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To enhance the implementation of genomic selection (GS) in plant breeding, we
conducted a comprehensive comparative analysis of deep learning (DL) models
and genomic best linear unbiased predictor (GBLUP) methods across 14 real-
world datasets derived from diverse plant breeding programs. We evaluated
model performance by meticulously tuning hyperparameters specific to each
dataset, aiming to maximize predictive accuracy and reliability. Our results
demonstrated that DL models effectively captured complex, non-linear
genetic patterns, frequently providing superior predictive performance
compared to GBLUP, especially in smaller datasets. However, neither method
consistently outperformed the other across all evaluated traits and scenarios. The
analysis revealed that the success of DLmodels significantly depended on careful
parameter optimization, reinforcing the importance of rigorous model tuning
procedures. In the discussion, we emphasize the complementary nature of DL
and GBLUP methods, highlighting that the choice between these models should
be driven by the specific characteristics of the traits under study and the
evaluation metrics prioritized in breeding programs. These insights contribute
practical guidelines for selecting and optimizing genomic prediction models to
achieve robust outcomes in plant breeding contexts.
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Introduction

Genomic selection (GS) has emerged as a transformative tool in contemporary breeding
programs, leveraging genomic data to predict the genetic potential and performance of
individuals. By using dense marker information across the genome, this approach enables
the selection of candidates with desirable traits more efficiently than traditional breeding
methods. Unlike conventional approaches that rely heavily on extensive and resource-
intensive phenotypic evaluations, genomic selection accelerates the breeding process by
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identifying superior individuals early, thereby saving time and
resources. This methodology has fundamentally reshaped both
animal and plant breeding, facilitating the development of high-
performing varieties and breeds tailored to meet the challenges of
food security and climate resilience (Meuwissen et al., 2001; Tester
and Langridge, 2010; Varshney et al., 2021; Hickey et al., 2017).

In this context, employing advanced computational tools to
improve the accuracy of predictions is vital for enhancing the
efficiency of breeding programs and minimizing the time and
resources needed for developing new varieties. Among these
tools, Genomic Best Linear Unbiased Prediction (GBLUP) has
been a benchmark for genomic prediction due to its reliability,
scalability, and ease of interpretation (VanRaden, 2008; de los
Campos and Gianola, 2023). GBLUP uses genomic markers
within linear mixed models to produce accurate estimates of
genetic values, especially for traits predominantly influenced by
additive genetic effects. Its computational efficiency and strong
statistical framework have established it as a cornerstone in both
animal and plant breeding applications. However, as traits exhibit
increasing complexity, including non-linear interactions and
genotype-by-environment effects, the constraints of linear models
become evident, highlighting the need to adopt more versatile and
adaptive methodologies (Meuwissen et al., 2001; Crossa et al., 2017).

Deep Learning (DL) techniques have established themselves as a
dynamic and robust alternative in genomic prediction, excelling in
the modeling of intricate, non-linear interactions among genomic
markers (LeCun et al., 2015). By leveraging their capacity to capture
epistatic interactions, accommodate heterogeneous data types, and
effectively process high-dimensional datasets, DL models
demonstrate substantial promise in genomic prediction tasks
(Montesinos-López et al., 2018; Ma et al., 2018; Montesinos-
López et al., 2023). Notably, DL methodologies have been
successfully applied to forecast traits across agriculture and
animal science, including agronomic traits like drought tolerance,
disease resistance, and crop yield, as well as animal production traits
such as milk production in Jersey cows. These approaches frequently
outperform traditional methods, showcasing their versatility and
predictive power in complex biological systems occasionally/often
outperforming traditional approaches (Gianola et al., 2011;
Upadhyaya et al., 2024; Montesinos-López et al., 2024a). These
strengths position DL as an invaluable tool for plant breeders
striving to enhance predictive accuracy for traits governed by
complex genetic architectures (Zingaretti et al., 2020).

Recent studies comparing DL and GBLUP emphasize the trade-
offs between these approaches. GBLUP remains a reliable method
for traits with predominantly additive genetic effects and large
reference populations due to its simplicity and interpretability
(VanRaden, 2008). On the other hand, DL is particularly
advantageous for modeling non-linear and epistatic interactions,
making it well-suited for complex traits and datasets that
incorporate diverse genomic, environmental, and phenotypic
information (Azodi et al., 2019; Zingaretti et al., 2020). For
instance, Pérez-Enciso and Zingaretti (2019) demonstrated that
DL models outperformed traditional approaches in predicting
complex traits across varying environments, highlighting DL’s
potential for advancing modern breeding strategies.

There are several reasons why to compare genomic prediction
accuracy of DL with GBLUP. GBLUP is useful in genomic

prediction. Comparing both helps identify scenarios where DL
offers improvements or underperforms. Unlike typical big data
applications, this study investigates whether DL can provide
meaningful advantages in genomic prediction with smaller
datasets. Furthermore, note that GBLUP assumes linear
relationships, while DL can model complex interactions. This
comparison tests the relevance of DL’s flexibility for traits with
non-linear genetic architectures. Comparing DL with GBLUP helps
validate if DL innovations justify their added complexity in genomic
prediction tasks, especially in data-limited contexts (Gianola and
Rosa, 2015; Crossa et al., 2017; Montesinos-López et al., 2021).

