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Introduction: Over the years, many approaches have been proposed to build
ancestral recombination graphs (ARGs), graphs used to represent the genetic
relationship between individuals. Among these methods, many rely on the
assumption that the most likely graph is among those with the fewest
recombination events. In this paper, we propose a new approach to build
maximum parsimony ARGs: Reinforcement Learning (RL).

Methods:We exploit the similarities between finding the shortest path between a
set of genetic sequences and their most recent common ancestor and finding the
shortest path between the entrance and exit of a maze, a classic RL problem. In
the maze problem, the learner, called the agent, must learn the directions to take
in order to escape as quickly as possible, whereas in our problem, the agent must
learn the actions to take between coalescence, mutation, and recombination in
order to reach the most recent common ancestor as quickly as possible.

Results: Our results show that RL can be used to build ARGs with as few
recombination events as those built with a heuristic algorithm optimized to
build minimal ARGs, and sometimes even fewer. Moreover, our method allows
to build a distribution of ARGs with few recombination events for a given sample,
and can also generalize learning to new samples not used during the
learning process.

Discussion: RL is a promising and innovative approach to build ARGs. By learning
to construct ARGs just from the data, our method differs from conventional
methods that rely on heuristic rules or complex theoretical models.
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1 Introduction

The ancestral recombination graph (ARG) (Griffiths, 1991; Griffiths and Marjoram,
1996; 1997) is used to represent the genetic relationship between a sample of individuals. It
plays a key role in biology analysis and genetic studies. For example, it can be used to
estimate some parameters of a population or for genetic mapping (Stern et al., 2019; Fan
et al., 2023; Hejase et al., 2022; Link et al., 2023; Larribe et al., 2002). It is described as “the
holy grail of statistical population genetics” in Hubisz and Siepel (2020). Unfortunately,
since we cannot go back in time, it is impossible to know the real relationship between a set
of genetic sequences. Consequently, we have to infer it, and even today, this is still a
difficult task.
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Over the years, many approaches have been proposed to build
ARGs (Lewanski et al., 2024). Some of these approaches are based on
the coalescent model (Rasmussen et al., 2014; Heine et al., 2018;
Hubisz et al., 2020; Mahmoudi et al., 2022), but they are
computationally intensive. To overcome this problem, other
methods have been developed (Speidel et al., 2019; Kelleher et al.,
2019; Zhang et al., 2023; Wohns et al., 2022), but most approaches
face a trade-off between accuracy and scalability (YC Brandt
et al., 2022).

Heuristic algorithms have also been proposed. These methods
rely on the assumption that the fewer recombination events, the
more likely the graph. KwARG (Ignatieva et al., 2021), SARGE
(Schaefer et al., 2021), RENT+ (Mirzaei and Wu, 2017), ARG4WG
(Nguyen et al., 2016), and Margarita (Minichiello and Durbin,
2006) are some examples of these heuristic algorithms. These
methods do not learn from data, but are based on strict rules
established by the knowledge of genetic experts. Moreover, they
aim to build the maximum parsimony graph, but parsimonious
does not necessarily mean better. In fact, the results in Nguyen
et al. (2016) show that ARG4WG builds ARGs with fewer
recombination events than Margarita, but when they compare
the ARGs built with both algorithms to the real genealogy (using
simulated data), Margarita gets slightly better results. Our
approach is strictly data-driven and does not rely on prior
knowledge of genetics. It also allows to obtain a distribution of
ARGs of different lengths, which is a great advantage over these
heuristic algorithms.

In this manuscript, we propose a novel approach to build ARGs
using Reinforcement Learning (RL) (Sutton and Barto, 2018). With
recent advances in artificial intelligence, RL has been developed for
applications in multiple fields, from games to transportation to
marketing services. Machine learning (ML) and RL have also been
used for various applications in biology and in genetics (Mahmud
et al., 2018). For example, ML has been used to infer demographic
history, to detect natural selection, and to estimate recombination
hotspots, to name a few (Sheehan and Song, 2016; Flagel et al., 2019;
Smith et al., 2017; Torada et al., 2019; Sanchez et al., 2021; Gower
et al., 2021; Chan et al., 2018). On the other hand, Chuang et al.
(2010) used RL for operon prediction in bacterial genomes, Bocicor
et al. (2011) used it to solve the DNA fragment assembly problem,
and Zhu et al. (2015) used it to establish a protein interaction
network. However, to our knowledge, RL has not been used
to build ARGs.

If we assume that the most likely graph is one with few
number of recombination events, this means that it is among the
shortest ones. Throughout this paper, we consider the number of
events in an ARG as its length. Therefore, the shortest ARG is
equivalent to the maximum parsimony ARG or the one with the
fewest number of recombination events. Searching for the
shortest ARG means that we are looking for the shortest path
between a set of genetic sequences and their most recent common
ancestor (MRCA). We seek to leverage the similarities between
building the shortest path between a set of genetic sequences and
their MRCA and the shortest path to the exit in a maze, a classic
RL problem.

A famous example of RL is the computer program TD-
Gammon (Tesauro, 1991; 1994; Tesauro et al., 1995; Tesauro,
2002), which learned to play backgammon at a level close to that

of the greatest players in the world. But even more than that,
TD-Gammon influenced the way people play backgammon
(Tesauro et al., 1995). In some cases, it came up with new
strategies that actually led top players to rethink their positional
strategies. So we wanted to use RL to see if a machine could learn
the rules established by humans for building short genealogies
like those used in heuristic algorithms, or even better,
discover new ones.

In the short term, our aim was not to develop a method that
could be immediately applied on real data, or that could compete
with existing methods. Rather, as a first step, we wanted to explore
the possibility of using RL to build short ARGs. The essence of this
work was to explore whether it is possible to build maximum
parsimony ARGs with a method that is based solely on data and
does not rely on knowledge of genetics. In a second phase, we will be
interested in improving and refining our method so that it can be
used with large-scale data.

The main contributions within this manuscript are:

• A new approach using RL to build a distribution of ARGs for a
given set of sequences used during training. This is detailed in
Sections 2.3.2, 3.2.

• A newmethod based on RL to build a distribution of ARGs for
a set of n sequences, even if the set was not used during
training, thus generalizing the construction of ARGs to unseen
samples. Furthermore, the size of the samples used during
training can be of size n′, with n′≪ n. These results are
presented in Sections 2.3.3, 3.3.

• The development of an ensemble method to improve the
generalization performance, which we discuss in
Sections 2.3.3, 3.3.

Section 2.1 introduces genetic concepts necessary for a good
understanding of the work. In Section 2.2, we present in detail
different methods used to solve RL problems and, in Section 2.3, we
explain how we apply them to build ARGs. Our experiments and the
results obtained are presented in Section 3. Finally, Section 4
concludes the paper with a discussion of possible improvements
and future work.

2 Materials and methods

2.1 Background in genetics

First, in this section, we look at some genetic concepts to get a
better understanding of what an ARG represents and how it is built.

