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Introduction: The prognosis within each subtype varies due to histological and
molecular factors. This study leverages omics datasets and machine learning to
identify biomarkers associated with EC recurrence in different
molecular subtypes.

Methods:Utilizing DNAmethylation, RNA-sequencing, and common variant data
from 116 EC samples in The Cancer Genome Atlas (TCGA), differentially
expressed genes (DEGs) and differentially methylated regions (DMRs) were
identified using t-tests between recurrence and non-recurrence groups.
These were visualized through volcano plots and heat maps, while decision
trees and random forests classified and stratified the samples.

Results: A machine learning analysis combined with box plots showed that in the
copy number-high (CN-H) recurrence group, PARD6G-AS1 had decreased
methylation, CSMD1 had increased methylation, and TESC expression was
higher than the non-recurrence group. In the copy number-low (CN-L)
recurrence group, CD44 expression was elevated. Further validation using
TCGA clinical data confirmed PARD6G-AS1 hypomethylation and CD44
overexpression as significant indicators of recurrence (p=0.006 and p=0.02,
respectively), and both were linked to advanced stage and lymph node metastasis.

Conclusion: The study concludes that PARD6G-AS1 hypomethylation and CD44
overexpression are potential predictors of recurrence in CN-H and CN-L EC
patients, respectively.
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1 Introduction

Endometrial cancer (EC) is one of the most common global
malignancies of the female genital tract (Cho et al., 2019).
Histologically, it mainly consists of endometrioid types exhibiting
a favorable prognosis, whereas non-endometrioid types, such as
serous and clear cells, have a high risk of recurrence (Siegel et al.,
2020). However, the clinical outcome of EC cannot be discerned
based on histological subtypes. Since the monumental publication of
The Cancer Genome Atlas (TCGA) data in 2013, molecular
classification has rapidly replaced the traditional histopathological
classification of EC (Levine, 2013). According to TCGA, there are
four molecular subtypes of EC: pathogenic somatic mutations in the
exonuclease domain of the replicative DNA polymerase epsilon
(POLE) ultra-mutated, microsatellite instability-hypermutated
(MSI), copy number-low (CN-L), and copy number-high (CN-
H). Distinct prognostic features of these subtypes have expanded
their applicability in adjuvant treatment guidelines and various
clinical trials (Van Den Heerik et al., 2020; Concin et al., 2021).
Despite its improved prognostic and predictive performance,
molecular classification is not ideal. For example, the CN-L
subtype is known to be a substantially heterogeneous group, and
prognosis is heavily affected by mutations in catenin beta 1
(CTNNB1) or overexpression of L1 cell adhesion molecule
(L1CAM) (Kurnit et al., 2017; Kommoss et al., 2018). Therefore,
it is necessary to identify potential biomarkers to complement the
molecular classification. Furthermore, it would be of value to
investigate another molecular signature to predict recurrence and
better reflect tumor heterogeneity within each molecular subtype.

The advent of next-generation sequencing and high-resolution
mass spectrometry technologies has facilitated large-scale multi-
omics analyses, including genomic, epigenomic, transcriptomic,
proteomic, and metabolomic research (Lu and Zhan, 2018;
Olivier et al., 2019; Subbannayya et al., 2021). Omics
technologies can be broadly applied in basic research and
oncology clinical practice. Additionally, omics-based profiling can
identify various molecular subtypes essential for personalized
therapies. Recently, several studies have focused on distinguishing
patients with cancer with different outcomes using multi-omics data
(Chaudhary et al., 2018; Murugesan and Premkumar, 2021; Zhao
et al., 2021). Ten long non-coding RNA models of bladder cancer
have been identified as potential biomarkers based on multi-omics
analysis (Xu et al., 2021).