This study aims to provide a comprehensive comparison
between GBLUP and multilayer perceptron’s (MLPs), one of the
most applied DL architectures for genomic prediction. MLPs,
referred to hereafter as DL, are also known as feedforward neural
networks and have proven effective in predicting complex
phenotypes based on genomic data (Montesinos-López et al.,
2021; Farooq et al., 2024). Specifically, it evaluates their
performance across different genetic architectures, population
sizes, and levels of marker density. By contrasting the linear
framework of GBLUP compared with the non-linear capabilities
of DL seeks to elucidate the trade-offs and complementarities of
these methods, ultimately guiding the selection of appropriate tools
for genomic prediction.

The following sections present the dataset used and its main
characteristics, describe the models and assumptions underlying the
GBLUP and DL models, and outline the experimental design,
including the datasets and evaluation metrics employed to assess
the performance of these methods. Finally, we discuss the
implications of our findings, providing guidance for researchers
and practitioners in selecting optimal strategies for genomic
prediction.

This study stands out by comparing DL and GBLUP across
14 datasets representing diverse crops, traits, and sample sizes.
Unlike many previous studies focused on large or single-species
datasets, our work evaluates model performance under a broader
range of conditions, including smaller datasets. This provides a more
realistic benchmark for breeding programs, especially those with
limited resources or working on less-studied crops.

Materials and methods

Datasets

The dataset used consists of the 14 datasets described in the
study by Montesinos-López et al. (2024b), which correspond to the
BLUEs of line effects obtained by removing the environment effect
and the design effect (either a randomized complete block design
(RCBD) or an alpha lattice experimental design, depending on the
dataset). The number of lines, markers and traits measures in each
dataset are given in Table 1.

While the wheat datasets are described in detail in Montesinos-
López et al. (2024b), the remaining datasets—such as Groundnut,
Indica, Japonica, Maize, and the multi-trait Disease dataset—are
sourced from real breeding programs and have been used in
previous studies (e.g., Montesinos-López et al., 2018; Montesinos-
López et al., 2021). Briefly, these datasets represent a variety of crops
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and traits relevant to grain yield, disease resistance, and agronomic
performance, all preprocessed into BLUEs to remove environmental
and design effects.

The complexity of traits was qualitatively assessed based on
known biological and genetic characteristics, rather than heritability
estimates alone. Traits such as grain yield (GY), disease resistance
(PTR, SB, SN), and plant height reduction (PHR) are classified as
complex due to their polygenic architecture, sensitivity to
environmental interactions, and involvement of epistasis or non-
additive effects. In contrast, traits like gel consistency (GC), days to
heading (DTHD), and plant height (PH) are considered simpler
because they are primarily governed by additive effects and exhibit
more stable inheritance across environments.

The 14 datasets span a range of crops and traits with varying
complexity. Trait architectures include both simple (e.g., plant
height, gel consistency) and complex traits (e.g., grain yield,
disease resistance), influenced by polygenic effects and genotype-
by-environment (G × E) interactions. The datasets also vary in
sample size, from 318 (Groundnut) to 1,403 lines (Wheat_2), and in
marker density, from 2,038 SNPs (EYT datasets) to over
78,000 SNPs (Wheat datasets). This diversity provides a realistic
setting to evaluate model robustness across different genomic
prediction challenges.

Models

DL model

For a univariate response Yi, the multilayer perceptron deep
learning (MLPDL) model (Goodfellow et al., 2016) with L hidden

layers, Nl units in layer l, l � 1, . . . , L, and a linear activation in the
output layer, in vector-matrix representation, is given by

Yi � w 0( )
0 +W 0( )

1 x L( )
i + ϵi (1)

where x(l)i � gl(w(l)
0 +W(l)

1 x(l−1)i ) for l � 1, . . . , L, with x(0)i � xi, the
covariable p × 1 vector of individual i in the sample; w(l)

0 , W(l)
1 ,

l � 1, . . . , L, represent the bias vector of size Nl × 1 and the weight
matrix of sizeNl × Nl−1 for hidden layers, withN0 � p. Similarly in
Equation 1, w(0)

0 and W(0)
1 are the bias and the weight vector

(1 × NL) for the output layer; gl denotes the activation function
for layer l, applied element-wise to an input vector. In this case, the
Rectified Linear Unit (ReLU) activation function was used;
ϵi, i � 1, . . . , n, are the errors terms assumed to be independent
with normal distribution with mean 0 and common variance.

The complete model architecture was based on ResNet (Residual
Network) with residual connections added to mitigate the vanishing
gradient problem (He et al., 2016). The ResNet employed consisted
of two sequential layers. A batch normalization layer was added after
each dense layer and before the activation function to standardize
the outputs, keeping the mean near 0 and the standard deviation
close to 1. Batch normalization was applied after each hidden layer
to stabilize training. To prevent overfitting while maintaining output
flexibility, L2 regularization was enforced on all weights, excluding
the bias of the output layer. Lastly, a mean squared error loss
function was employed, to which the L2 penalty was added,
scaled by a regularization parameter (λ). This parameter controls
the degree of weight shrinkage, reducing model complexity and
mitigating overfitting. Thus, the parameters (bias and weights) of
model (1) were estimated using the induced log-likelihood of the
error distribution, penalized by an L2 quadratic term, excluding the
bias of the output layer (w(0)

0 ).

TABLE 1 Number of lines, markers and traits for each data set.