The ARG is used to represent the transmission of genetic
material from ancestors to descendants. To account for species
diploidy, each individual is represented by 2 sequences in the
ARG. In this paper, a genetic sequence represents a sequence of
single nucleotide polymorphisms (SNPs). The transmission of
genetic material occurs through three types of events:
coalescence, mutation, and recombination, which are described in
the following subsections. The goal of our reinforcement learning
process will be to learn which actions to take between these three in
order to build ARGs among the shortest ones (those with the fewest
recombination events).
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2.1.1 Coalescence
Coalescence occurs when two sequences have a common

ancestor. On Figure 1, coalescences are represented by events 4,
5, 7, and 9. The coalescence process is a continuous-time stochastic
process introduced by Kingman (1982). For a given sample, the
states of the process are all possible genetic sequence subsets. In fact,
a state corresponds to the sequences present in a generation of a
genealogy. To go from one state to another, two sequences must
coalesce. When building ARGs from the present to the past, the
coalescence event is represented by two sequences merging, and thus
reducing the sample size by 1.

2.1.2 Mutation
There are several types of mutations, but in this paper, we will

focus on those that occur when the allele of a marker is altered.

Mutations are represented by events 1, 3, 6, and 8 on Figure 1. There
are several models for inserting a mutation into the coalescence
process. The infinite sites model is a commonly used model. In this
model, only one mutation event is allowed per marker position,
resulting in non-recurrent mutations. We represent the allele
derived from the MRCA as “0”, and the mutated allele as “1”.
Therefore, each sequence in our ARG is represented by a vector of 0s
and 1s. Using this model means that in the learning process, it will
only be possible to select a mutation event if a mutated allele is
present on a single sequence.

2.1.3 Recombination
Recombination occurs when genetic material is shuffled, and a

child inherits a mixture of the two homologous chromosomes from
one of its parents. The second event on Figure 1 is a recombination.

FIGURE 1
Example of an ARG with 4 sequences of 4 SNPs. Events 1, 3, 6, and 8 are mutations, events 4, 5, 7, and 9 are coalescences, and event 2 is a
recombination. The right column represents the state of the system between events.

FIGURE 2
Example of the feature vector for the state with the sequences 0000 and 0001, using blocks of 2 markers with an overlap of one step shift. There are
9 possible blocks of 2 markers and 3 different possible positions. The multiplicity of the first block at position 1 is 2, at position 2 is 2, and at position 3 is 1.
The multiplicity of the second block at position 1 is 0, at position 2 is 0, and at position 3 is 1. The multiplicity of all other blocks is 0 for the
3 possible positions.
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FIGURE 3
Example of an ARG built starting with S0 � {0011, 1011, 1000, 1100} by following the optimal policy that was obtained using dynamic programming.

FIGURE 4
Moving average of the lengths of the ARGs built during training over 100 episodes. Each box represents a learning process using the same sample as
initial state. 60 samples were used with different sample sizes (40, 60, 100) and different recombination rates (1.2 × 10−8 and 0.6 × 10−8). The color of the
line represents the sample size used and the line type represents the recombination rate. Results for 20 of the 60 samples are shown in the figure. The
20 samples were randomly selected.
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When building ARGs, a recombination event introduces non-
ancestral material, genetic material that was not present in the
original sample, as shown in Figure 1. In this paper, it is
represented by “p”.

Going back in time, recombination events increase the
sample size by 1, which may somehow seem to take us away
from our goal of ending with a single sequence. However, they are
sometimes the only possible events and are therefore necessary.
Learning the right recombination events, the ones that lead to the
shortest ARGs, represents the main challenge of our
learning process.

2.1.4 Heuristic algorithms to build ARGs
Among the different methods used to build ARGs, heuristic

algorithms are the closest to what we propose, in the sense that they
are optimized to build the shortest graphs. ARG4WG (Nguyen et al.,
2016) is one of these algorithms andmanages to build short ARGs. It
builds ARGs starting from the present and going back in time;
starting with coalescence, then doing mutation. If neither
coalescence nor mutation is possible, it seeks the pair of
sequences with the longest shared end, and performs a
recombination event on one of the sequences. The sequence
resulting from the recombination that contains the shared
segment is then coalesced with the other sequence in the pair.

We will compare the length of the ARGs built with RL to those
built with ARG4WG to evaluate the performance of our method.

2.2 Background in reinforcement learning

In this section, we introduce the key concepts of reinforcement
learning based on Sutton and Barto (2018).

In reinforcement learning, the learner, also called the agent,
learns the action to take in order to maximize a reward given the
current situation. In many cases, the problem can be represented as a
Markov decision process (MDP) where S+ is the set of states,A(s) is
the set of possible actions at state s andR ⊂ R is the set of rewards.
The agent learns by interacting with its environment in a series of

TABLE 1 Comparison between ARGs built with RL and those built with
ARG4WG on 60 different samples. The table shows the number of ARGs
shorter with RL, the number of ARGs of the same length, and the number of
ARGs shorter with ARG4WG according to the sample size and the
recombination rate used to generate the sample.

Sample size 40 60 100

Recombination
rate (× 10−8)

1.2 0.6 1.2 0.6 1.2 0.6

Shorter with RL 0 1 1 0 0 4

Same length 7 9 8 9 9 6

Shorter with ARG4WG 3 0 1 1 1 0

FIGURE 5
Length of the ARGs built by 13 different agents trained with ntr � 5 on 20 test samples of 50 sequences of 10 SNPs. Each agent was trained using a
different initialization of the parameter vector and different samples as initial state. Each box represents a different test sample and each point represents
an agent. ARGs of length 400 are considered as infinite-length genealogies and are represented by the break in the y-axis (Xu, 2021).
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discrete time steps, t � 0, 1, 2, . . .. At each time step t, the agent finds
itself in a state of its environment, St ∈ S+; then, chooses an action
At ∈ A(St) and, partly as a result of its action, receives a reward,
Rt+1 ∈ R and finds itself in a new state St+1. The dynamics of the
MDP is defined by the following function:

p s′, r|s, a( )^P St+1 � s′, Rt+1 � r|St � s, At � a( ),
representing the probability of going to state s′ and receiving reward
r when choosing action a in state s.

As mentioned in the introduction, with RL, an agent can learn to
get out of a maze as quickly as possible (Sutton and Barto, 2018). In
this last problem, the set of states is the set of all possible locations in
the maze, and the actions are the directions the agent can take, for
example, up, down, right, and left. Typically, in this type of problem,
the agent receives a reward of −1 at each time t. Therefore, by aiming
to maximize its rewards, it will learn the shortest path to escape.

In many RL problems, the interactions between the agent and its
environment can be broken into subsequences, which we call

FIGURE 6
Distribution of lengths of ARGs built from 100 test samples of 50 sequences of 10 SNPs according to three different ensemble methods: majority,
mean, and minimum. ARGs of length 400 are considered as infinite-length genealogies. The red dot represents the average length.