Three mitochondrial genes, namely, HIGD1A, SUCLG2, and
SLC25A24, have been associated with a poor prognosis of colorectal
cancer via integrated analysis of the transcriptome and proteome
(Zhang et al., 2021). Moreover, novel insights into tumor mutation
burden-related gene expression signatures have been constructed
using multi-omics data analysis in ovarian cancer. Both overall
survival and disease-free survival-related prognostic models
constructed based on tumor mutation burden-related genes show
reliable predictive performance (Liu et al., 2020).

Furthermore, as part of artificial intelligence, machine learning
improves the accuracy of cancer survival prediction models.
Machine learning is a process that analyzes big data and can
learn from mistakes and experiences (Schlick and Portillo-
Ledesma, 2021). Several machine-learning models have been
widely used to develop prediction models based on medical

records, images, and molecular features of various malignancies
(Ganggayah et al., 2019). Based on machine learning technologies,
multi-omics data analysis offers a further understanding of
predictive and prognostic phenotypes, facilitates the clustering of
cancer samples into biologically significant groups, investigates the
response to therapy, and serves translational research using
integrative models (Chakraborty et al., 2018; Nicora et al., 2020;
Subbannayya et al., 2021). Multi-omics data analysis using machine
learning techniques for developing recurrence/survival prediction
models has not been conducted.

This study retrieved three omics datasets from TCGA, including
DNAmethylation, RNA-sequencing, and variants. Wemerged them
with machine learning analysis and investigated recurrence-related
molecular signatures according to four molecular subtypes in EC.

2 Materials and methods

2.1 Study subjects and data source

The omics and clinical data of this study were downloaded from
the TCGA UCEC (uterine corpus endometrial carcinoma) dataset.
Downloads and data processing were performed using the R package
TCGAbiolinks and the GDCquery function with the parameters
listed in Table 1. All analyses were performed using the R package
version 4.1.1. Information on the four subtypes was obtained from
the supplementary data of a paper published by The Cancer Genome
Atlas Research Network in Nature in 2013 (Levine, 2013). Omics
and clinical data were organized in the R database format. Variant
information is shown in *. maf format. We converted this into a
matrix form comprising genomic location and patient ID.

2.2 Sample classification criteria

This study aimed to select the classification and stratification
factors for each histological type (grade 1 endometrioid, grade
2 endometrioid, grade 3 endometrioid, and serous). We used
three omics datasets: RNA sequencing, DNA methylation, and
variants. RNA-sequencing data consisted of fragments per
kilobase of transcript per million mapped reads (FPKM) values,
and normalization was performed with a minimum value of 0 and a
maximum value of 1. From the *.maf format, the converted matrix
has values of 0 and 1, where one means that there are variants in the
genomic location or gene, and 0 indicates no variants.

2.3 Bioinformatic analysis

For RNA-sequencing and DNA methylation analysis, two omics
datasets were used as continuous variables, and the t-test was
performed in two groups according to recurrence. Two omics data
were read in R in matrix format, and fold change and p values were
obtained for each gene by the “wilcox.test” R default function. The
total fold change and p values were visualized as volcano plots, and
heatmaps were plotted using the “pheatmap” R package.

Differentially expressed genes (DEGs) and differentially
methylated regions (DMRs), and variants were used to select
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features for the machine-learning model. DMRs and DEGs were
selected based on the fold-change thresholds and p values. The
Fisher t-test, “fisher.test” in the R default function, selected the
statistical significance of variants. Decision trees and random forest
were the two machine-learning methods used to design the
classification models in this study. Decision trees and random
forests were applied using the “rpart” and “random forest
packages”, respectively. The number of pre-trained tree models in
the random forest analysis was 500. The top 30 genomic and clinical
features were listed for the variable importance plot. The Gini
importance was calculated as the average purity of the given
genes. Enrichment analysis was performed using the “pathfindR”
package, and enrichment terms were subsequently retrieved as an
upset plot and heatmaps of enrichment terms. Survival analysis and
survival curves were presented through R’s “survival” and
“survminer” packages. The final follow-up date and recurrence
status were set as events. The results analyzed with the “survfit”
function were visualized with the “ggsurvplot” function. Statistical
significance was estimated by the log-rank test between the two
groups. All parameters used default values.