Data No. of lines No. of markers Traits

Disease 438 11,617 PTR, SB, SN

EYT_1 776 2,038 DTHD, DTMT, GY, Height

EYT_2 775 2,038 DTHD, DTMT, GY, Height

EYT_3 964 2,038 DTHD, DTMT, GY, Height

Groundnut 318 8,268 NPP, PYPP, SYPP, YPH

Indica 327 16,383 GC, GY, PH, PHR

Japonica 320 16,383 GC, GY, PH, PHR

Maize 722 54,113 Y

Wheat_1 1,301 78,606 GY

Wheat_2 1,403 78,606 GY

Wheat_3 1,403 78,606 GY

Wheat_4 1,388 78,606 GY

Wheat_5 1,398 78,606 GY

Wheat_6 1,277 78,606 GY

Traits are: Pyrenophora tritici-repentis (PTR), spot blocht (SB), and Septoria nodorum (SN), days to heading (DTHD), days to maturity (DTMT), Grain Yield (GY, Y), plant height (HEIGHT),

Number of Pods per Plant (NPP), Pod Yield per Plant (PYPP), Seed Yield per Plant (SYPP), Yield per Hectare (YPH), Gel Consistency (GC), Grain yield (GY), Plant height (PH), Plant Height

Reduction (PHR).
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In subsequent mentions, DL will refer to this completely
described deep learning model (1).

The model was implemented with the Torch library in Python
(Paszke et al., 2019), with a Batch_size value equal to the training
size to take advantage of GPU. The model was trained for
128 epochs, a value chosen to ensure sufficient learning without
overfitting, balancing model performance and computational
efficiency. To optimize the weights of the deep learning model,
the Adam optimizer—the most popular and widely optimizer used
in deep learning—was adopted. Additionally, a learning rate
scheduler (StepLR) was used to systematically update the initial
learning rate (lr) by multiplying it by a specified factor (γ) every
10 epochs. This gradual reduction in learning rate prevents
premature convergence to suboptimal solutions and facilitates
finer adjustments in later training stages.

To simplify the search space and training process, we specified
the units only for the first hidden layer, N1, while the units in the
subsequent layers were set as the largest integer less than half of the
units in the preceding layer, that is, Nl � �Nl−1/ 2� for l � 2, . . . , L.

The Hyperparameters tuned in the DL model (1) were the number
of hidden layers (L), the number of units in first layer N1, the
regularization parameter (λ), the initial learning rate (lr) and the
factor (γ) in the StepLR learning rate scheduler. These
hyperparameters significantly impact model generalization and
convergence behavior. They were optimized using the bayes_opt
library (Gardner et al., 2014; Nogueira, 2014) over 250 iterations,
employing Bayesian Optimization, a strategy well-suited for non-
convex and multimodal optimization problems that efficiently
balances exploration and exploitation (Shahriari et al., 2015). The
tuning process aimed to minimize the average mean squared error
on the validation set, using an inner 10-fold cross-validation strategy to
ensure robust model selection and reduce overfitting risk. Table 2 lists
the hyperparameters along with their explored search spaces, reflecting
the range of values considered during the optimization process.

The models were executed on a computer with 128 GB of RAM
and 40 cores, together with a 48 GB GPU, and the experiments were
conducted using Python version 3.9.19 and torch 2.4.0. Across all
evaluations performed for each trait and each dataset, the total
training time ranged between 9 and 18 h, resulting in approximately
420 h of training to process all evaluations for all traits.

The choice of the Adam optimizer was based on its proven stability
and popularity in deep learning applications, especially for non-convex
problems like genomic prediction. As noted in our earlier review
(Montesinos-López et al., 2021), Adam is widely adopted due to its

adaptive learning rates and efficiency in handling sparse gradients. We
adopted it here for its robustness and ease of implementation in high-
dimensional genomic datasets. Hyperparameter settings (number of
layers, units, regularization, learning rate) were optimized using
Bayesian optimization across 250 iterations, with ranges informed by
prior DL studies in genomics (e.g., Montesinos-López et al., 2023).
These ranges were selected to ensure both sufficient model complexity
and regularization control to prevent overfitting in smaller datasets.

To ensure full reproducibility, all source code, and model
configurations have been made available in a public GitHub
repository: https://github.com/GHAML1/AI-DL-and-GBLUP-06Abr25.

GBLUP model

The GBLUP model is defined as

Yj � μ + gj + ϵj

where the genotypic effects g � (g1, . . . , gJ)T are jointly distributed
as multivariate normal distribution with vector means zero, 0, and
variance-covariance σ2gG, with G the genomic relationship matrix as
computed by Meuwissen et al. (2001). Furthermore, the error terms
(ϵj; j � 1, . . . , J) in the model are assumed to be independent
random normal variables with mean 0 and variance σ2.

A Bayesian estimation of this model was conducted, assuming
the following independent prior distributions for the model
parameters

f μ, σ2g, σ
2( )∝f σ2g( )f σ2( )

where f(σ2g) and f(σ2) denote the scaled-inverse chi-squared
distribution with parameters (vg, Sg) and (v, S), respectively. The
model was implemented using the BGLR package under the “RKHS”
model with default hyperparameters for the priors.

Evaluation of predictive accuracy

To evaluate the performance prediction of model (1) and
compare it with the GBLUP model (2), a 10-fold-cross-validation
(10FCV) strategy was adopted by using the marker information (X)
available in each of the 14 datasets as predictors, containing between
one to four measured traits. Specifically, one dataset (Disease) has
three traits, six datasets have four traits (EYT_1-EYT_3, Groundnut,
Indica, and Japonica), and seven datasets have only one trait (Maize
and Wheat_1-Wheat_6); see Table 1. For evaluation of the
prediction accuracy, we adopted the following metrics: Pearson’s
correlation (Cor), normalized root mean squared error (NRMSE),
and percentage of matching in top 20% (Matching20). The last
metric, Matching20, represents the percentage of lines ranked within
the top 20% that are correctly predicted to fall within this top 20%.