FIGURE 7
Distribution of lengths of ARGs built from 100 test samples of 50 sequences of 10 SNPs using the third ensemble method (minimum) according to
the number of agents used in the ensemble. ARGs of length 400 are considered as infinite-length genealogies. The red dot represents the average length.
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episodes. For example, games fall into this category where the agent
learns by playing multiple games. Each time a game ends, the agent
starts a new one to improve its performance. The end of each game
represents the end of a learning episode. In the maze problem, an
episode begins when the agent enters the maze and ends when
it escapes.

In RL, a policy π is a mapping of states to a distribution over
actions, with π(a|s)^P(At � a|St � s). In episodic tasks, the goal of
the agent is to learn an optimal policy πp that maximizes the
expected cumulative sum of rewards Eπp(Gt|St � s), where Gt �∑T

k�t+1Rk and T<∞ is the random time at which the agent reaches a
terminal state (e.g., end of the game or exit of the maze). We define
GT � 0.We will distinguish the set of all non-terminal states, S, from
the set of all states, S+. The expected cumulative sum of rewards
from a state s under a policy π is called the value function, identified
as vπ(s) � Eπ(Gt|St � s). Under the optimal policy, it is called the
optimal value function and is denoted vp(s). Similarly, we can define
the value function for a state-action pair (s, a) as the expected
cumulative sum of rewards for taking action a in s and following π. It
is denoted qπ(s, a). Value functions can be expressed recursively. In
fact, we have:

vπ s( ) � Eπ Gt|St � s( )
� Eπ Rt+1 + Gt+1|St � s( )
� ∑

a∈A s( )
π a|s( ) ∑

s′∈S+
∑
r∈R

p s′, r|s, a( ) r + Eπ Gt+1|St+1 � s′( )( )
� ∑

a∈A s( )
π a|s( ) ∑

s′∈S+
∑
r∈R

p s′, r|s, a( ) r + vπ s′( )( ).
Similarly, we have:

qπ s, a( ) � Eπ Gt | St � s, At � a( )
� ∑

s′∈S+
∑
r∈R

p s′, r|s, a( ) r + ∑
a′∈A s( )

π a′|s′( ) · qπ s′, a′( )⎛⎝ ⎞⎠.

These equations are called the Bellman equations. Under
optimal policy, they are called Bellman optimality equations and
are written as follows:

vp s( ) � max
a∈A s( )

qπp s, a( )
� max

a∈A s( )
Eπp Gt|St � s, At � a( )

� max
a∈A s( )

∑
s′∈S+

∑
r∈R

p s′, r|s, a( ) r + vp s′( )( ),
and

qp s, a( ) � E Rt+1 + max
a′∈A s( )

qp St+1, a′( )|St � s, At � a( )
� ∑

s′∈S+
∑
r∈R

p s′, r|s, a( ) r + max
a′∈A s( )

qp s′, a′( )( ).
Returning to the maze problem, to learn the shortest escape

path, the agent must go through the maze many times. At the
beginning of each episode, he is placed in one of the maze’s location,
and each time he successfully escapes represents the end of an
episode. At each time step t, he receives a reward of −1. After several
passes through the maze, the agent learns the value of each state. By
moving towards the states with the highest values, the agent will
know which direction to take wherever it is in the maze in order to
reach the exit as quickly as possible. This will be the optimal policy.

2.2.1 Tabular methods
Solving a RL problem boils down to solving the Bellman

optimality equations. If the state space S is of dimension |S|,
then we have |S| equations with |S| unknowns, which we can
solve if |S| is not too large. And if |S| is finite, the optimal value
functions (vp and qp) are unique.

In a perfect world, we can solve our problem by listing all the
states and actions in a table and by using dynamic programming to

FIGURE 8
Distribution of ratios between the length of the ARGs built with our third ensemble method (minimum) and those built with ARG4WG from 100 test
samples of 50 sequences of 10 SNPs. The dashed blue line represents a ratio of 1, meaning that all ARGs above the line were longer with our method and
all ARGs below the line were shorter with our method than with ARG4WG. The dotted black lines represent the quartiles.
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solve the Bellman equations. The idea is to start with a random
policy π and evaluate the value of each state under that policy. Then,
we improve the policy and evaluate the new improved policy. This
continues until the policy can no longer be improved, at which point
the optimal policy has been found. The steps to follow are detailed in
Algorithm 1.

1: V(s) ← − 1, ∀s ∈ S initialize the value of each

state arbitrarily

2: V(s) ← 0, ∀ s ∈ S+\S
3: Initialize θ >0 determining accuracy of

estimation

4: repeat

5: Δ ← 0

6: for each s ∈ S do

7: v ← V(s)
8: V(s) ← maxa ∑s′,rp(s′,r|s, a)(V(s′) + r)
9: Δ ← max(Δ, |v − V(s)|)

10: end for

11: until Δ< θ

12: for each s ∈ S do

13: π(s)←argmaxa∑s′,r p(s′,r|s, a)(V(s′)+r) optimal policy

14: end for

15: Return π ≈ πp

Algorithm 1. Value Iteration, output: π ≈ πp.

In the end, in the optimal policy, all actions a that allow the
agent to go from a state s to a state s′ such that v(s′) is maximal are
equally likely.

Unfortunately, since we do not live in a perfect world, in
practice, these methods are not really applicable to problems
with a large set of states, such as backgammon, where there are
more than 1020 states, or such as building ARGs for large samples.
Consequently, we have to use approximation methods, which we
describe in the next section.

2.2.2 Approximation methods
Approximation methods in RL can be seen as a combination

of RL and supervised learning. Instead of estimating the value of
each state by visiting all of them, we are looking for a function
that approximates the value of the states such that the value of a
state never visited can be approximated based on the value of
similar states already encountered. In other words, we are
looking for v̂(s,w) ≈ vπ(s), where w ∈ Rd is a parameter
vector. Typically, the number of parameters will be much
smaller than the number of states (d≪ |S|). We are looking
for the w that minimizes the following objective function, the
Mean Squared Value Error:

VE w( ) � ∑
s∈S

μ s( ) vπ s( ) − v̂ s,w( )[ ]2,

where μ(s)≥ 0,∑sμ(s) � 1, is the state distribution and
represents how much we care about the error in each state s.
A common way to solve this problem is to use a gradient-based
method, such as stochastic gradient-descent, by adjusting the
parameter vector after each episode or after each time t of an
episode by a small amount in the direction that would most
reduce the error:

wt+1 � wt − 1
2
α∇ vπ St( ) − v̂ St,wt( )[ ]2

� wt + α vπ St( ) − v̂ St,wt( )[ ]∇v̂ St,wt( ),
(1)

where α is a positive step-size parameter and ∇v̂(St,wt) the column
vector of partial derivatives of v̂with respect to the components ofw:

∇v̂ St,wt( ) � ∂v̂ St,wt( )
∂wt1

,
∂v̂ St,wt( )

∂wt2

, . . . ,
∂v̂ St,wt( )

∂wtd

( )T

.

In RL, we do not know vπ(St), so we have to adjust the update
rule in Equation 1. We replace vπ(St) with Ut, a target output. For
example, Ut can be a noise-corrupted version of vπ(St), or it can be
Gt, the return observed in an episode. In this case, Gt is an unbiased
estimate of vπ(St), since E(Gt|St � s) � vπ(s), so we have the
guarantee that wt will converge to a local optimum under some
stochastic approximation conditions (Sutton and Barto, 2018).