2.4 Validation using patient samples

To validate TCGA RNA-seq data, we performed RNA-seq using
16 tumor tissue samples from patients with endometrial cancer who
underwent surgery at Korea University Guro Hospital (Approval
number: KUIRB-2020–0191–01). From the tissues, total RNA was
extracted using a TRIzol reagent. RNA samples were diluted in
RNase-free water, and quality was assessed by gel electrophoresis.
RNA samples with a RIN score greater than seven were used for RNA-
Seq library construction. From isolated RNA, cDNA synthesis and
NGS library preparation were performed using the Illumina
SureSelect Library Preparation Kit version 2 (Illumina) by the
manufacturer’s protocol. Paired-end sequencing was performed,
and the read length was 101 bp. Aligned reads were produced by
HISAT2 (version 2.2.0), and transcript assembly was performed by
StringTie (version 2.2.0). The reference genome version was hg38 and
calculated FPKM values were used for further analysis (GSE271198).

To validate TCGA methylation data, we analyzed Twist
Methylome from 10 endometrium cancer tissues of Korea
University Guro Hospital (GSE271199). All DNA samples were
extracted using DNeasy Blood & Tissue Kits (QIAGEN). Then,
DNA samples were sheared to a length of 200–250 bp
(ME220 Focused-ultrasonicator, Covaris). Library construction was
performed by NEBNext® Enzymatic Methyl-seq Kit. The sequencing
reads were produced by the Illumina platform. The adapter sequences
are trimmed off the raw sequence reads and filtered by quality. The

trimmed reads are mapped to the reference genome (hg38) with
BSMAP (version 1.0). The only uniquely mapped reads are selected to
sort and index. PCR duplicates were removed by SAMBAMBA
(version 0.5.9). The methylation ratio of every single cytosine
location within the on-target region was selected from the
mapping results using the ‘methylatio.py’ script in BSMAP. The
results of the coverage profiles were calculated as the “number of
C/ effective CT counts” for each cytosine in CpG, CHH, and CHG.
Each cytosine locus in CpG, CHH, and CHG is annotated using the
table browser function of the UCSC genome browser. Annotation
includes the functional location of each gene (promoter regions,
which are defined as upstream 2 kb of the transcription start site,
exons, and introns), transcripts ID, gene ID, strand, and CpG island.

3 Results

The process of this study is illustrated in Figure 1. Three omics
datasets containing clinical data were obtained. 116 subjects were
classified into four molecular categories and four histological grades.
The landscape of the three omics datasets is depicted as a heat map
(Supplementary Figure S1). The heatmap presents the molecular
categories, histological grades, vital status, and recurrence as column
annotation bars. In total, 568,845 genomic features were identified.
378,278 beta values defined the DNA methylation patterns. As a
result of RNA-seq, 53,409 genes with FPKM values normalized to a
value between 0 and one were identified. Variant information is
presented as a value of 0 and one for each of the 118,555 genomic
locations. 18,603 genes with at least one variant in one gene were
presented as 0 and 1.

3.1 Select DMRs, DEGs, and variants from
three omics data between recurrences

DMRs and DEGs between the recurrence and non-recurrence
groups were selected by t-test. In all DMR analyses, CpG sites
satisfying |fold change| > 0.18 and p < 0.0005 were selected
(Supplementary Figure S2). Genes that were located at each CpG
site were named and mapped; otherwise, they were indicated by an
accession number (cgxxxxxxxx). Hypermethylated CpG sites in the
recurrence group are indicated in red on the upper right of the
volcano plot. Excluding the results of 32 samples belonging to CN-
H, there were many hypermethylated CpG sites in the non-
recurrence group under the three comparative conditions in the
DNA methylation data (Supplementary Figures S2A–D). Higher
expression patterns of DEGs were detected in the non-recurrence
group in the RNA-seq data (Supplementary Figure S2E–H).