Data availability

The 14 phenotypic and genotypic data sets used in this study are
available at the following link: https://github.com/osval78/
Refaning_Penalized_Regression.

TABLE 2 Hyperparameter values tuned in the DL model (1) and their search
space.

Hyperparameter Search space

Number of hidden layers (L) [1, 4]

Number of units in the first layer (N1) [64, 512]

Regularization parameter in log-scale (lλ � log(λ)) [−10,−1]

Initial learning rate in log-scale (llr � log(lr)) [−10, 0]

Factor γ in the StepLR learning rate scheduler in log-
scale (lγ � log(γ))

[log(0.05), log(0.95)]

Frontiers in Genetics frontiersin.org04

Montesinos-López et al. 10.3389/fgene.2025.1568705

https://github.com/GHAML1/AI-DL-and-GBLUP-06Abr25
https://github.com/osval78/Refaning_Penalized_Regression
https://github.com/osval78/Refaning_Penalized_Regression
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1568705


Results

In this section, we present the summary results of the ten-fold
cross-validation strategy 10FCV evaluation performance for the DL
model (1) and the GBLUPmodel (2) across the 14 datasets and traits
listed in Table 1. All the results are displayed in Supplementary
Appendix Table A1, where the first column of this identifies the
model (DL or GBLUP) evaluated on the dataset and trait specified in
the second and third columns, respectively. The final three columns
report the mean and standard deviation of the evaluated metrics
(Cor (SD), NRMSE (SD), and Matching20 (SD)) computed over the
10-fold cross-validation (10FCV). The results of Supplementary
Appendix Table A1 are first presented for each dataset and then
across datasets.

Disease dataset

This dataset included traits Pyrenophora tritici-repentis (PTR),
spot blocht (SB), and Septoria nodorum (SN), representing complex
disease-related features. Here it is observed that for PTR, DL
outperforms GBLUP in all metrics: it shows a higher correlation
(Cor = 0.213 vs. 0.193, with a relative improvement of 10.15%), a
lower normalized error (NRMSE = 0.42 vs. 0.423, relative

improvement of 0.75%), and superior predictive ability in the top
20 matches (Matching20 = 0.311 vs. 0.222, relative improvement of
40%). For SB, the results are more balanced, with GBLUP showing a
slightly higher correlation (Cor = 0.26 vs. 0.244, relative
improvement of 6.49%) and a lower normalized error (NRMSE =
0.375 vs. 0.378, relative improvement of 0.59%), while DL stands out
in Matching20 (0.344 vs. 0.311, relative improvement of 10.71%).
Finally, for SN, DL exhibits marginally better correlation (Cor =
0.138 vs. 0.125, relative improvement of 10.55%) and a lower
normalized error (NRMSE = 0.466 vs. 0.469, relative
improvement of 0.66%), while GBLUP shows a slight advantage
in Matching20 (0.255 vs. 0.244, relative improvement of 4.54%).
These results are displayed in Figure 1.

EYT_1 dataset

Here the comparison between DL and GBLUP models across
traits reveals that DL generally outperforms GBLUP inmost metrics.
For days to heading (DTHD), DL shows higher correlation (0.554 vs.
0.523) with a relative improvement of 5.81%, lower NRMSE
(0.053 vs. 0.054, a 2.72% improvement), and slightly better
Matching20 (0.427 vs. 0.416, a 2.80% improvement). Similarly, in
days to maturity (DTMT), DL demonstrates superior correlation

FIGURE 1
Box plots depicting the performance of DL and GBLUP models across ten-fold cross-validation for Disease data in each trait, Pyrenophora tritici-
repentis (PTR), spot blocht (SB), and Septoria nodorum (SN). (A) Box plot of the Pearson’s correlation (Cor) between observed and predicted values for
each of the three traits across ten-fold cross-validation. (B) Box plot of the normalized root mean square error (NRMSE) between observed and predicted
values for each trait. (C) Box plot of the top 20% matching percentages (Matching20) for observed and predicted values.
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(0.525 vs. 0.503, a 4.36% improvement), lower NRMSE (0.034 vs.
0.035, a 1.43% improvement), and equivalent Matching20 (0.416 for
both). For GY, GBLUP marginally outperforms DL in correlation
(0.481 vs. 0.479, a 0.34% advantage), while DL excels in Matching20
(0.482 vs. 0.418, a 15.22% improvement) with equal NRMSE (0.053).
In plant Height, DL surpasses GBLUP in correlation (0.444 vs. 0.425,
a 4.29% improvement), NRMSE (0.035 vs. 0.036, a 0.53%
improvement), and Matching20 (0.42 vs. 0.37, a 13.31%
improvement). These results are displayed in Figure 2.

EYT_2 dataset

DL generally outperforms GBLUP across most metrics. For
DTHD, DL achieves a higher correlation (0.523 vs. 0.479),
showing an improvement of 9.23%, and a lower NRMSE (0.042 vs.
0.044, a 3.4% improvement), while both models have equal
Matching20 (0.412). For DTMT, DL surpasses GBLUP with a
higher correlation (0.593 vs. 0.563, a 5.37% improvement) and
equal NRMSE (0.024), with identical Matching20 (0.512). In GY,
DL demonstrates a higher correlation (0.616 vs. 0.597, a 3.29%
improvement) and lower NRMSE (0.05 vs. 0.051, a 1.28%

improvement), while significantly outperforming Matching20
(0.556 vs. 0.487, a 14.10% improvement). For Height, DL achieves
a better correlation (0.516 vs. 0.499, a 3.48% improvement) and
substantially outperforms GBLUP in Matching20 (0.493 vs. 0.431,
a 14.10% improvement), while both models show equal NRMSE
(0.032). These results are shown in Figure 3.