From a linear function to a multi-layer artificial neural network
(NN) (Montesinos Lo´pez et al., 2022), v̂(s,w) can be any function.
To represent each state s, we use a real-valued vector
x(s) � (x1(s), x2(s), . . . xc(s))T ∈ Rc, called a feature vector.
Each component of x(s) is a function xi(s): S → R. If v̂(s,w) is
a linear function, then x(s) has the same number of components as
w, and v̂(s,w) � ∑d

i�1wixi(s).
For example, in our maze problem, assuming the maze can be

represented as a 2D grid, then the feature vector could be
x(s) � (x1(s), x2(s))T, the Cartesian coordinates of state s. To
obtain an optimal policy, we start by randomly initializing the
parameter vector w. An episode still begins with the agent
entering the maze and ends when it escapes. The agents still
receives a reward of −1 at each time t. At the end of an episode,
we update the parameter vector using Equation 5. After several
episodes, we obtain an optimal policy by choosing, for each state s,
the action a leading to the next state s′ with the highest estimated
value, v̂(s′,w).

2.3 Proposed methodology

In this section, we propose a new way to build ARGs inspired by
the maze problem and the RL methods presented in the
previous section.

We assume that the most likely graph is among those with the
fewest recombination events, so we are looking for the shortest path
between a set of genetic sequences (maze entry) and their MRCA
(maze exit). The initial state is a sample of genetic sequences. The
graphs are built starting from the present and going back in time.
Therefore, the other states of our system are our sample at different
moments in the past. The final state is the MRCA, which is
represented by a single sequence containing only 0s. For
example, in Figure 1, the initial state is
S0 � {0100, 1000, 1010, 0011}, and the MRCA is S9 � {0000}. At
each time t, the agent receives a reward of −1. This means that the
cumulative sum of rewards in a state s is minus the number of steps
from that state to the MRCA. Therefore, by aiming to maximize its
rewards, the agent will learn to minimize the number of actions it
must take, and will learn which ones to take, between coalescence,
mutation, and recombination, in order to reach the MRCA as
quickly as possible.

Frontiers in Genetics frontiersin.org08

Raymond et al. 10.3389/fgene.2025.1569358

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1569358


A coalescence between two sequences is possible if all their
ancestral material is identical. If the action chosen by the agent is a
coalescence between two identical sequences of type i, then the agent
will go from state s with n sequences of type i to state s′ with (n − 1)
sequences of type i. For example, in Figure 1, the seventh event is a
coalescence between two identical sequences 0000. By choosing this
action, the agent goes from state S6 � {0000, 0000, 0010} to the
state S7 � {0000, 0010}.

If the coalescence is between two sequences of different types i
and j (i.e., if at least one of them has non-ancestral material), then
the agent will find itself in a new state s′ where sequences of type i
and j have been replaced by a sequence of type k containing all the
ancestral material of both sequences. For example, in Figure 1, the
fourth event is a coalescence between the sequences 1000 and 1ppp,
and the resulting sequence is 1000. With this coalescence, the agent
goes from state S3 � {0000, 1000, 1ppp, p010, 0010} to the state
S4 � {0000, 1000, p010, 0010}.

For the mutations, we assume the infinite sites model, so a
mutation is only possible if the mutated allele is present on a single
sequence. If the agent chooses a mutation on the ℓth marker of the
sequence of type i, he will find himself in a new state where the
mutation has been removed, i.e., where the mutated allele (“1”) on
the ℓth marker of the sequence of type i has been converted to the
ancestral allele (“0”). For example, in Figure 1, the first event is a
mutation on the second marker of the sequence 0100, moving the
agent from the initial state S0 � {0100, 1000, 1010, 0011} to the
state S1 � {0000, 1000, 1010, 0011}.

Finally, a recombination is possible on any sequence that has at
least two ancestral markers, with the exception of the sequence
containing only 0s, because this sequence represents the MRCA and
it would not be useful to recombine it, it would even be
counterproductive and would lead to strictly longer ARGs. The
agent will have to choose which sequence to recombine and the
recombination point, which can be between any two ancestral
markers. The recombination will result in a new state where the
sequence of type i has been split into two sequences of type j and k.
The sequence of type j will be identical to the sequence of type i to
the left of the recombination point and will have non-ancestral
material to the right of the recombination point. The sequence of
type k will be identical to the sequence of type i to the right of the
recombination point and have non-ancestral material to the left. In
Figure 1, the second event is a recombination of the sequence
1010 between the first and second markers, which leads the agent
from the state S1 � {0000, 1000, 1010, 0011} to the state S2 �
{0000, 1000, 1ppp, p010, 0011}.

Let’s consider the initial state in Figure 1,
S0 � {0100, 1000, 1010, 0011}. The list of possible actions
A(S0) are:

• a mutation on the second marker of the sequence 0100, and
one on the fourth marker of the sequence 0011 (under the
infinite sites model, mutations on the first and third markers
are not possible because they are on two sequences),

• 12 recombinations: for all sequences, a recombination
between the first and second markers, one between the
second and third markers and one between the third and
fourth markers.

There is no coalescence possible because no sequences have
identical ancestral material.

The episode ends when the agent reaches the MRCA. The agent
will learn to construct short ARGs by running several episodes,
i.e., by building several genealogies. The first ones will be very long,
but eventually, the agent will find the optimal path to reach the
MRCA. Remember that the cumulative sum of rewards is equal to
minus the number of actions, so by aiming to maximize its rewards,
the agent will eventually find short paths.

2.3.1 Tabular methods: a toy example
The first way to learn to construct short ARGs is to use the

tabular methods described in Section 2.2.1. When building ARGs,
we know the dynamics of the environment because an action can
only lead to one state and because we give a reward of −1 at each time
t. So, we have p(s′,−1|s, a) � 1 if the agent goes from state s to state
s′ when taking the action a, and we have p(s′,−1|s, a) � 0 if the
action a does not allow the agent to reach state s′. Thus, the Bellman
equation can be simplified as follows:

vπ s( ) � max
a

∑
s′,r

p s′, r|s, a( ) r + vπ s′( )( )
� max

s′
−1 + vπ s′( )( ).

We use this equation in the value iteration algorithm (Algorithm
1) and can find an optimal policy for a given set of genetic sequences.

Once the optimal policy is determined, we can build a variety of
ARGs for a given sample. And since the policy maps each state to a
distribution over actions, we can compute the probability of each
ARG, which gives us a distribution of genealogies. This can be
interesting in genetic mapping, for example, and is a great advantage
of RL over heuristic algorithms that consider all ARGs as likely.

The problem is that the dimension of the state space grows
extremely fast as the sample size increases (number of SNPs or
number of sequences). In fact, Song et al. (2006) have shown that, for
a sample of n sequences of L SNPs, the dimension of the state space
is O(n3L−1). So, listing all states and actions in a table is practically
infeasible. In fact, we were only able to use tabular methods with
samples of 4 sequences of 4 SNPs, which is far too small to be used
for any useful research in genetics. Consequently, we have to use
approximation methods to be able to increase the size of our sample
and the length of the sequences.