TABLE 1 Parameters of GDCquery function from R package TCGA biolinks library.

Categories Parameters Data type Workflow type

Project TCGA-UCEC TCGA-UCEC TCGA-UCEC

Data category: DNA methylation DNA Methylation Methylation Beta Value Liftover

Data category: RNA-seq Transcriptome Profiling Gene Expression Quantification HTSeq - FPKM

Data category: variants Simple Nucleotide Variation Annotated Somatic Mutation MuTect2 Annotation
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Heatmaps were generated for the two groups to present the
methylation or expression levels. Column annotation bars indicate
four histological subtypes and recurrences. Row annotation bars
indicate fold change and p value on a log10 scale. The closer the
fold change in the row annotation bar to the red line, the more
hypermethylated or overexpressed the gene in the recurrence group,

and the darker the p-value, the more statistically significant the gene.
Interestingly, both omics results confirmed that the recurrence and
non-recurrence groups were well clustered only in the CN-H group
among the four conditions in the heatmaps (Figure 2).

Heatmaps for 116 samples, including four histological
classifications, were provided according to recurrence for DMR

FIGURE 1
Flowchart for selection of the subjects. The 116 samples were classified into four molecular categories (copy-number high; CN-H, copy-number
low; CN-L, microsatellite instability; MSI, polymerase epsilon; POLE) and four histological grades. Four histological grades consist of endometrioid grade
(E.G.,) 1, 2, 3, and serous.

FIGURE 2
Heatmaps of differentially methylated regions (DMRs) and differentially expressed genes (DEGs) by recurrences of two omics datasets in copy-
number high (CN-H; n = 32) groups. Genes satisfying the cut-off threshold, indicated in red or green in the Volcano plot, were presented as heatmaps.
Five column annotation bars indicate stage,molecular subtypes, histological subtypes, vital status, and recurrence. In the two row annotation bars, the red
line of fold change indicates hypermethylation or overexpression in the recurrence group. Statistical significance is presented as the p-value
converted to log10, with higher values depictedwith darker colors. (A)Heatmap of DMRs in CN-H group. 55 DMRs showed a p < 0.0005 and satisfied |fold
change| > 0.18. Among DMRs, 46 and nine genes were hypermethylated or hypomethylated in accordance with recurrence, respectively. (B)Heatmap of
DEGs in CN-H group. 37 DEGs showed a p < 0.05 and satisfied |fold change| > 0.05. Among DEGs, 12 and 25 genes showed higher expression or lower
expression in accordance with recurrence, respectively.
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(Supplementary Figure S3A) and DEG (Supplementary Figure S3B).
Two heatmaps were created, including the genes indicated in red or
green in the volcano plot for DMR (Supplementary Figure S2A) and
DEG (Supplementary Figure S2E), comparing 91 non-recurrences
and 25 recurrences. A total of 44 and 48 genes were identified in the
DMR and DEG, respectively. Clustering patterns were observed, but
recurrence and non-recurrence could not be distinguished well in
116 samples.

In contrast, clustering according to recurrence was more
successful in the DEG and DMR analyses of 32 CN-H patients.
46 DMR and 42 DEG were identified (Figure 2). According to the
column annotation bar of each heatmap, patients included in the
recurrence groups were classified as high-stage, serous, or
endometrioid-type grade 3. Heatmaps were also provided for
49 and 26 patients with CN-L and MSI, respectively
(Supplementary Figure S4). The number of patients with
recurrent CN-L and MSI was five and three, respectively, and
clustering was observed, but there was no remarkable pattern due
to the low ratio of the total patients.