EYT_3 dataset

Here the results are consistent with the trends observed in EYT_
2, with DL exhibiting slightly higher correlation and Matching20 in
most traits. DL outperformed GBLUP across most traits, with
notable improvements in Matching20 for DTMT (0.564 vs. 512)
and GY (0.571 vs. 0.527). Correlation improvements were moderate
but consistent for DL, while NRMSE differences remained minimal.
For DTHD, DL achieves a higher correlation (0.53 vs. 0.504),
representing an improvement of 5.04%, and a lower NRMSE
(0.034 vs. 0.035), corresponding to a 1.7% reduction.
Additionally, in Matching20, DL outperformed GBLUP by
12.12% (0.474 vs. 0.423). For DTMT, DL surpasses GBLUP with
a higher correlation (0.564 vs. 0.512, a 10.28% improvement) and an

FIGURE 2
Box plots depicting the performance of DL and GBLUPmodels across ten-fold cross-validation for EYT_1 data in each trait, days to heading (DTHD),
days to maturity (DTMT), grain yield (GY) and plant height (Height). (A) Box plot of the Pearson’s correlation (Cor) between observed and predicted values
for each of the three traits across ten-fold cross-validation. (B) Box plot of the normalized root mean square error (NRMSE) between observed and
predicted values for each trait. (C) Box plot of the top 20% matching percentages (Matching20) for observed and predicted values.
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almost identical NRMSE (0.019 vs. 0.020), with large difference
between Matching20 (0.551 vs. 0.463, 18.89% improvement). In GY,
DL demonstrates a higher correlation (0.571 vs. 0.527, a 8.28%
improvement) and lower NRMSE (0.049 vs. 0.050, a 3.39%
improvement), while substantially outperforms GBLUP in
Matching20 (0.532 vs. 0.475, a 11.96% improvement). For
Height, DL achieves a better correlation (0.568 vs. 0.524, an
8.35% improvement) and a slight decrease in Matching20
(0.484 vs. 0.488, a 0.81% reduction), while both models show
similar NRMSE (0.03 vs. 0.031). The results are presented
in Figure 4.

Groundnut dataset

Traits included are: Number of Pods per Plant (NPP), Pod Yield
per Plant (PYPP), Seed Yield per Plant (SYPP), Yield per
Hectare (YPH).

NPP: GBLUP marginally outperforms DL in correlation
(0.67 vs. 0.648, a 3.46% advantage) and in NRMSE (0.206 vs.
0.20 a 3.18% reduction), but only is slightly better in Matching20
(0.469 vs. 0.483, a 3.04% improvement). Details in Figure 5.

PYPP: GBLUP shows better correlation (0.623 vs. 0.594, a 4.9%
improvement) and NRMSE (0.194 vs. 0.20, a 2.63% reduction), but
only show a slightly better performance in Matching20 (0.538 vs.
0.523, a 2.72% advantage). Details in Figure 5.

SYPP: GBLUP edges DL in correlation (0.603 vs. 0.587, a 2.61%
improvement), in NRMSE (0.218 vs. 0.221, a 1.2% reduction), and
has an advantage inMatching20 (0.495 vs. 0.452, an improvement of
9.47%). Details in Figure 5.

YPH: DL outperforms GBLUP in correlation (0.653 vs. 0.643, a
1.59% improvement) and Matching20 (0.583 vs. 0.569, a 2.51%
improvement), with equal NRMSE.

See Figure 5 for a visual representation of the results.

Indica dataset

Traits included are, Gel Consistency (GC), Grain yield (GY),
Plant height (PH), Plant Height Reduction (PHR).

GC: DL surpasses GBLUP in correlation (0.419 vs. 0.403, a
3.96% improvement) and Matching20 (0.442 for both), with
marginally lower NRMSE (0.431 vs. 0.435, a 0.93% reduction).
Details in Supplementary Appendix Figure B1.

FIGURE 3
Box plots depicting the performance of DL and GBLUPmodels across ten-fold cross-validation for EYT_2 data in each trait, days to heading (DTHD),
days to maturity (DTMT), grain yield (GY) and plant height (Height). (A) Box plot of the Pearson’s correlation (Cor) between observed and predicted values
for each of the three traits across ten-fold cross-validation. (B) Box plot of the normalized root mean square error (NRMSE) between observed and
predicted values for each trait. (C) Box plot of the top 20% matching percentages (Matching20) for observed and predicted values.
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GY: GBLUPmarginally outperforms DL in correlation (0.628 vs.
0.616, a 1.95% improvement) and NRMSE (0.055 vs. 0.056, a 1.27%
reduction), while DL lags in Matching20 (0.3 vs. 0.371, a 23.8%
improvement for GBLUP). Details in Supplementary
Appendix Figure B1.

PH: DL performs marginally better in correlation (0.541 vs.
0.537, a 0.79% improvement), while GBLUP has a slight edge in
Matching20 (0.557 vs. 0.50, an 11.42% improvement). Both models
show equal NRMSE. Details in Supplementary Appendix Figure B1.