2.3.2 Approximation methods
As presented in Section 2.2.2, we are now looking for a function

v̂(s,w) to approximate the value function vπ(s). To represent each
state s, we use a feature vector x(s), which is used as input to our
function v̂.

For building ARGs, we have to find a feature vector whose
dimension is independent of the number of sequences in a state s,
since the number of sequences varies according to the actions
chosen: coalescence reduces the number of sequences by 1,
mutation keeps the same number of sequences and
recombination increases the number by 1. In a perfect world, i
would represent a type of sequence and xi(s), the number of
sequences of type i in state s, which would capture all
information about the sequences present in state s. However, for
sequences of L markers, the number of possible sequences is 3L − 1,
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which has exponential scaling with respect to the number of markers
and therefore is not an option.

To further reduce the dimension of x(s), we use a representation
by blocks of markers, as shown in Figure 2. Let’s define b ∈ {0, 1, p}B,
a block of Bmarkers. For a sequence of Lmarkers, using overlaps by
o steps shift, there are P � (L − B + o)/o possible block positions.
We define Bsp � ({0, 1, p}B, mp), the multiset of blocks of Bmarkers
at position p in state s, wheremp: {0, 1, p}B → N, andmp(b) returns
the multiplicity of a block b at position p in state s. We define
xi(s) � mp(bj), with bj ∈ Bsp, j � � iP� and p � i − P(j − 1), for
i � 1, . . . , c. The dimension of x(s) is now c � 3BP.

For example, let’s consider sequences of 4 markers and
use blocks of 2 markers with an overlap of one step shift. We
have L � 4, B � 2, and o � 1. There are 32 � 9 possible blocks of
2 markers (b1 � 00, b2 � 01, b3 � 0p, b4 � 10, b5 � 11, b6 � 1p, b7 �
p0, b8 � p1, b9 � pp) and P � (4 − 2 + 1)/1 � 3 different possible
positions [beginning (p � 1), middle (p � 2), end (p � 3)]. The
dimension of the feature vector is c � 9 × 3 � 27, and the feature
vector is x(s) � (m1(b1), m2(b1), m3(b1), m1(b2), m2(b2),
. . . , m2(b9), m3(b9)).

For example, let’s consider the state s with the sequences
0000 and 0001. In state s, there are two sequences starting with
the first block (m1(b1) � 2), two sequences with the first block in the
middle (m2(b1) � 2), one sequence ending with the first block
(m3(b1) � 1) and one sequence ending with the second block
(m3(b2) � 1). So the feature vector would be:
x(s) � (2, 2, 1, 0, 0, 1, 0, . . . , 0︸︷︷︸

21 0s

), as shown in Figure 2.

The idea of using blocks of markers came from the four-gametes
test (Hudson and Kaplan, 1985). To determine if recombination is
necessary to build the ARG of a given set of sequences, we look at
blocks of two markers. Under the infinite sites model, since only one
mutation event is allowed per marker position, then a
recombination is required if blocks 01, 10, and 11 appear at the
same site. We tried different block sizes, with and without overlap,
and the best results were obtained with blocks of three markers
overlapping by one step shift.

Representation by blocks of markers was the best solution we
found to reduce the dimension of the feature vector, but it is still
computationally intensive. Our method currently only works with
sequences of L � 10 SNPs. With blocks of B � 3 markers
overlapping by o � 1 step shift, there are 33 � 27 different
blocks and P � (10 − 3 + 1)/1 � 8 possible positions, which
makes the vector x(s) of dimension c � 8 × 27 � 216. However,
the dimension of the parameter vector is larger because we use a
NN to approximate the value function, vπ(s). The NN has a hidden
layer with c/2 neurons and an output layer with one neuron. We
use ReLU as the activation function on the hidden layer and ReLU
× − 1 as the activation function on the output layer. Since the agent
receives a reward of −1 at each time step t, we know that the value
function will be less than 0 for all states s ∈ S. With this
architecture, the dimension of the parameter vector is
d � (c + 1) × c

2 + (c2 + 1). With c � 216, we get d � 23, 545. Thus,
increasing the number of SNPs leads to a large parameter vector
and is still an issue to be addressed. In Section 4, we propose some
possible solutions to be explored in future work to improve the
feature vector and reduce the computational complexity of
our method.

We start the learning process with a sample of genetic sequences.
We keep only one sequence of each type and use this sample as our
initial state. After each episode, corresponding to the construction of
a genealogy, we update the parameter vector w using Gt as the target
output for vπ(s). To obtain an optimal policy, the agent follows a
ε − greedy policy during training, i.e., it exploits its learning
(1 − ε)% of the time by choosing the action that leads it to the
state with the highest estimated value and it explores ε% of the time
by randomly choosing an action. All steps are described in
Algorithm 2.

After generating a certain number of episodes, we use the
estimated value function v̂ to determine an optimal policy for the
sample. For each state s ∈ S, the agent chooses action a ∈ A(s)
that leads to the next state s′ with the highest estimated value. If
more than one possible next state s′ has the same estimated value,
the agent chooses randomly among the actions leading to
these states.

Even though the agent only learned with a reduced sample
(a sequence of each type instead of the entire sample), the
policy can be applied to the entire sample, as shown by the
results in Section 3.2. It is therefore interesting to note that the
agent can learn to build ARGs of a large sample of sequences by
keeping only the set of unique sequences from that sample. In
other words, if we consider the sample containing 10 sequences
0100, 9 sequences 1000, 3 sequences 1010 and 4 sequences
0011, the agent can learn to build ARGs for this sample by
training with a sample containing only 4 sequences: 0100, 1000,
1010 and 0011.

1: Input: a differentiable function v̂: S × Rd → R

2: Algorithm parameters: step size α>0, small ε>0

3: Initialize value-function parameters w ∈ Rd arbitrarily

4: loop (for each episode):

5: Generate an episode S0 ,A0 ,R1 ,S1,A1, . . . ,RT ,ST using an

ε − greedy policy

6: for each step of the episode, t � 0,1,2, . . . ,T − 1 do

7: w ← w + α[Gt − v̂(St,w)]∇v̂(St ,w)
8: end for

9: end loop

10: Return v̂ ≈ vp

Algorithm 2. Gradient Monte Carlo Algorithm.

Applying the optimal policy usually results in the construction
of similar ARGs. However, to obtain a greater variety of
genealogies, it is possible to adjust the final policy. Instead of
following the optimal policy, it is possible to assign a probability to
each action or to the g best actions according to their value, instead
of keeping only the optimal actions. This is a great advantage of our
approach because it can be useful, for example, in genetic mapping,
to obtain a distribution of ARGs, and compute the probability of
each graph.

Even though learning how to construct a graph from a specific
sample has its uses, this method learns to build genealogies only for a
specific sample and the learning process has to be repeated for each
new sample. Consequently, the next section describes the process we
designed to generalize learning so that the agent learns to build
genealogies for any sample with sequences of L markers from the
same population.