We obtained a list of results from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway map (Supplementary Figure
S5) and gene ontology (GO) analyses of recurrences in the CN-H
groups (Supplementary Figure S6). The results of KEGG analysis
indicated that these DMRs were enriched mainly in the neuroactive
ligand-receptor interaction and PI3K-Akt signaling pathway. DEGs
were enriched mainly in the cGMP-PKG signaling pathway,
adrenergic signaling in cardiomyocytes, and cAMP signaling
pathway. The cAMP signaling pathway was detected in both the
DMRs and DEGs results.

3.2 Machine learning analysis of DEGs and
DMRs between recurrences in CN-H and
CN-L samples

We selected DEGs and DMRs between recurrences in the CN-H
and CN-L analyses to design machine learning-based models. To
design the model, DMRs and DEGs according to recurrence in each
CN-H and CN-L group, and specific variants were selected. In the
methylation analysis results, 95 DMRs (CN-H = 46 and CN-L = 49)
were found, of which 87 were used for model construction. As a
result of RNA-seq analysis, no common genes existed between each
group, and 88 DEGs, 42 and 46, were used for model construction.
According to the results of the variant analysis, 49 cases were
significantly distributed according to the presence or absence of
recurrence in CN-H (Fisher t-test result odds ratio <0.87 or >2), and
265 cases in CN-L (Fisher t-test result odds ratio <0.2 or >5),
310 belonging to the union were used in the analysis. 485 features
were visualized as a heat map (Supplementary Figure S7). Decision-
tree analysis revealed the four groups of CN-H and CN-L with
recurrences (Figure 3). The CN-H and CN-L groups were classified
according to TP53 variants. The methylation level of PARD6G-AS1
in the CN-H node and the expression of CD44 in the CN-L node are
differentiated from recurrence (Figure 3A). Four groups of high and
low copy numbers due to recurrence were classified using the
random forest model, and the top 30 features found by Gini
importance are listed (Figure 3B). To validate the three nodes of
decision trees and top genes with the Gini index from random forest

results, PARD6G-AS1 and CSMD1 methylation and CD44 and
TESC expression under seven conditions were visualized as
boxplots (Figure 4). The seven conditions consisted of CN-H
recurrence and non-recurrence, CN-L recurrence and non-
recurrence, MSI recurrence and non-recurrence, and POLE non-
recurrence. As seen in Figure 4, methylation level of PARD6G-AS1
was significantly decreased in CN-H recurrence than that of CN-H
non-recurrence, methylation level of CSMD1 was significantly
increased in CN-H recurrence than that of CN-H non-
recurrence, and the expression level of TESC was increased in
CN-H recurrence than that of CN-H non-recurrence (P < 0.001,
P < 0.001, and P = 0.027, respectively). In the CN-L group, the
expression level of CD44 was significantly increased in patients with
recurrence than those with non-recurrence (P < 0.001).

3.3 Validation of predictability of biomarkers
in terms of recurrence using TCGA clinical
data and institutional surgical specimens

Next, we tried to validate the results retrieved from machine
learning analyses. To do this, a 2-step validation process was
conducted. First, validation was performed using TCGA raw
clinical data. From these data, we can analyze the actual
usefulness of four biomarkers in predicting recurrence in CN-H
and CN-L groups. As seen in Figure 5, among four biomarkers, only
PARD6G-AS1 hypomethylation in CN-H and CD44 overexpression
in CN-L showed statistical significance for disease recurrence (P =
0.006 and P = 0.02). The other two biomarkers (CSMD1 and TESC)
failed to correlate with recurrence significantly. We also evaluated
the association between two biomarkers and clinicopathological
factors (Table 2). PARD6G-AS1 hypomethylation showed a
statistically significant association with advanced stage and lymph
node metastasis (P = 0.018 and 0.037, respectively).
CD44 overexpression was also significantly associated with FIGO
stage III/IV and lymph node metastasis (P = 0.014 and 0.013,
respectively).

