder, and the loss function used during model
training. We conduct a comparative analysis of the MVIGCN model
against the GAMCLDA, GANLDA, MHRWR, and SIMCLDA models
through experimental validation. The predictive property of themodel is
assessed via 50%fold cross-validation, and we compare the AUC, AUPR,
F1 score, MCC score, and top-k metric across the same dataset. The
results indicate that theMVIGCNmodel is superior to the othermodels.
Moreover, we establish ablation experiments, and in a case study, we
demonstrated that theMVIGCNmodel is capable of predicting potential
lncRNAs associated with prevalent cancers: breast cancer.

Research has shown that lncRNAs often regulate physiological
processes through complex networks composed of various
biomolecules such as miRNAs and proteins. The MVIGCN model
accurately predicts deep associations between lncRNAs and diseases
based on the regulatory networks of these biomolecules, thereby
addressing the problem of isolated nodes.

Specifically, the model first constructs an lncRNA-miRNA-disease
heterogeneous network and an lncRNA-disease association network.
Then, it uses Graph Convolutional Neural Networks (GCNs) and
Graph Attention Networks (GATs) to extract structural features
from the regulatory networks, respectively, and fuses the features
from both networks to ultimately predict lncRNA-disease
associations. Compared to other algorithms, the MVIGCN model
has two significant advantages. First, considering that lncRNA-
miRNA-disease associations are important pathways for lncRNA
function, the model incorporates regulatory information about
miRNAs, and ablation experiments demonstrate the effectiveness of
this approach. Second, by simultaneously using GCNs and GATs to
extract network features and fusing multiple regulatory relationships,
the MVIGCN model outperforms other models in five-fold cross-
validation experiments.
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