PHR: GBLUP surpasses DL in correlation (0.431 vs. 0.378, a
13.91% improvement) and Matching20 (0.399 vs. 0.385, a 3.70%
improvement), with slightly better NRMSE. Details in
Supplementary Appendix Figure B1.

Japonica dataset

Traits included are, Gel Consistency (GC), Grain yield (GY),
Plant height (PH), Plant Height Reduction (PHR).

GC: GBLUP marginally outperforms DL in correlation
(0.563 vs. 0.55, a 2.25% improvement) and in NRMSE (0.25 vs.
0.252, a 0.66% reduction). DL, however, excels in Matching20

(0.6 vs. 0.542, a 10.52% improvement). See details in
Supplementary Appendix Figure B2.

GY: GBLUP shows higher correlation (0.571 vs. 0.505, a 12.95%
improvement), better NRMSE (0.063 vs. 0.067, a 5.76% reduction)
and better Matching20 (0.571 vs. 0.514, a 11.11% improvement). See
details in Supplementary Appendix Figure B2.

PH: DL outperforms GBLUP in correlation (0.634 vs. 0.608, a
4.20% improvement) and GBLUP outperforms DL in Matching20
(0.485 vs. 0.5, a 3.00% improvement), with comparable NRMSE. See
details in Supplementary Appendix Figure B2.

PHR: GBLUP has a slight advantage in correlation (0.545 vs.
0.536, a 1.68% improvement) and a moderate disadvantage in
Matching20 (0.399 vs. 0.471, a 15.28% reduction), with equal
NRMSE. See details in Supplementary Appendix Figure B2.

Maize dataset

Here GBLUP outperforms DL in correlation (0.435 vs. 0.43, a
1.19% improvement) and Matching20 (0.446 vs. 0.433, a 3.07%
improvement), with comparable NRMSE. See Supplementary
Appendix Figure B3 for an overview of the results.

FIGURE 4
Box plots depicting the performance of DL and GBLUPmodels across ten-fold cross-validation for EYT_3 data in each trait, days to heading (DTHD),
days to maturity (DTMT), grain yield (GY) and plant height (Height). (A) Box plot of the Pearson’s correlation (Cor) between observed and predicted values
for each of the three traits across ten-fold cross-validation. (B) Box plot of the normalized root mean square error (NRMSE) between observed and
predicted values for each trait. (C) Box plot of the top 20% matching percentages (Matching20) for observed and predicted values.
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Wheat datasets

In 5 out of the 6 Wheat datasets (grain yield, GY trait), DL
outperforms GBLUP in terms of correlation, with improvements
ranging from 1.36% to 8.93%, except for Wheat_3, where GBLUP
slightly outperforms DL (0.478 vs. 0.475, a 0.80% improvement).
Additionally, in Matching20, DL demonstrated better performance,
with observed improvements of 2.83%, 0.88%, 5.55%, 7.25%, and
3.41% in the first five Wheat datasets. However, in the last dataset,
GBLUP performed better than DL (0.55 vs. 0.519, a 5.92%
improvement). For NRMSE, both models showed nearly identical
performance, with a slight advantage for DL. Refer to Figure 4 for a
detailed visualization of the results. See details in Supplementary
Appendix Figure B4.

Results across traits and datasets

Then, by averaging the summary performance across data and
traits of Supplementary Appendix Table A1 is computed (see
Supplementary Appendix Table A2). From these summaries, we

observe that, 10 out of the 14 datasets evaluated, the DL model
demonstrated better performance in Cor, NRMSE, and Matching20.
The comparison between Deep Learning (DL) and GBLUP models
reveals distinct trends across the metrics of Pearson Correlation
(Cor), NormalizedMean Squared Error (NRMSE), andMatching20.
In terms of Cor, DL generally outperforms GBLUP in most datasets,
such as EYT_1, EYT_2, EYT_3, Wheat_1, Wheat_2, Wheat_4, and
Wheat_5, demonstrating better predictive accuracy in capturing the
relationship between variables. However, GBLUP slightly surpasses
DL in specific datasets like Groundnut, Indica, Japonica, and Maize,
though these differences are minor and may not be statistically
significant due to overlapping standard deviations. See Figure 6.

For NRMSE, the results between DL and GBLUP are nearly
identical across all datasets, with minimal differences that fall within
the margin of error. In datasets like Groundnut and Maize, GBLUP
shows a slight advantage in terms of error minimization. However,
these differences are not substantial enough to suggest a definitive
edge for either model in this metric, indicating that both methods
perform comparably in terms of prediction error. See Figure 6.

Matching20, which evaluates the ability to identify values in the
top 20%, highlights a stronger performance for DL in datasets such

FIGURE 5
Box plots depicting the performance of DL andGBLUPmodels across ten-fold cross-validation forGroundnut data in each trait, Number of Pods per
Plant (NPP), Pod Yield per Plant (PYPP), Seed Yield per Plant (SYPP), Yield per Hectare (YPH). (A) Box plot of the Pearson’s correlation (Cor) between
observed and predicted values for each of the three traits across ten-fold cross-validation. (B) Box plot of the normalized rootmean square error (NRMSE)
between observed and predicted values for each trait. (C) Box plot of the top 20% matching percentages (Matching20) for observed and
predicted values.
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as Disease, EYT_1, EYT_2, EYT_3,Wheat_1,Wheat_3, andWheat_
5. This suggests that DL is more effective at capturing extreme values
in these cases. Conversely, GBLUP performs slightly better in
datasets like Groundnut, Indica, Japonica, Maize, and Wheat_6,
although these differences are relatively minor. Overall, DL tends to
excel in metrics related to correlation and extreme value
identification, while GBLUP demonstrates slightly more robust
performance in error minimization, making each model more
suitable for specific predictive objectives. See Figure 6.