Finally, we performed a validation analysis using surgical
specimens in our institution. In that experiment, the delta mean
value of PARD6G-AS1 was −0.056, suggesting methylation level was
decreased in patients with recurrence compared to those with non-
recurrence in the CN-H group (P = 0.002). As for CD44, the absolute
fold change value was 1.39, which meant the expression level was
increased in patients with recurrence compared to those with non-
recurrence in the CN-L group, but it did not show statistical
significance.

4 Discussion

Integrative analysis and machine learning application to TCGA
datasets (DNA methylation, RNA-seq, and variant dataset) revealed
that PARD6G-AS1 hypomethylation was significantly associated
with an increased risk of recurrence in CN-H EC. In addition,
increased expression of CD44 was significantly associated with an
elevated risk of recurrence in CN-L EC.

Among the four molecular subtypes of TCGA, the CN-H group
has been regarded as a prognostically homogeneous entity owing to
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its poor prognosis (Santoro et al., 2021). The CN-H group consisted
of various histological types, of which the serous type was the major
component. In the PORTEC-3 trial, patients with high-risk features
gained a survival benefit when they received adjuvant
chemoradiation compared to those without radiation (León-
Castillo et al., 2020). Moreover, this benefit is particularly evident
in patients with serous EC. According to the 2021 European Society
of Gynecological Oncology (ESGO)-European Society for
Radiotherapy and Oncology (ESTRO)-European Society of
Pathology (ESP) guidelines, the CN-H group with myometrial
invasion was classified as a high-risk group requiring combined
chemotherapy and radiation, irrespective of disease stage (Concin
et al., 2021). National Comprehensive Cancer Network (NCCN)
guidelines (version 1. 2022) also noted that adjuvant chemotherapy
with or without radiation should be administered to patients with
serous EC, except for a small population of serous histologywith tumors
limited to endometrium without myometrial invasion (https://www.
nccn.org/guidelines/guidelines-detail?category=1&id=1473).

Furthermore, in the currently ongoing TransPORTEC refining
adjuvant treatment in EC based on the molecular profile (RAINBO)
umbrella trial (https://clinicaltrials.gov/ct2/show/NCT05255653),
all CN-H participants received chemoradiation regardless of the
FIGO stage. Collectively, receiving at least chemotherapy,
preferentially with radiation, has been established as standard
adjuvant management in patients with CN-H (or serous) EC.
This is primarily due to the high risk of disease recurrence.
However, not all CN-H EC recur. Nevertheless, the current
adjuvant treatment strategy for CN-H EC is relatively uniform,
so a tailored adjuvant treatment strategy might be needed based on
the differential risk of recurrence within this group. In this regard,
the methylation status of PARD6G-AS1 identified in this study
could be a potential biomarker for deciding adjuvant treatment in
CN-H EC. To the best of our knowledge, this is the first study to
demonstrate methylation markers for predicting the recurrence of
CN-H EC using integrative analysis and machine learning
applications. PARD6G-AS1 was identified as a region containing
DMR related to maternal imprinting. Perturbation of maternal

imprinting in PARD6G-AS was associated with hematopoietic
cancer (De Sá Machado Araújo et al., 2018). In addition,
although there were differences in the CpG sites, the PARA gene
has been detected as a factor related to early life stressors and
aggressive behavior (van Dongen et al., 2015; Howard et al., 2022).
PARD6G-AS1 was identified as LOC100130522 in the Illumina
450k methylation chip, and the DMR of PARD6G-AS1 in the
cg16244155 probe was a factor for recurrence in CN-H groups. It
has been noted that PAR6 proteins, including the PARD6G-AS1
gene, interact with classical cancer driver signaling pathways, such as
MAPK and PI3K (Marques and Klefström, 2015). However, the
effect of methylation on prognosis in cancers is not yet known. This
study is meaningful for elucidating the prognostic effect of
PARD6G-AS1 gene methylation in cancer for the first time.
Further research is needed on the methylation of PARD6G-AS1
and related CpG sites in terms of mental health, cancer, and various
chronic diseases.