Frontiers in Genetics frontiersin.org10

Raymond et al. 10.3389/fgene.2025.1569358

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1569358


2.3.3 Generalization using ensemble methods
Generalization in RL (Korkmaz, 2024) is not an easy task. Zhang

et al. (2018) have shown that agents with optimal performance
during training can have very poor results in environments not seen
during training. One way they alleviated this issue in a maze problem
was to spawn the agent at a random initial location. The maze was
exactly the same, but the agent always started an episode in a new
location. They used this approach as a regularizer during training.
Brunner et al. (2018) used a similar approach by changing the initial
state, but instead of changing the initial location, they changed the
entire maze configuration. At the beginning of each episode, the
agent was placed in a maze that was randomly selected from a
training set of different mazes.

To generalize learning when building ARGs, our idea was to
allow the agent to learn by training with different samples. We take
one large set of sequences, a population, and divide it into three
smaller sets: a training set, a validation set, and a test set. An episode
begins with a sample of sequences and ends when the agent reaches
the MRCA. At the start of each episode, the initial state is
determined by randomly drawing a fixed number of ntr
sequences from the training set without replacement. We use
small values of ntr so that we can keep all the sequences, not just
the unique ones. In the context of generalization, we think it can help
the agent to learn when to choose coalescence. Once these ntr
sequences are used, they are removed from the training set.
When all the sequences have been used, the initial state is again
drawn from the entire training set, and so on. When the entire
training set has been used, we also save the model parameters. This
allows us to compare the agent’s performance at different times
during training. We stop the learning after a fixed number
of episodes.

Zhang et al. (2018) have shown that agents with similar training
performance can have very different performance in environments
not seen during training. Therefore, the validation set is divided into
K samples of size nv and is used to evaluate learning. For each
sample, we build an ARG using the different models stored during
training. Then, we compare the length of the ARGs built with each
model to select the best one.

Although the agent eventually succeeds in building graphs for
the majority of the K samples, there is still a proportion of samples
for which it constructs infinite-length genealogies. In other words,
sometimes, even by following the optimal policy, it could never
reach the MRCA; it remains trapped in a loop where a
recombination is always followed by a coalescence of the two
sequences resulting from the recombination. In short, it goes
from state s to s′ to s to s′ and so on. This is not surprising, as
Brunner et al. (2018) have had a similar problem when trying to
teach a machine to read maps. In some cases, the agent could never
find the target.

Although the goal is to build short ARGs, we feel it is more
important that the model generalize well, even if that means building
slightly longer genealogies. Therefore, we consider the best model to
be the one with the smallest proportion of infinite-length
genealogies. If more than one model has the same proportion,
the one with the smallest average minimum length is
considered the best.

The test set is then used to evaluate and compare the best models
obtained with different values of ntr. Models obtained with small

values of ntr seem to have a tendency to overfit. They produce more
infinite genealogies on the validation set than the models obtained
with higher values of ntr. However, the models obtained with small
values of ntr that perform well on the validation set tend to perform
better on the test set than those obtained with higher values of ntr,
since they produce a similar proportion of infinite-length
genealogies but build shorter ARGs on average.

However, even with the best models, we still have a problem of
infinite-length ARGs. Therefore, to tackle the problem of infinite-
length ARGs and to stabilize learning, we use ensemble methods.

Ensemble methods, such as boosting (Freund and Schapire,
1995) and bagging (Breiman, 1996), are often used in supervised
learning to address two issues: the stability and the computational
complexity of learning (Shalev-Shwartz and Ben-David, 2014). The
idea behind boosting is to aggregate weak learners, which we can
think of as a model that is slightly better than a random guess, in
order to get an efficient learner.

Boosting is also used in RL (Brukhim et al., 2022; Wang and Jin,
2018). For example, Wang and Jin (2018) proposed a Boosting-
based deep neural networks. Their approach combines the outputs
ofM neural networks into one output to estimate the value function.
Wiering and Van Hasselt (2008) also used ensemble methods to
improve the performance of RL algorithms. But, instead of
aggregating different estimates of the value function, they
combine the policies derived from different RL algorithms into a
single final policy. They propose four approaches for combining the
algorithms, one of which is the majority voting method. In this
method, each algorithm chooses an action a to take in a state s, and
the one that is chosen most often is the one that ends up in the
final policy.

We draw on these different approaches for our problem. We
train M independent agents. For each learning process, we use the
same training set. However, to ensure that each agent is as
independent as possible from the others, we use different samples
as initial states.

In random forests, a well-known example of ensemble
methods, Breiman (2001) has shown that two elements have
an impact on the generalization error: the strength of each
individual tree in the forest and the correlation between them.
High strength and low correlation lead to lower generalization
error. In particular, random forests can produce low
generalization error even with weak individual learners as long
as their correlation is low. Therefore, to improve the accuracy of
our model based on ensemble methods, we aim to obtain strong
individual agents, but more importantly, agents with low
correlation between them.

To estimate the value function, we use the same architecture and
the same RL algorithm for each agent, but we have changed the
initialization of the parameter vector. We stop the training after
using the same number of episodes for each agent and compare the
stored models with the validation set. For each agent, we select the
model that performs best on the validation set (smallest proportion
of infinite genealogies). We then use three different approaches.
First, we take the average of the outputs of the M models as an
estimate of the value function. For the second approach, we look at
the action chosen by each of theMmodels and keep the one chosen
most often in the final policy. Finally, we build ARGs with each of
the M models and keep the shortest one.
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We use the test set to compare the performance of the three
approaches. The results are presented in Section 3.3.

3 Results

3.1 Tabular methods

We used tabular methods on two samples of 4 sequences of
4 markers. The first sample contained the sequences 0011, 1011,
1000, 1100, while the second sample contained the sequences
0101, 1000, 1010 and 1101. The optimal policy obtained after
following the Algorithm 1 allowed us to construct
758 genealogies of length 9 for the first sample and 414 ARGs
of length 9 for the second. Using tabular methods and dynamic
programming, we actually find all the possible shortest ARGs. We
consider the number of actions taken in a genealogy as its length.
For example, the length of the ARG in Figure 3 is 9. Using
ARG4WG also produced ARGs of length 9, but resulted in the
construction of only 8 different genealogies for each sample. This
shows that RL allows us to learn a much larger variety of possible
ARGs as well as a distribution over them, an interesting
advantage of RL over heuristic algorithms.

Figure 3 shows an ARG built after following the optimal policy
for the first sample, S0 � {0011, 1011, 1000, 1100}. The first action
is a recombination of the sequence 0011 between the second and
third markers. ARG4WG would never start with this action because
of the possibility of a mutation on the secondmarker of the sequence
1100. In addition, ARG4WG would never do this recombination
because it selects the recombination point based on the longest
shared end between two sequences. In this example, ARG4WG will
always choose a recombination between the first and second
markers of either sequence 0011 or sequence 1011. Finally,
another difference is that after a recombination, ARG4WG
always chooses a coalescence with one of the sequences resulting
from the recombination. In Figure 3, the action after the
recombination is a mutation on the second marker of the
sequence 1100.