Discussion

The comparative analysis of DL and GBLUP models provides
valuable insights into their predictive performance across multiple
metrics: (1) Box plot of the Pearson’s correlation (Cor) between
observed and predicted values for each trait. (2) Box plot of the
normalized root mean square error (NRMSE) between observed and
predicted values for each trait, an (3) Box plot of the top 20%matching
percentages (Matching20) for observed and predicted values.

Correlation, NRMSE, and Matching20. These findings
underscore the relative strengths and limitations of each model,
with implications for their application in diverse datasets and traits.

DL frequently achieved higher correlation scores, particularly
for traits with complex relationships, as observed in GY within the
EYT_11 and EYT_3 datasets. This suggests that DL’s architecture
and non-linear modeling capabilities are well-suited for capturing
intricate patterns in data. In contrast, GBLUP excelled for simpler

traits, such as NPP in the Groundnut dataset, where the linear
assumptions of the model align well with the underlying trait
relationships. These findings are consistent with previous studies
highlighting the flexibility of DL for complex traits (Zingaretti et al.,
2020; Montesinos-López et al., 2021) and the reliability of GBLUP
for more straightforward cases (Meuwissen et al., 2001).

An important strength of this study lies in the diversity of the
datasets analyzed, which vary in crop species, trait types, and sample
sizes. This allowed us to evaluate DL’s robustness across practical
breeding scenarios. The consistent performance of DL, even in
smaller datasets, suggests it may be a valuable tool for programs
with limited training data, expanding the accessibility of advanced
modeling approaches beyond large-scale breeding operations.

The 14 datasets analyzed in this study vary significantly in
complexity, offering a robust test bed for comparing DL and
GBLUP models. Dataset complexity stems from three main
factors: trait architecture, sample size, and marker density. Traits
like grain yield (GY), disease resistance (e.g., Septoria nodorum and
spot blotch), and plant height reduction (PHR) are considered
complex due to their polygenic nature and strong genotype-by-
environment (G × E) interactions. In contrast, traits such as gel
consistency (GC) and days to heading (DTHD) are simpler and
mostly controlled by additive effects. Sample sizes ranged from small
datasets like Groundnut (318 lines) and Indica (327 lines) to larger
datasets such as Wheat_2 (1,403 lines) and Wheat_5 (1,398 lines),
reflecting the variability in breeding program scale. Marker density
also differed, with low-density datasets like EYT_1 to EYT_3
(2,038 SNPs) and high-density datasets like Wheat and Maize
(over 78,000 and 54,000 SNPs, respectively). This combination of
diverse traits, species, population sizes, and genomic resolutions
enabled a comprehensive assessment of model performance across
realistic breeding scenarios with varying levels of data complexity.

The near-identical predictive errors exhibited by both models,
reflected in minimal differences in NRMSE, suggest comparable
performance in terms of absolute prediction accuracy. This result
indicates that while DL may capture complex patterns better, its
advantage does not necessarily translate to reduced overall error.
Although advanced models, such as deep learning (DL), have shown
promise in leveraging complex patterns within genomic data, they
do not always lead to substantial improvements in general error
metrics when compared to traditional models like GBLUP in
genomic prediction settings. This is likely because GBLUP, with
its simplicity and reliance on additive genetic effects, often captures a
significant portion of the genetic signal in well-structured datasets,
making it challenging for more complex models to consistently
outperform it without additional sources of information or better
data quality (Crossa et al., 2017).

The finding that deep learning (DL) consistently outperformed
GBLUP in the Matching20 scenario underscores the strength of DL
in handling ranking tasks, which are critical for prioritizing
individuals or genotypes in breeding programs. The superior
ranking accuracy of DL suggests that it can more effectively
capture complex, nonlinear interactions within genomic data, as
well as subtle patterns that traditional models like GBLUP may
overlook. This advantage becomes particularly valuable when the
goal is not just overall prediction accuracy but also the accurate
identification of the top-performing individuals or genotypes within
a population.

FIGURE 6
Barplots depicting the performance of DL and GBLUP models
across ten-fold cross-validation across traits and data. (A) Barplot of
the Pearson’s correlation (Cor) between observed and predicted
values for each of the three traits across ten-fold cross-
validation. (B) Barplot of the normalized root mean square error
(NRMSE) between observed and predicted values for each trait. (C)
Barplot of the top 20% matching percentages (Matching20) for
observed and predicted values.
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From a practical standpoint, this result highlights DL’s potential
to generate actionable insights for breeding and selection programs.
For example, in scenarios where resource constraints limit the
number of genotypes that can be advanced or tested in field
trials, accurately identifying high-value candidates becomes
essential. By leveraging DL’s superior ranking capabilities,
breeders can focus their resources on individuals with the
greatest potential to contribute to program goals, such as
increased yield, stress tolerance, or disease resistance (Crossa
et al., 2017).

Moreover, the practical implications of DL’s performance
extend beyond simple rankings. The ability to reliably identify
top performers also supports long-term strategic decisions, such
as the design of crossing schemes or the development of elite lines,
ultimately accelerating genetic gain. However, while these results are
promising, it is important to consider that the benefits of DL may
depend on factors such as the quality and quantity of the data, the
complexity of the traits being studied, and the computational
resources available for model training and implementation (Ma
et al., 2018; Montesinos-López et al., 2021).