CD44 is a cell surface glycoprotein involved in cell-to-cell
interactions, adhesion, and migration (Spring et al., 1988; Leblanc
et al., 2001). These characteristics are associated with cancer
invasion and metastasis. In addition, CD44 overexpression has
been associated with lymph space involvement and myometrial
invasion in EC (Leblanc et al., 2001). Consistent with our results, a
previous study found that CD44 was overexpressed in CN-L EC
samples with recurrence and under-expressed in serous compared
with endometrioid histology (Wojciechowski et al., 2015). CN-L
EC is a heterogeneous entity and the largest group among the four
TCGA molecular subtypes. Although this subtype characterizes
low-grade endometrioid histology and harbors an intermediate
prognosis, survival differs depending on the presence of specific
biomarkers. For example, if L1CAM is overexpressed, its
prognosis becomes detrimental, similar to CN-H (Kommoss
et al., 2018).

Furthermore, CTNNB1 mutations identify low-grade patients
with early-stage EC at an increased risk of recurrence (Kurnit et al.,
2017). In addition to these two biomarkers, we present CD44 as a
novel prognostic marker for predicting the recurrence of CN-L EC

FIGURE 3
Decision tree and random forest model for classifying four groups of copy-number high and low according to the recurrence. Four groups
consisting of copy-number high recurrences (CHRo), copy-number high non-recurrences (CHRx), copy-number low recurrences (CLRo), copy-number
low non-recurrences (CLRx). (A) The decision treemodel provides three nodes to classify four groups. (B) Top 30 features found by Gini importancewere
listed in the random forest model to classify four groups.
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in this study. If CD44 is overexpressed, escalating adjuvant
treatment can be considered for CN-L EC.

In this study, differential recurrences according to molecular
subtypes were presented using an integrated omics dataset using
machine learning techniques. Furthermore, we visualized genetic
factors using machine learning approaches (e.g., decision trees),
providing insight into cancer research. This could provide a
methodology for integrated omics data analysis and clinical
research into other cancers in the future. The genes and CpG
sites presented in this study can also be used for research related
to other diseases. This makes it possible to design disease models. To
date, few studies have been performed that label recurrence in CN-H
and CN-L groups using these machine-learning approaches,
highlighting the uniqueness of our study. Another strength of
our study is that we further validated the predictability of
recurrence using both TCGA clinical data and our institutional
surgical data.

PARD6G-AS1 hypomethylation and CD44 overexpression
showed significant association with advanced FIGO stage and
positive lymph node metastasis. These results suggest that
unknown mechanisms of those two biomarkers related to
negatively impacting the prognosis could exist. The verification
experiment at our institution showed a similar pattern, but
verification of CD44 expression level did not show sufficient

statistical significance. Compared to DMR, the threshold is less
stringent in DEG selection. Therefore, the selected genes have the
possibility of being false positives. So, future work should focus on
strengthening the model through large-scale, experimental
verification. Additionally, for the first time, we present a
methylation marker that can predict recurrence within the CN-H
EC group, which has a relatively uniform adjuvant treatment.

A limitation of this study is its retrospective nature, resulting in
surgical techniques, and the type of adjuvant treatment used could
not be standardized. Therefore, we cannot exclude the possibility of
these factors affecting recurrence. However, TCGA clinical data
regarding the types of adjuvant treatment needs to be more
extensive, limiting further analysis of the effects of adjuvant
treatment on recurrence. Second, the study may be limited by
the small sample size. 116 samples from all three omics datasets
(methylation, RNA-seq, and variant) were retrieved and analyzed.
This was approximately a quarter of the total number of patients in
TCGA-UCEC (n = 548). Third, validation analysis using our
institutional surgical samples failed to show a statistically
significant association between CD44 overexpression and
increased recurrence in CN-L EC, contrary to those results using
TCGA clinical data. Because of the small sample number (n = 16),
bias induced by individual differences might not have been
overcome, leading to negative results compared to TCGA data.