Although tabular methods cannot be used on large samples, it is
still interesting to note that they find different rules than the
heuristic algorithms, which makes it possible to generate a wide
variety of ARGs.

3.2 Approximation methods: same
initial state

For the approximation methods, we simulate 60 different
samples on a region of 25 kb long with the Hudson model
using msprime (Baumdicker et al., 2022), a widely used
package for simulating data sets based on the coalescent
process. For all samples, we set the population size to 10,000,
and use a mutation rate of 1.2 × 10−8 per site per generation. We
use three different sample sizes, 40, 60, and 100, and use two
different recombination rates, 1.2 × 10−8 and 0.6 × 10−8 per site
per generation, similar to Nguyen et al. (2016). From a
computational point of view, our method currently only works
with sequences of 10 SNPs. So, we keep the first L � 10 rows of the

genotype matrix. That is, we keep the SNPs at the same 10 sites for
each individual. For each combination of sample size and
recombination rate, we simulate 10 different samples.

We used α � 1 × 10−4 as the step-size parameter and ε � 0.1 as
the exploration rate.

Figure 4 shows the moving average of the lengths over
100 episodes for 20 of the 60 samples used. The results for the
60 samples are available in the Supplementary Material. In many
scenarios, the length of the ARGs built during training seems to
stabilize after just over 1,000 genealogies. Using the optimal policy
obtained after 10,000 episodes, we built ARGs for each of the
60 samples. We compared the length of these genealogies to
those obtained using ARG4WG. As shown in Table 1, our
method builds ARGs of similar length to those built with
ARG4WG. For 48 samples, the ARGs built with RL have the
same length as those built with ARG4WG, for 6 samples, the
length is shorter with RL, and for 6 samples, the length is shorter
with ARG4WG.

These results are really interesting: it means that the agent,
without any pre-programmed rules, can learn to build ARGs that
are as short as those built with a heuristic algorithm optimized to
build short ARGs. Even better, in some cases the agent learns new
rules that lead to shorter ARGs. The agent can also adjust its
optimal policy to get a wider variety of ARGs, another
great benefit.

3.3 Generalization and ensemble methods

Now, to generalize our learning, we used msprime to simulate
a sample of 15,500 sequences on a region of 10 kb long with the
Hudson model. We set the population size to 1,000,000. We used a
recombination rate of 5 × 10−6 and a mutation rate of 5 × 10−7 per
site per generation. To obtain sequences of L � 10 SNPs, we keep
the first 10 rows of the genotype matrix. In the context of
generalization, we wanted to ensure that the agent was trained
with samples that required at least one recombination. To do this,
since we only keep the first 10 markers of the simulated sequences,
we increased the mutation and recombination rate to have more
variability in the data. We used 10,000 sequences as the training
set, 500 as the validation set, and 5,000 as the test set. 500 sequences
in the validation set may seem small, but this set is used to compare
models obtained at different times during training and select the
best one. We initially used a larger validation set, but ended up
selecting the same models with a smaller set. Therefore, to speed up
the model selection process, we decided to use a smaller
validation set.

We used α � 1 × 10−5 as the step-size parameter and ε � 0.1 as
the exploration rate during the training process. We used the same
NN architecture as described in the previous Section 3.2. We
stopped the training after 100,000 episodes.

We used the validation set to compare models obtained at
different times during training. Even though the length of the
genealogies seems to stabilize during training, the performance of
the models on the validation set is quite variable. We divided the
validation set into K � 20 samples of size nv � 25. For each of
these samples, we built an ARG using the optimal policy and set
the Stepmax to 300, to avoid infinite-length genealogies. Any ARG
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reaching this length is considered to be an infinite-length
genealogy. In many cases, the proportion of infinite-length
genealogies increases as the average minimum length
decreases. The agent thus seems to learn to make some
genealogies shorter, to the detriment of others, which become
of infinite length.

We used the test set, divided into K � 100 samples of size
ntest � 50, to compare the best models obtained with different
values of ntr or with various initializations of the parameter
vector, but we could not find a model that builds the shortest
genealogy for all samples. In other words, no model is the best on all
samples or on a large majority of the test samples. This is why we
decided to use ensemble methods, to take advantage of the strength
of each model.

In particular, when we look at the results on different test
samples in Figure 5, we can see that one model may be better
than another for one sample, but may be worse for another sample.
Figure 5 shows the length of the ARGs built by 13 different agents
trained with ntr � 5 on 20 test samples of 50 sequences. Each agent
was trained using a different initialization of the parameter vector
and different samples as initial state. For example, Agent 4 is the best
for the majority of the samples in Figure 5 (7, 9, 14, 25, 26, 31, 36, 42,
43, 50, 57, 67, 72, 79, 95), but builds an infinite-length genealogy for
sample 87. This is what inspired our third ensemble method
(Minimum), described below.

To use ensemble methods, we trained M � 13 independent
agents with ntr � 5. We added more agents to our method until
the results stabilized. Ten agents seemed to be enough, but we added
a few more just to be sure. We used the validation set to evaluate the
learning and to select one model per agent.

We divided the validation set into K � 20 samples of nv � 25
sequences and set Stepmax to 300. We built an ARG with the
models obtained every 2,000 episodes from 40,000 episodes. For
each agent, we kept the model that had the smallest proportion of
infinite-length genealogies. If more than one model had the same
proportion, we kept the one with the smallest average length. We
then divided the test set into K � 100 samples of ntest � 50
sequences and set Stepmax to 400. We built an ARG for each
sample using different approaches:

1. Mean: We take the mean of the outputs of the 13 models to
estimate the value function. We choose the action a that leads
to the state s′ with the highest estimated value.

2. Majority: We look at the actions chosen by the 13 models
obtained and choose the most frequent one.

3. Minimum: We build an ARG with each of the 13 models and
keep the shortest one.

The results obtained are shown in Figure 6. The last method is
definitely the best. It builds the shortest genealogy on 97% of the
samples in the test set, and is the only one that eliminates the
construction of infinite-length genealogies.

Figure 7 shows the proportion of infinite-length genealogies
and the average length of the ARGs built on the test set with the
third method as a function of the number of models used in the
ensemble. As we can see, we eliminate the infinite-length
genealogies with only 3 agents in the ensemble. For the average
length, we see a great improvement with 4 or 5 agents in the

ensemble and the length stabilizes with 11 models. Therefore, our
suggestion is to train 12 to 15 independent agents to obtain an
efficient ensemble model.

The agents were added to the ensemble as they were trained,
but we have tried different orders to add them to the ensemble and
usually see an improvement in the average length with 5 agents and
a stabilization around 10 agents. To eliminate infinite-length
genealogies, 2 or 3 agents are usually sufficient. Of the
50 orders we tried, the most agents needed to eliminate
infinite-length ARGs was 6. The results are presented in the
Supplementary Material.