The theoretical development explains why DL models may be
superior to GBLUP in certain genomic prediction scenarios largely
revolves around their ability to model complex, nonlinear
relationships and interactions among features (markers). GBLUP
relies on a linear mixed model framework where relationships
between predictors (genomic markers) and the target trait are
assumed to be linear. While effective for traits predominantly
governed by additive genetic effects, this assumption breaks
down when epistasis (gene-by-gene interactions) plays a
significant role or when marker effects exhibit non-additive
relationships (dominance or epistatic effects).

DL, by contrast, employs neural network architectures capable
of learning highly nonlinear and complex relationships among
features without explicit feature engineering (LeCun et al., 2015).
This makes DL particularly suitable for traits governed by epistatic
or non-additive genetic effects (Montesinos-López et al., 2021).

Another critical distinction lies in scalability. While GBLUP is
computationally efficient for moderate-sized datasets, it scales
poorly with very large datasets. Conversely, DL models thrive as
data size increases. Theoretically, the more data provided, the better
DL models can generalize, given that they are less prone to
underfitting in high-dimensional settings (Williams and
Rasmussen, 2006).

Despite these theoretical advantages, DL does not universally
outperform GBLUP in practice, particularly when: 1) the dataset is
small, making DL prone to overfitting; 2) the genetic architecture of
the trait is simple; 3) most variation is explained by additive effects,
where GBLUP’s simplicity suffices (Crossa et al., 2017); or 4)
interpretability of the model is a priority, as DL often acts as a
“black box”. Additional theoretical justification is provided in
Supplementary Appendix C, supported by existing research.

DL and genotype × environment interaction

Several recent studies have explored deep learning frameworks
that explicitly model genotype-by-environment interactions (G × E)
and multi-trait architectures in genomic prediction. For example,

Montesinos-López et al. (2018) proposed multi-trait, multi-
environment deep learning (MTME-DL) models, extending the
classical single-output multilayer perceptron to handle correlated
outputs and environment-specific effects. More recently,
multimodal deep learning (MMDL) frameworks (Montesinos-
López et al., 2023) have demonstrated the capacity of DL models
to integrate genomic, environmental, and phenotypic data through
parallel network branches, capturing cross-modal interactions.
Similarly, convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been applied to sequence data or
longitudinal environmental information, offering a path to encode
temporal or spatial G × E structures (Ma et al., 2018; Zingaretti et al.,
2020). While such architectures are powerful, they also introduce
increased complexity in hyperparameter tuning, data preprocessing,
andmodel interpretation, which was beyond the scope of the present
benchmarking study. Nonetheless, our work provides an essential
baseline by comparing standard MLPDL and GBLUP under well-
controlled conditions, and it can serve as a springboard for future
research into integrated DL models better suited to the full spectrum
of breeding program realities.

While hyperparameter tuning is critical for optimizing DL
model performance, we acknowledge that this process can be
time-consuming and computationally intensive, especially for
large datasets. In our experience, using a fixed set of default
hyperparameters based on previous genomic prediction studies
can yield reasonable results. However, models tuned through
Bayesian optimization consistently outperformed those using
default settings. We recommend that, when possible, tuning
should be applied, particularly for smaller or more complex
datasets where predictive accuracy gains can be substantial. For
practitioners with limited resources, a hybrid strategy that begins
with default settings and selectively tunes key parameters may offer a
practical compromise.

It is noteworthy that the 14 datasets analyzed are relatively small
in terms of sample size. This aspect is particularly significant because
it highlights the robustness of deep learning models in genomic
prediction, even when working with limited data. Typically, deep
learning models are known for requiring large volumes of data to
achieve optimal performance due to their complex architectures and
numerous parameters (LeCun et al., 2015; Goodfellow et al., 2016).
However, our results provide empirical evidence that these models
can still perform effectively in small sample contexts, a scenario
common in genomic studies where collecting large datasets may be
constrained by cost, time, or biological limitations.

The implications of these findings are very interesting. They
suggest that DL methods can be a viable tool for genomic prediction
even in resource-constrained settings. This expands the accessibility
of cutting-edge predictive models to smaller research facilities and
projects, ultimately accelerating discoveries in plant breeding,
personalized medicine, and other genomics-driven fields. The
ability of deep learning to derive meaningful insights from
limited data underscores its potential to transform genomic
research, offering a powerful approach to address complex
biological questions with minimal data resources.

While our results demonstrate consistent advantages of DL over
GBLUP in several scenarios, it is important to note that the 10-fold
cross-validation strategy employed in this study, although standard
in genomic prediction literature, was not repeated multiple times.
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We reported standard deviations across folds to partially capture
variability in performance. However, future investigations with
access to larger computational resources could explore a more
exhaustive evaluation using a high number of repetitions (e.g.,
100 or 1,000) to assess the full robustness of the observed trends
in predictive ability across all models and datasets.

Conclusion

The results highlight the nuanced differences between DL and
GBLUP models across datasets and traits. DL often excelled in traits
involving complex relationships (e.g., GY in EYT datasets),
reflecting its ability to capture non-linear patterns. GBLUP,
however, showed competitive performance for traits with simpler
structures dominated by additive genetics effects (e.g., NPP and
PYPP in the Groundnut dataset, and GC, GY and PH in Japonica
dataset). Standard deviations indicate consistency across folds, with
most metrics showing low variability. This comprehensive
comparison underscores the complementary strengths of both
models and the need for trait-specific and metrics prioritized
model selection in predictive analyses, as neither DL nor GBLUP
universally outperformed the other.
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