FIGURE 4
Boxplot of six genes by seven conditions by random forest model. A total of seven conditions indicates four pathological types with recurrences.
Seven conditions consist of copy-number high recurrences (CNH_Ro), copy-number high non-recurrences (CNH_Rx), copy-number low recurrences
(CNL_Ro), copy-number low non-recurrences (CNL_Rx), microsatellite-instability recurrences (MSI_Ro), microsatellite-instability non-recurrences
(MSI_Rx), and POLE non-recurrences (POLE_Rx). Statistical significance between the two groups and for the entire group was secured through the
Kruskal–Wallis test, and the p-value was presented.
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We assumed that all gene expression levels, or DNA methylation
levels were normally distributed, but different distribution patterns
were detected. Therefore, we need to further upgrade our code on
the TCGA dataset and design a sophisticated model. To select DEGs

and DMRs, we used the default R function, “t.test”. For T-test
analysis, it must be assumed that the values of the two groups follow
a normal distribution. However, gene expression and methylation
levels are not normally distributed and usually show heterogeneity of

FIGURE 5
Recurrence plot to validate the predictability of PARD6G-AS1, CSMD1, TESC, and CD44 in relation to recurrence using TCGA clinical data. (A)
PARD6G-AS1, (B) CSMD1, (C) TESC, (D) CD44.

TABLE 2 Association between biomarkers and clinicopathological factors.

PARD6G-AS1 CD44

Hypomethylation Hypermethylation p value Low expression High expression p value

(n = 49) (n = 32) (n = 72) (n = 9)

Age, median, year 63 67 0.487 64 58 0.532

BMI, kg/m2, n (%) 0.646 1

<30 22 (44.9) 12 (37.5) 30 (41.6) 4 (44.4)

≥30 27 (55.1) 20 (62.5) 42 (58.4) 5 (55.6)

Stage, n (%) 0.018 0.014

I-II 27 (55.1) 26 (81.2) 55 (76.3) 3 (33.3)

III-IV 22 (44.9) 6 (18.8) 17 (23.7) 6 (66.7)

Grade, n (%) 0.245 0.731

1–2 33 (67.3) 17 (53.1) 42 (58.3) 6 (66.7)

3 16 (32.7) 15 (46.9) 30 (41.7) 3 (33.3)

Histological type, n (%) 0.474 1

Endometrioid 34 (69.3) 19 (59.3) 47 (65.2) 6 (66.7)

Serous 15 (30.7) 13 (40.7) 25 (34.8) 3 (33.3)

Lymph node metastasis, n (%) 0.037 0.013

Negative 32 (65.3) 28 (87.5) 61 (84.7) 4 (44.4)

Positive 17 (34.7) 4 (12.5) 11 (15.3) 5 (55.6)

BMI; body mass index.
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variance among groups. So, there were some studies that confirmed
the Wilcoxon-Mann-Whitney test to determine differences in
expression and methylation levels (Michel et al., 2013; Hashim
et al., 2014). In future research, a process of selecting DEGs and
DMRs is needed through more sophisticated statistical techniques.
Because there is a possibility of false positives and a high type I error
rate for selected DEGs and DMRs, genes selected by amore stringent
p-value could be provided.

Based on the three omics datasets of TCGA-UCEC, genetic and
epigenetic factors that can distinguish recurrence were presented.
Decision trees and random forests were used to classify and stratify
the CN-H and CN-L samples by recurrence. Hypomethylation of
PARD6G-AS1 in CN-H and CD44 overexpression in CN-L EC
could predict disease recurrence. Based on our results, a differential
adjuvant treatment strategy should be considered for CN-H and
CN-L EC.
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