We compared the results obtained on the test set with the
third ensemble method to those obtained with ARG4WG. On
average, ARG4WG builds shorter genealogies than our RL
method, but the difference is not huge, as shown in Figure 8.
For some samples, our method even builds shorter ARGs
than ARG4WG.

It is really interesting to see that ourmethod builds ARGs for any
new sample, even samples much larger than those used during
training, with lengths around 90%–120% of the lengths of the ARGs
built with ARG4WG, an algorithm optimized for building short
ARGs. Our method also allows to build a wide variety of short ARGs
by adjusting the optimal policy and/or by keeping the ARGs built by
different agents, which is a great advantage.

4 Discussion

Our goal with this work was not to compete with existing
methods, but rather to explore the potential of a new approach
based on machine learning techniques. We wanted to explore how
well an RL agent could learn to build short ARGs, without any prior
knowledge of genetics, and the first results are very promising. Our
results show that RL can be used to obtain a distribution of short
ARGs for a given set of genetic sequences, by adapting the optimal
policy. The best way to do this is to use this set of sequences as the
initial state and to use the same initial state throughout the learning
process. However, this means repeating the learning process for each
new sample, which is not ideal. To avoid this problem, we have
shown that it is possible to learn to build a distribution of short
genealogies for different samples from the same population by
changing the initial state at the beginning of each episode and by
using ensemble methods.

Our results have shown that good performance on the training
set does not necessarily translate into good performance on samples
not seen during training. Therefore, we recommend using a
validation set to determine which models to use as final models.
The validation set can also be used to determine when to stop
learning, but this remains a question to be discussed. Our results
have shown that we can have a goodmodel on the validation set after
a certain number of episodes, but we can have a better one after a few
more. So for now, we think the best approach is to runmore episodes
than necessary and select as the final model the one with the best
performance on the validation set. Eventually, it would be
interesting to establish criteria for determining when to
stop learning.

Our results also show that learning can be generalized to larger
sample sizes. Thus, it is not necessary to learn with samples of n
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sequences to build genealogies for samples of same size n. For
example, learning with 5 sequences may be sufficient to build
genealogies for a sample size of 50. In fact, models learned with
fewer sequences generally resulted in shorter genealogies on average
for validation and test sets. On the other hand, learning with smaller
sample sizes more often led to overfitting problems. For our
generalization approach, we decided to consider the simplest
possible scenario: we train the model with sequences from a
population and reconstruct ARGs for samples from the same
population. In future work, it would be interesting to evaluate
the robustness of the method to model violations. For example,
we could assess how an RL agent trained on data simulated under
the infinite sites model performs on new samples simulated with
recurrent mutations.

To evaluate the performance of our method, we compared the
length of the ARGs built with RL to those built with a state-of-the-art
method used to build short ARGs. Assuming that the most likely
graph is among the shortest ones is a strong assumption. In this
context, we believe that in future work, it would be really interesting
to study the closeness between short ARGs and the true ARGs. In
particular, it would be interesting to assess whether our method,
being based on data, can build graphs that are close to the real ARGs.
As we are currently using samples with sequences of only 10 SNPs,
we do not believe that comparing the reconstructed ARGs with the
true topology of the ARG would lead to meaningful or relevant
results at the moment.

As this work was primarily intended to be exploratory, several
improvements are possible and deserve to be explored in future
work. The essence of this work was to see if an RL agent could learn
rules for building short ARGs on its own, without any prior
knowledge of genetics. But we have to face the fact that in order
to improve its performance, we might have to introduce some
genetic knowledge into the model. This is not surprising, since a
similar approach was taken with TD-Gammon. Its first version, TD-
Gammon 0.0, was developed with almost no backgammon
knowledge, but to improve its performance, hand-crafted
backgammon features were incorporated in the second version,
TD-Gammon 1.0 (Tesauro, 1994). In our problem, one thing we
could do is use a restricted action space (Farquhar et al., 2020) and
prohibit some actions. For example, we could forbid the coalescence
of two sequences resulting from a recombination. It could also help
solve the problem of infinite-length genealogies.

To incorporate genetic knowledge into the model, we could also
modify the feature vector x(s) to include more genetic information,
which could help the agent choose better actions. In recent work
(Korfmann et al., 2023; Smith et al., 2023; Sanchez et al., 2021; Flagel
et al., 2019), sets of genetic sequences are represented by a haplotype
or genotype matrix, where each row represents a sequence and each
column represents the position of a marker, or vice versa. This
matrix is then used as input to a convolutional neural network. We
have made some attempts with this approach, but have not obtained
conclusive results. This approach is not ideal for variable size inputs
and does not allow generalization of learning to a larger set of
sequences. In addition, the results obtained depended on how the
SNPs were represented (e.g., with 0, 1 and p or with −1, p, 1), which
is undesirable.

Another possible improvement is to look at more than one
action at a time. For example, TD-Gammon 2.0 and 2.1 (Tesauro

et al., 1995) improved by performing 2-ply searches, where a ply
corresponds to a move made by a player. So instead of just selecting
the move that leads to highest value state, the program would also
consider the opponent’s possible dice rolls andmoves to estimate the
value of the states. Versions 3.0 and 3.1 of TD-Gammon (Tesauro,
2002) even perform 3-ply searches. This idea could be really
interesting for building ARGs, and could help avoid infinite-
length genealogies by preventing recombination followed by
coalescence of the resulting sequences.

Using a different RL algorithm is another thing we could try.
Instead of waiting until the end of an episode to update the
parameter vector w, we could update it during an episode by
using a different target output. For example, we could try
temporal-difference learning, like the TD(λ) algorithm used for
TD-Gammon. These methods do not have the same convergence
guarantees as the Monte Carlo methods, but in practice, they have
shown good results, sometimes even better. This may be an avenue
worth exploring.

Finally, the main limitation of our method is the number of
SNPs used. Since we seem to be able to generalize learning on sample
of n sequences to sample of n′ sequences, with n≪ n′, the number of
sequences in the sample is not the biggest problem. But we need to
find a way to increase the number of SNPs per sequence. All of the
possible improvements mentioned above could help solve this
problem. The use of transfer learning (Torrey and Shavlik, 2010;
Zhuang et al., 2020; Zhu et al., 2023) is also one of the possibilities we
could explore. We believe that the learning done with 10 SNPs could
be useful for sequences of 20, 30, 50 SNPs, especially since we use a
representation by blocks of markers. Although 10 SNPs is small, we
strongly believe that our results are encouraging and show the
potential of RL in building short ARGs, which was the goal of
this paper. In future work, we would like to explore ways to refine
our method so that it can be used with large-scale data.

In conclusion, our research shows that RL is a promising
method to address an important challenge in genetics: building
accurate and efficient ARGs. It is a new and innovative approach
that allows obtaining a distribution of short ARGs for a specific
sample, as well as for new samples not used during the learning
process, which can be of interest in genetic mapping, for example,.
Our data-driven methodology differs from conventional methods
that rely on heuristic rules or complex theoretical models built on
strong hypotheses. By learning to build ARGs only from the data,
our method has the potential to produce more realistic results and
may lead to new rules for building short ARGs.
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